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ABSTRACT 
 
Wrinkling in deep-drawing process was analyzed as the form of short-wavelength 
shallow buckling modes based on the Donnell-Mushtari-Vlasov shell theory. The local 
analysis considered the current deformed state of a sheet element in a doubly-curved, 
biaxial plane stress state. The yield criterion for mixed-hardening metal used J2 yield 
criterion for isotropic metal and Hosford’s yield criterion for anisotropic metal. The effect 
of back stresses on wrinkling limit curves was investigated numerically. 

 
 

KEY WORDS: Wrinkling, Mixed-hardening, Bifurcation 
 
 
NOMENCLATURE 
 

αβE&  the incremental stretching strain 

αβK&  the incremental bending strain 
αβN&  the incremental stress resultants at buckling  
αβM&  the incremental bending moments at buckling 

αU&  the incremental displacements in the surface-coordinate directions ( 1X , 2X ) 
W&  the incremental buckling displacement normal to the middle surface of the 

sheet 
αβσ&  the stress rates 
αβε&  the strain rates 
αβκγL   the plane-stress incremental moduli  

θ  the angle at which the wrinkles form with respect to the 1X  axis 
λ  a non-dimensional wave number 
S  the region of the sheet middle surface over which the wrinkles occur 
L  the wavelength of the wrinkles 
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INTRODUCTION 
 
Wrinkling is one of defects in sheet metal forming operations. It is produced by a 
compressive stress field. The prediction of wrinkling is important for the design of 
stamping and deep-drawing processes. A large number of wrinkling analyses are based 
on the functional and bifurcation criterion proposed by Hutchinson [1] in his theory of 
plastic buckling. The criterion was applied by Hutchinson and Neale [2] in a local 
wrinkling analysis for doubly curved sheet under the biaxial plane stress state. Neale 
and Tugcu [3] proposed the concept of the wrinkling limit curves for plastic yielding, J2-
flow and J2-deformation theory. Kim and Son [4] presented  the wrinkling limit curves 
for the metals with anisotropy described by the yield criteria proposed by Hosford [5]. 
Tugcu et al. [6] presented the wrinkling limit curves for the metals with planar anisotropy 
described by two anisotropic yield criteria proposed by Barlat et al.[7] and Karafillis and 
Boyce [8]. Correia and Ferron [9,10,11] presented the wrinkling limit curves and 
wrinkling limit curves in deep-drawing process for the metals with planar anisotropy 
described by yield criteria proposed by Ferron [12]. 
 
This study extends the work of Neale and Tugcu [3] by considering the effect of back 
stress on the critical conditions of wrinkling formation. A numerical analysis of wrinkling 
limit curves for mixed hardening metals in deep-drawing process is presented. 
 
 
PROBLEM FORMULATION AND ANALYSIS 
 
In this study, the wrinkle is considered as a plastic bifurcation phenomenon in a sheet 
metal forming operation. It is often confined to a localized region of the sheet. The 
buckling mode is thus a local mode, which depends on the local curvatures, the 
thickness of the sheet, its material properties, and the local stress state, as shown in 
Fig.1. Here the principal radii of curvature 1R , 2R  and the sheet thickness t are assumed 
to be constant. Furthermore, the stress state prior to wrinkling ( 1σ , 2σ  ,τ ) is assumed to 
be a uniform membrane state over the local element being examined for susceptibility 
to wrinkling. 
 
The short-wavelength wrinkling modes are shallow and can be analyzed using the 
Donnell-Mushtari-Vlasov (DMV) shallow shell theory [1]. Moreover, this theory restricts 
the analysis to modes for which the characteristic wavelength of the buckles is large 
compared to the sheet thickness, yet small compared to the local radii of curvature 
( 1R , 2R ) 

 
Fig. 1.  The geometry and loading of a doubly curved sheet. 
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According to the DMV theory the buckling mode generates incremental stretching strain 
( αβE& ) and bending strain ( αβK& ) in the sheet element. These are given by: 
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where the range of Greek indices is 1-2 and a comma denotes covariant differentiation 
with respect to the surface coordinates. αU& are the incremental displacements in the 
surface-coordinate directions ( 1X , 2X ), W& is the incremental buckling displacement 
normal to the middle surface of the sheet, and  αβb  is the curvature tensor of the middle 
surface in the prebuckling state.  The above incremental strains lead to incremental 
stress resultants ( αβN& ) and bending moments ( αβM& ) at buckling . These are given by 
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where αβκγL  are the plane-stress incremental moduli relating stress rates αβσ&  to strain 
rates αβε&  through 
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The critical stress state at buckling is determined by using the following Hutchinson’s 
“bifurcation functional” : 
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where S  is the region of the sheet middle surface over which the wrinkles occur. The 
condition that F > 0 for all admissible fields αU& , W&  ensures that bifurcation will not 
occur. Conversely, buckling first becomes possible when F  = 0 for some non-zero 
field. The velocity field giving the short wavelength wrinkling mode of the form shown in 
Fig 2. These are given by  
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where Rtl =  and R  is identified with either 1R  or 2R , as appropriate. A , B  and C  
are constants representing the relative displacement amplitudes of the mode shape, θ  
denotes the angle at which the wrinkles form with respect to the 1X  axis, and λ  is a 
non-dimensional wave number. The wavelength of the wrinkles in Fig. 2 is given by 

λπ /2 lL = . 

 

 
 

Fig. 2.  The Short-wavelength wrinkling mode for sheet element. 
 
 
In employing the fields (5) we anticipate that wrinkling occur over a certain region S of 
the sheet which spans many wavelengths of the buckling mode. The boundary 
conditions or continuity conditions along the edges of S  then become relatively 
unimportant.  
 
The analysis involves substituting the velocity fields (5), the incremental stretching 
strain and bending strain (1) and the incremental stress resultants and bending 
moments (2) into the bifurcation functional (4) and integrating over S . We also define 

111 /1 Rb = , 222 /1 Rb = , as well as 1
11 σtN −= , 2

22 σtN −=  and τtN −=12  where 1σ , 2σ  
and τ  are the current membrane stresses with respect to the geometric axes.  The 
following formulas are also used. 
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The functional (4) can then be written as 
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where ),,( CBA=u  is the buckling displacement-amplitude vector. The components of 
the matrix M  as well as the numerical solution routine is given by Neale and Tugcu [3]. 
The incremental moduli L  depend on the particular constitutive law employed.  
 
The buckling in the mode (5) is possible when the associated bifurcation functional F = 
0. In view of (7), this first occurs when the determinant of M  vanished. To determine 
the critical stress values cr

1σ , cr
2σ , crτ  for which short-wavelength buckling first occurs, 

we minimize this determinant with respect to the waveform parameters λ  and θ (or 
equivalently 1λ and 2λ ) and set the minimum equal to zero.  The obtained values of λ  
and θ  describe the corresponding critical wrinkling pattern. Therefore, the three 
equations are solved simultaneously : 
 

  
0

,0det

=
∂
∂

=
∂
∂

==

θλ
DD

D M
  (8) 

 
We use the Newton-Raphson technique for solving the critical stress values. 
 
 
CONSTITUTIVE LAWS 
 
In order to clarify the effect of back stress for mixed-hardening metals on the wrinkling 
initiation, J2 yield criterion with mixed-hardening and Hosford yield criterion with mixed-
hardening are adopted. 
J2 yield criterion with mixed-hardening is adopted for isotropic metal sheets, given by 
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where eσ  is the effective stress, ijS  is the deviatoric stress  and ijg  is the deviatoric 
part of the back stress. 
 
Hosford’s yield criterion with mixed-hardening is adopted for anisotropic metal sheet, 
given by 
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where m  is known as six for bcc metals and eight for fcc metals, and  
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Fig. 3.  The yield surface for J2 yield criterion with mixed-hardening 
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Fig. 4.  The yield surface for Hosford’s yield criterion with mixed-hardening 
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where Iσ , IIσ  are the principal stresses and Ir , IIr  are the back stresses in principal 
stress directions. 
 
In the constitutive law of the form (3), the incremental plane-stress moduli αβκγL  using 
the flow theory are given by 
 

  3333

3333

L
LLLL

κγαβ
αβκγαβκγ −=   (12) 



209 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 

and 

  
mntumn

e
tu

pqkl
e

pqrsijrs
e

ijkl
eijkl

Lh
LL

LL
µµ

µµ
+

−=  (13) 

 

where h  is an instantaneous hardening ratio, ijµ is the tensor of the yield surface 

normal and ijkl
eL  is the incremental modulus for elastic deformation, given by 
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where E  is Young’s modulus, ν  is Poission’s ratio and ijδ  is the Kronecker delta. The 
uniaxial stress-strain curve of the metal is modeled by a power-law hardening relation 
of the following form : 
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where yσ  is the yield stress and n  is a strain-hardening coefficient. 
 
 
RESULTS AND DISCUSSION 
 
To investigate the influence of back stresses for mixed-hardening materials (both 
isotropic and anisotropic metals) on the wrinkling formation in deep-drawing process, 
parametric study in terms of principal stresses has been carried out. The principal 
stresses in the cup wall in deep-drawing process shows in Fig. 5. 
 

 
 

Fig. 5.  The stress state in the cup wall in deep-drawing process 
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For the isotropic metal, the ratios of 12 / RR  and 2/ Rt  are fixed at constant values of 0.5 
and 0.02 respectively,  the material constants are taken as follows : ν  = 0.3, E  = 200 
GPa, Ey /σ  = 0.001 and n  = 0.1. This data are chosen according to Neale and Tugcu 
work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (a)         (b) 

Fig. 6.  The critical stress states for various deviatoric part of back stresses. 
 
For the negative deviatoric back stresses with the same magnitude of back stress 
components (namely 11g = 22g ), Fig. 6(a) shows that yII σσ / changes insignificantly at 

yI σσ /  of about 0. However, yI σσ /  increases ( yI σσ /  > 0) and yII σσ /  decreases 
when the magnitude of the deviatoric back stresses increase.   
 
For the positive deviatoric back stresses, Fig. 6(b) shows that yII σσ /  changes 
insignificantly at yI σσ /  > 1.2. However, yI σσ /  decreases ( yI σσ /  < 1.2) and yII σσ /  
decreases when the magnitude of the deviatoric back stresses increase. 
 
Fig. 7(a) shows the effects of back stress components 11g on the wrinkling limits.  
Increasing the back stress component 11g  will increase the critical stresses. Fig. 7(b) 
shows the effects of back stress components 22g on the wrinkling limits.  Increasing the 
back stress component 22g  will decrease the critical stresses.  
For the anisotropic metal, the ratios of 12 / RR  and 2/ Rt  are fixed at constant values of 
0.5 and 0.02 respectively. In this study, the sheet thickness of 0.88 mm is used. The 
material constants, based on the mechanical properties of the CHSP35E material used 
by Kim and Son [4], are taken as follows : ν  = 0.3, E  = 200 GPa, yσ  = 220 MPa, R  = 
1.36 and n  = 0.19. 
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   (a)      (b)  

Fig. 7.  The critical stress states for various deviatoric part of back stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (a)  m  = 6              (b)  m  = 8   

Fig. 8.  The critical stress states for various back stresses  
 

Fig. 8(a) and Fig. 8(b) show the effect of back stresses with Ir  = IIr  on the wrinkling 
limit based on Hosford’s yield criterion with m  = 6 and 8 repectively. For the negative 
back stresses, yII σσ /  changes insignificantly at yI σσ / of about 0. However, yI σσ /  
increases ( yI σσ / > 0) and yII σσ /  decreases when the magnitude of the back stresses 
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increase. For the positive deviatoric back stresses, yII σσ /  changes insignificantly at 

yI σσ /  > 1.2. However, yI σσ /  decreases ( yI σσ /  < 1.2) and yII σσ /  decreases when 
the magnitude of the back stresses increase.  
 
Fig. 9(a) shows the effect of back stresses with Ir  = IIr  on the wrinkling limit based on 
Hosford’s yield criterion with m  = 6 and 8. The critical stress ratios decrease as m  
increases. This is in agreement with the results of Kim and Son’s work. 
 
Fig. 9(b) shows the effect of back stresses with Ir  = IIr  on the wrinkling limit based on 
Hosford’s yield criterion with n  = 0.19 and 0.22. The effect of the back stresses for the 
critical stresses is the same trend in Fig. 8(a) and Fig. 8(b). Furthermore, the critical 
stress ratio increase as n  increases. This is in agreement with the results of Kim and 
Son’s work. 
 
Fig. 9(c) shows the effect of back stresses with Ir  = IIr  on the wrinkling limit based on 
Hosford’s yield criterion with yσ  = 220 and 270 MPa. The effect of the back stresses for 
the critical stresses is the same trend in Fig. 8(a) and Fig. 8(b).  Furthermore, the 
critical stresses for the onset of wrinkling decrease as yield stress increases. This is in 
agreement with the results of Kim and Son’s work. 
 
Fig. 9(d) shows the effect of back stresses with Ir  = IIr  on the wrinkling limit based on 
Hosford’s yield criterion with R  = 1.36 and 2. The effect of the back stresses for the 
critical stresses is the same trend in Fig. 8(a) and Fig. 8(b). Furthermore, the critical 
stress ratios for the onset of wrinkling change negligibly. This is in agreement with the 
results of Kim and Son’s work. 
 
CONCLUSION 
 
The analysis of critical principal stresses for the onset of wrinkle formation of mixed-
hardening metal sheets has been performed to investigate the effects of back stresses 
on the wrinkling limit curves in deep-drawing processes.  
 
Numerical results show for both isotopic and anisotropic materials that increasing back 
stress component in the direction of the principal axis IX  will increase the critical 
principal stresses.  On the other hand, increasing back stress component in the 
direction of the principal axis IIX  will decrease the critical principal stresses. In case of 
equal back stress components, increasing the positive back stress components will 
decrease the critical stress IIσ . On the other hand, decreasing the negative back stress 
components will decrease the critical stress IIσ . 

For the anisotropic material, the effects of material constants m , n , yσ  and R  were 
examined.  As the numerical results, increasing the yield function exponent m  will 
decrease the positive critical stress ratios.  Increasing the hardening coefficient n  will 
increase the critical stress ratios.  The critical principal stress ratios decrease as the 
yield stresses increase.  Increasing anisotropy parameter R  will increase the positive 
critical principal stress ratios but decrease the negative critical principal stress ratios. 
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                   (a)  m  = 6 and 8                     (b)  n = 0.19 and 0.22   

 
Fig. 9.  The critical stress states for various back stresses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (c)  yσ  = 220 and 270 MPa    (d)  R  = 1.36 and 2 

Fig. 9.  The critical stress states for various back stresses 
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