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ABSTRACT 

 

Thermocapillary flows within a differentially heated rectangular cavity containing two 
immiscible liquid layers are of considerable technological importance in materials 
processing applications particularly under microgravity conditions where the influence 
of buoyancy-driven convection is minimized. In the present study, for the first time, we 
account the affect of normal and tangential forces that control the track of the moving 
interface by using level set method (LSM). A 2-D numerical procedure for two 
immiscible fluid systems on the basis of a single phase model and the level set 
formulation is developed. The time dependent Navier-Stokes and energy equations are 
solved by means of the control volume approach on a staggered rectangular grid 
system. The numerical model interprets the tangential and the normal stresses by a 
single-phase model using a heavy side function. The topological change of the interface 
between the two immiscible flows is described by the level set method. According to our 
background this is the first study of such cases using the single phase model and the 
control volume formulation. Two cases have been studied: the first case contains a 
system with only one liquid interface (melt/encapsulant) between the two immiscible 
fluids. The second one has a system with encapsulant free surface opened to air (and 
so, subjected to a second thermocapillary forces). Both the liquid-liquid interface and 
the free surface are assumed to be initially flat, which is a valid assumption according to 
earlier theoretical and experimental results. In later cases, the liquid-liquid interface is 
allowed to deform. The numerical results are compared with the available analytical 
models and experimental results. The comparisons showed an acceptable agreement 
between the present predicted results and the available data shown in the available 
references. 
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NOMENCLATURE 
 

A          Aspect ratio, L/H1     

Ca       Capillary number, ( ) /∂
∆

∂ refT
T
σ σ   

Cp       Specific heat,                                    j/kg.K 
H          Total height of cavity (H1+H2) 
k           Thermal conductively,                        W/m.K 
L           Length of cavity,                                m 

Ma        Marangoni number 2
1 1 1/( )TH L

T
σ µ α∂

∆
∂

 

n           Normal vector      
Pr         Prandtl number,  /ν α  
t            Tangential vector 
t, t*        Time, dimensionless time ,                   sec 
To         Reference temperature Th+Tc/2,           k 
Tc         Constant temperature at cold wall,        K  
Th         Constant temperature at hot wall,           K             
uref       Reference velocity (α/H1 ),                      m/s 
x           Horizontal  distance,                                m 
X*        Dimensionless horiz. Coordinate (=x/L) or (x/H1) 
y          Vertical distance,                                       m 
Y*         Dimensionless vertical. Coordinate (=y/L) or (y/H1) 
 
 
Greek Symbols 
θ           Dimensionless temperature (T-To)/(Th-Tc)  
σ         Surface tension,                                                     N/m 
T∆      Maximum temperature difference h cT T− ,                K 

µ         Dynamics viscosity,                                                  Pa.s 
α         Thermal diffusivity  k/ρCp,                                      m2/s 
β         Thermal expansion coefficient,                            1/K 
λ         Physicochemical parameter       
ν          Kinematic viscosity,                                                m2/s 
ρ          Density,                                                                      kg/m3  

*ρ        Density ratio  
*µ      Viscosity ratio  
*α     Diffusivity ratio 

 
Subscripts 
*             Relative quantities (layer 2 to layer 1) 
i             ith fluid layer (i=1,2) 
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INTRODUCTION  

 
The study of convective heat transfer in a system with more than one fluid is of interest 
to several engineering applications. To cite a few, metal casting operations ,crystal 
growth methods, and the heat transfer phenomena occurring in day-today processes 
like the presence of air pockets in heat exchangers, water layers in multiple Layer glass 
windows, etc., involve the interaction of natural convection in immiscible fluids. The 
quest for making bigger and purer crystals for the electronics industry has led to 
adaptations and refinements of several terrestrial crystal fabrication methods to the 
microgravity environment of space. While the gravity effects are minimized on a space-
based laboratory, surface tension effects are dominant at exposed free surface of a 
melt, and the resulting Marangoni or surface tension driven convection causes 
imperfections in a growing crystal. One of the ways of minimizing this Marangoni 
convection is the use of an encapsulant to seal off the melt-free surfaces. For example, 
in the Czochralski growth of Gallium Arsenide (GaAs), a liquid encapsulant like Boron 
trioxide, which is a high viscosity , low melting point glass, is used to used to reduce the 
surface tension driven flow and also used to prevent arsenic from evaporating and 
compromising the crystal stoichiometry. Similarity, in the float zone crystal growth 
method, liquid encapsulation has been used in obtaining striation-free silicon crystals in 
a microgravity environment. It is noted, that while the buoyancy forces reduced in 
space. They are nevertheless finite and involve strong temperature gradients. The 
modelling of such processes requires the understanding of the behaviour of system 
composed of immiscible fluids and the interaction of the various associated forces that 
control the system flow and heat transfer characteristics. 

 
Villers and platten [1, 2], performed a one-dimensional (1-D) analysis of convective flow 
in a two-layer system. They assumed that the temperature gradient across the cavity is 
constant, and a parallel flow with negligible vertical velocity develops in both layers. By 
using the LDV technique (laser Doppler Velocimetry), Villers and Platten have also 
measured flow velocities in low speed thermal convective flows in single layers, and 
two-layer systems. Also for two-layer system in a cavity, Koster and Prakash [3], 
obtained experimental results including flow visualisation for the FC70-Sil0cS and 
FC70-Si0cS systems. 
 
Steady thermogravitational and thermocapillary driven flow of two immiscible liquid 
layers, subjected to a horizontal temperature gradient studied by Lui and Roux [4]. They 
assumed two-dimensional, incompressible, and unsteady flow. The governing equation 
is solved numerically by a finite difference method in a staggered grid. The shape of 
velocity profile is predicted and determined the number of convective cells through the 
two layers. Both situations with rigid or with free top surface have been considered. The 
computations have been performed for flat interfaces, liquid-liquid and liquid–gas. Most 
of them have been limited to a cavity of aspect ratio A=2 (length/height). The free 
surfaces were taken undeformable so that numerical results could be compared to 
analytical solution for infinite layers. 

 
Ramachandran [5], investigated numerically the effects of buoyancy and surface 
tension gradient forces on thermal convection with two horizontal immiscible fluids 
subjected to an imposed lateral temperature gradient. The investigated flow system 
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consisted of a lighter fluid layer on top of a heavier fluid layer, and both layers were 
contained in a two-dimensional open cavity. Both upper free surface and the interface 
between the two fluid layers were assumed to be flat and undeformable in his 
calculations. Ramachandran solved the governing system of equations and boundary 
conditions by using a control volume –based finite difference scheme for two cases of 
immiscible fluids. The main results were for the steady-state calculations predicted 
dramatically different flows when interfacial tension effects were included, and complex 
flow patterns, with induced secondary flows, were found in both of the fluid layers. 
 
Doi and Koster [6], investigated analytically and numerically two-dimensional pure 
thermocapillary convection in two immiscible fluid layers with an upper free surface. 
Both the free surface and the interface were assumed to be horizontal flat with zero 
deformation. The numerical study is performed Doi and Koster [6], to estimate the end 
wall effect in the case of the system of melt (Pr=0.01) and encapsulate (Pr=1) of equal 
depth. They derived an analytical solution in the steady state for infinite horizontal 
extent of the layers. Under a zero gravity environment, four different flow profiles exist 
which are controlled by a parameter, λ. This parameter is ratio of the temperature rate 
of change of the interfacial tension between the two layers to the temperature rate of 
change of the surface tension of the upper layer. They found three ‘halt conditions’ 
which stop the flow motion in the lower layer. The result identified the technologically 
relevant halt condition as λ=0.5. More over, they studied numerically the effects of the 
vertical end walls on the flow. The conditions of which the flow parameters above halt 
condition are predicted. It is found that for 0 <λ<0.2, thermocapillary convection can be 
greatly be suppressed in the encapsulated liquid layer at some higher Marangoni 
number. 
 
Liu and Velarde [7], studied numerically two-dimensional thermocapillary convection in 
a system consists of two immiscible liquid layers subjected to a temperature gradient 
along their interface. The two-layer systems consist of: B2O3 (encapsulant) and GaAs 
(melt), for it experimental relevance in crystal growth by the directional solidification 
method. Two cases have been studied: a system with only one liquid interface 
(melt/encapsulant) and a system where the outer surface of encapsulatent are open to 
air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface 
and the outer surface are assumed to be undeformable and flat, which is a valid 
assumption according to earlier theoretical and experimental results. A 2-D numerical 
simulation of convection was carried out in a rectangular cavity by solving the system of 
Navier-Stokes equations using a finite difference method with a staggered grid for the 
pressure. Having in perspective a Spacelab experimentation they disregarded gravity 
(g=0). They show that a strong damping of a melt flow can be obtained by using an 
encapsulant liquid layer having appropriate viscosity, heat conductivity and /or 
thickness. 
 
Liakopoulos, A. and Brown, G.W, [8], investigated numerically two dimensional 
thermocapillary convection in a cavity with differentially heated side walls. The 
governing equations with appropriate boundary and initial conditions are solved by a 
spectral element method. All numerical solutions are obtained using a time accurate 
integration scheme. They considered Reynolds and Prandtl numbers in the range: 
Re≤1x105 for Pr=0.01 and Re≤3x103 for Pr=1. They also considered buoyancy effects 
with Grashof number in the range Gr ≤ 1x104. The flexibility of the free surface is using 
the capillary numbers Ca=0.05 and 0.25. The technique allowed distinguishing between 
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time independent and time oscillatory states. No oscillatory instability was encountered 
within the ranges of parameters that are covered in their studied. 
 
Bethancourt L. and Hashiguchi [9], studied numerically the natural convection of a two-
layer fluid a side-heated cavity. Two layers of immiscible Boussinesq liquids are 
contained in the enclosure. Numerical solutions are acquired to governing Navier-
Stokes equations. No a priori assumptions are made on the shape and dynamical role 
of the interface. The impacts of a deformable interface and of surface tension are 
notable in local behaviour of heat transfer characteristics. 

 
Ali Borhan et al. [10], studied numerically of thermocapillary convection in a rectangular 
cavity containing two horizontal immiscible fluid layers differentially heated from side in 
the absence of gravity. They are used domain mapping in conjunction with a finite-
difference scheme on a staggered grid to solve for the temperature and flow fields while 
allowing the interface to deform. They used asymptotic solution and modified tangential 
stress. Interface deformations are small when the contact line of the interface is pinned 
on the solid boundaries. The flow pattern in the encapsulated layer and the resulting 
interface deformation are strongly dependent on both the thickness and the viscosity of 
the encapsulant layer. 

 
H. Kohno and T. Tanahashi [11], studied numerical analysis of moving interface using a 
level set method coupled with adaptive mesh refinement in order to analyse moving 
interfaces. The finite element method is used to discretize the governing equations. 

 
In order to track the movement of interface between two fluids, a number of methods 
have been developed. These methods are classified into two categories: the first one is 
the Volume of Fluid (VOF) Method and the second one is the Level Set Method (LSM). 
The latter has been used in a number of problems in applications including those in 
crystal growth, image processing and flame propagation, compressible and 
incompressible two phase flow [11]. In this method one defines a function φ (x, y, t), 
called level set that represent the interface at φ =0. The level sets are advected by the 
local velocity field. The interface can be captured at any time by located the zero level 
set, which alleviates the burden of increasing grid resolution at the interface in many 
other numerical methods. The LSM provides convenient features for handling 
topological merging, breaking and self-intersecting of interfaces [12]. 

 
The present study is investigating the natural convection phenomenon in a stable 
system of immiscible fluids contained in an open and closed container. The geometry 
models the two-phase behaviour typical of many crystal growth and material processing 
techniques and is intended to provide insight into the system flow and thermal 
characteristics. The effect of surface tension at the interface and free surface with flat 
and deformable interface is considered. Moreover in this paper we present a single–
phase level set method for viscous incompressible flow. 

 
 

PHYSICAL MODEL AND GOVERNING EQUATIONS 
 

A schematic of the geometry is shown in Fig.1. The system consists of two immiscible 
fluids and incompressible viscous fluids, liquid-2 (upper) and liquid-1(lower), in a two- 
dimensional cavity of length L and height H. The thickness of the upper layer is H2, and 
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that of the lower layer is H2, the total thickness is denoted H. The thickness ratio is 
h*=H2/H1, and the lower–layer aspect ratio is A=L/H1. The dynamic and kinematic 
viscosities, the density, the thermal conductivity and the thermal diffusivity of liquid-I are 
denoted , , , andi i i i iµ ν ρ α κ  respectively (i=1, 2). The rectangular cavity has a rigid 

bottom, a flat or d deformable liquid–liquid interface and two types of boundary 
condition for top surface :(1) rigid plate, and (2) free surface subject to thermocapillary 
effect. The vertical side walls of the cavity are maintained at constant temperatures Th 
and Tc where Th >Tc. The bottom and top walls are assumed to be adiabatic.  

 
Our research studies have been based on a system of partial differential equations 
appropriate for the description of motion of the two immiscible fluids. These equations 
are well known as the equations for conservation of mass, momentum and heat 
equations for hydrodynamics. Although the force due to the surface tension acts on the 
interface boundary between the two layers, we found it convenient for the numerical 
simulation of the resulting mathematical model to include such surface force in the 
momentum equation. The moving interface satisfies a condition in the normal and 
tangential stresses between the two fluid which are ( n sσκ + ∇ σ ), where n is a unit 
vector normal to the interface, κ is the curvature of the interface , σ  is the surface 
tension which assumed to be function of temperature T and s∇   denotes the surface 

gradient operator that can be written as n(n. )∇ − ∇
r r

. Applying a Taylor series expansion 
of the surface tension about a reference temperature oT and keeping only the first two 
terms in such expansion, which is generally appropriate, we have 
 

                     
(T T )oref
Ts sT

σ = σ − γ −

∇ σ = σ ∇
                                                                                (1) 

 
where σref is the value of the surface tension at the reference temperature and γ = -
dσ/dT evaluated at the reference temperature. Following the method of approach of 
Brackbill et al. [13], the surface tension force fs can be incorporated into the momentum 
equation in the form.3 
 

                              
n tf (f f ) ( )s sa sa

n tf kn, fsa sa s

= + δ φ

= σ = ∇ σ
 

 

                        

nf ( kn kn ) ( )x ys
T Ttf ( n n ) ( )y xs t tx y

2TH1M Tai L1 1

= σ + σ δ φ

∂ ∂
= σ − σ δ φ

∂ ∂

∆
= −σ

µ α

                                                            (2)                      

 
where δ  as the Dirac delta function, φ  is a distance to the interface function and Mai is 
the Marangoni number corresponding to fluid1. Show the analysis of surface tension in 
Fig. 2. The system of partial differential equations under the present study then consists 



 
Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008  MP 73 
 
of the equation (1), (2) and the following equations for the conservation of mass, 
momentum and heat, respectively:  
 
                       . 0∇ =u  

                       
( . ) .( )

t

( . )( C T) .(k T)Pt

∂
ρ + ∇ = −∇ + ∇ µ∇ +

∂
∂

+ ∇ ρ = ∇ ∇
∂

u u P u fs

u
                                                         (3) 

 
where u is the velocity vector, P is the pressure,µ   is the dynamic viscosity, k is the 
coefficient of thermal conductively, Cp is the specific heat and t is the time variable.  
The boundary conditions are as below. 
 

                         

u v 0 at x 0; x L
u v 0 at y 0; y H

T 0 at y 0; y H
y

T T at x 0H
T T at x Lc

= = = =
= = = =

∂
= = =

∂
= =

= =

 

                         
at the int erface(flat)
v v 0 at y H1 2 1
T T at y H1 2 1

= = =

= =

 

                         

if the free surface is flat
T

T x
2H

2 2M ( ) Ta T L2 2 2

2/
T T

∂σ ∂
τ =

∂ ∂

∂σ
= − ∆

∂ α µ

∂σ∂σ
λ =

∂ ∂

                                                              (4)   

  
where Ma2 is the Marangoni number corresponding to fluid 2 and λ  is the 
physicochemical parameter. The equation was become in term of the level set function 
in the following to account for the 2 fluids. Where φ  is a distance to the interface 
function, positive in liquid 1 and negative in fluid 2. The location of the interface is the 
given by the zero level set of the function φ , known as the level set function. The 
advection of the level set equation given by Osher and Sethian [14] is: 
  

                          u. 0
t

∂φ
+ ∇φ =

∂
                                                                                    (5) 

 
 and from the level set function we can compute the normal as: 
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                       n ∇φ
=

∇φ
                                                                                                (6) 

 
The interfacial curvature κ  is computed from 
 
                        .nκ = ∇                                                                                                (7) 
 
Since the fluid properties in Eq. (3) change discontinuously across the interface and the 
concentrated surface tension force also becomes infinite in an infinitesimal volume, 
direct solution of Eq.(3) is naturally difficult. Two approaches are usually followed to 
overcome these difficulties. In standard level set method, the interface is smoothed 
across a finite thickness region, usually a few grid point thick. The fluid properties and 
the delta function are thus modified as by Sussman et al [15], 
 

                         
( ) ( )H( )1 1 2
( ) ( )H( )1 1 2

ρ φ = ρ + ρ − ρ φ

µ φ = µ + µ − µ φ
                                                                    (8) 

 
where H ( φ ) is the Heaviside function defined as: 
 

                         

0
1 1H( ) 1 sin( )
2
1

φ −ε
 φ πφ  φ = + + φ ≤ ε  ε π ε 
− φ ε

p

f

                                                 (9) 

 
The interface thickness is approximately 
 

                           2ε
∇φ

                                                                                               (10) 

 
where ε  is a small distance from the interface. Thus the fluid properties are smoothed 
out in the normal direction of the interface over distance of  ε  on either side of the 
interface, making it a continuous function. Similarity a smooth delta function is defined 
as: 
 

                         
1 1 cos( ) if

( ) 2
0 otherwise

 πφ + φ ≤ ε  δ φ = ε ε  



                                                (11) 

 
An important step is to maintain the level set function a distance function within the 
transition region at all times. This achieved by the Reinitialization step. More details 
about that will be given in Sussman et al. [15]. 
 
 
 
 



 
Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008  MP 75 
 
NUMERICAL PROCEDURE  

 
The numerical procedure adopted here is essentially based on the finite volume method 
proposed by Patankar [16]. The well known SIMPLE algorithm is modified to account 
the level set method that follow the movements of the fluid/fluid interface. Moreover the 
modified algorithm is applied to resolve the pressure-velocity coupling in the momentum 
and energy equations. In the numerical schemes is convergence which is the 
combination of the level set method scheme. For more details about the numerical 
procedure and the consequence of the calculations, one can see Refs. [14], [15] and 
[17]. 
 
 
RESULT AND DISCUSSION 
 
In this section, the numerical method described in the previous sections has been 
applied to three cases: thermocapillary a rigid top surface, thermocapillary a free top 
surface with flat interface and thermocapillary with deformable interface.  
 
Thermocapillary with a Rigid Top Surface  
 
Symmetrical system (µ*=α*=1) 
 
From the analytical expression of velocity profile in an infinite aspect ratio cavity with 
g ≠ 0 (see viller et al. [1, 2]). Figure 3 indicates the velocity profiles for constant ratios of 
dynamics viscosity and thermal diffusivity. For high Ma the 2-D results tend to a 
parabolic evolution, in contrast with the linear 1-D solution. The results for horizontal 
velocity profile are compared with the analytical solution of Ref. [7]. In Fig.4, indicates 
the velocity Profiles for constant ratios of dynamics viscosity, thermal diffusivity and 
different Marangoni Number 100≤Mai ≤1000. It can be seen that, as the Mai increases 
velocity induced is also increased. 

 
Effect of viscosity ratio µ*  
 
Figure 5 shows the velocity profile at Mai=1000 for different viscosity ratios (µ*=0.1, 1, 
10). From Fig.5 it can be noticed that, the convective flow intensity in both layers 
diminishes when increasing the viscosity of the upper layer, for Mai=1000.  
 
The computed streamline and isothermal in the two layers are given for µ*=10 in Fig.6 
The case µ*=10 (i.e., where encapsulate viscosity is greater than melt viscosity) fits 
better for crystal growth experiments as it corresponding to a reduced velocity in the 
melt. The case µ*=10 streamline and isothermal in both layers are long symmetric with 
respect to the liquid-liquid interface. The Thermocapillary flow structure when µ*=0.1 is 
shown in Fig.7 for Mai=1000. A typical 'flywheel' structure appears in the upper layer 
near the cold end-wall, and a longer and larger convective cell fills almost all the melt 
layer. Even with so different structures, the two major convective cells have about the 
same intensity high. 
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Effect of thermal diffusivity ratios α*   
 
Now, let us vary only the thermal diffusivity of liquid -2(encapsulant) while of liquid -1 
(melt) is maintained constant. For Illustration, considered α1=4.8x10-7 and allowing 
α2=(0.1 to 10) α1. Figure 8 shows the velocity profile at Mai=1000. It can be seen that 
the flow fields in each layer appear to be fully symmetric with respect to the interface. 
This is due to the fact that the Marangoni effects, which is the only driving force (along 
the interface), produces identical flow effects in the two layers. Indeed the viscous 
effect is the same in each layer (same viscosity, same geometry). Flow patterns 
together with isotherms are shown for α*=0.1 and α*=10 and Mai=1000, in Figs. 9 and 
10, respectively. However, the thermal fields are different in the two layers (see Figs. 9 
and 10.). The isotherm patterns change much more strongly in the liquid layer whose 
thermal diffusivity is weaker. However, as it can be seen in Fig.9, for α*=0.1, the 2-D 
numerical solution shows that the temperature distribution along the interface is 
strongly affected when the encapsulant has a lower diffusivity. The longitudinal 
temperature gradient decreases at the centre and increases near the end walls hence 
reducing convective flow in the system. For α*=10 (Fig.10.), the temperature gradient 
along the interface is more uniform.  
 
Two fluid layer with actual properties 
 
The Thermocapillary convection for a B2O3 (Boron trioxide)-GaAs (Gallium arsenide) 
system has been investigated for the aspect ratios (A=L/H1=4). The physical properties 
of B2O3-GaAs shown in table 1. 
 
Figure 11 shows the horizontal velocity profiles at different Mai from (750 to 60000). It 
can be seen that, as The Marangoni number increases the velocity profile is also 
increased and symmetric. Figures 12a and 12b indicate the streamlines and isotherms 
in a (A=4) cavity for Mai=1500 and Mai=6x104, respectively. In the two cases, two 
counter-rotating convective cells fill the whole cavity, one in each layer. The two cells 
have almost the same intensity for low Marangoni numbers. The form of the convective 
cell in the encapsulant almost does not change and that in the melt is significantly 
modified (with the cell centre moving towards the cold sidewall). At the same time, the 
change of the temperature field in the encapsulant is stronger than in the melt, due to 
the very high Prandtl number of the B2O3 liquid. The form of the concentrated 
convective cell ('flywheel' structure) occurring in the GaAs layer at Mai=6x104 is similar 
to the one numerically found by Ref. [18] for a single liquid layer with a low-Prandtl-
number (Pr=0.0015). Moreover, in our two-layer system, one may observe that the 
tendency of the flow towards the 'flywheel' structure in the melt is reduced relative to 
the case of a single liquid layer, due to the damping effect induced by the highly viscous 
B2O3 fluid. Thus both the high Prandtl number and the high viscosity of the encapsulant 
liquid drastically affect the Thermocapillary flow.  
 
Thermocapillary with a Free Top Surface 
  
The analytical expression of velocity profiles for a finite aspect ratio cavity with g=0 can 
be seen in (Doi et al. [6]), Where α*=α2/α1, µ*=µ2/µ1. The results for velocity profiles are 
compared with those of Doi et al. [6] in Fig.13a, and for temperature profile in Fig.13b. 
Both figures show a good agreement between the analytical solution and the numerical 
simulation. The key parameter of the figure is λ, which is considered for the ratio of Mai 
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at interface to Ma2 at free surface. At λ=0, the interface velocity is negative, whereas, 
the surface velocity is positive. At λ=0.5, that "Halt condition" is reached in the lower 
encapsulated layer. At λ=1, the velocity profile in the upper layer shows two zero-
velocity crossings which entails that two roll cells developed in the encapsulant layer. 
The temperature profiles reflect their coupling with the velocity profiles. On the other 
hand, it should be concluded that the analytical solution is only accurate for small 
temperature difference ∆T=Thot –Tcold.  
 
Effect the encapsulant's viscosity  
 
In this section, the system of B2O3-GaAs with a highly viscous encapsulant in a wide 
range is considered, where, µ* is taken as µ2/µ1 while keeping µ2 constant. Figure 14 
indicates that, for µ*=1398, damping of thermocapillary convection is strong in both 
encapsulant and melt layers. When decreasing µ* by a factor 1000, thermocapillary 
convection becomes stronger in both encapsulant and melt layers, and the damping of 
the melt motion becomes weaker. The curve plotted in Fig.14 shows that the absolute 
interface velocity is nearly proportional to µ*. In addition, these results show that even 
for the special situation when λ=0.5 (i.e. when thermocapillary forces at the 
encapsulant-melt surface and at the open, free top surface are balance). Thus a highly 
viscous encapsulant helps to strongly reduce motion in the melt. The effect of a highly 
viscous encapsulant can also be seen by comparing the flow structure at µ*=1.398 and 
at µ*=1398, see Fig.14, for µ*=1.398, the intermediate convection cell in the upper layer 
near the liquid-liquid interface appears and its intensity becomes much greater than that 
of µ*=1398, even for the special case of λ=0.5. 
 
Thermocapillary with Deformable Interface  
 
Let us consider a system of two immiscible and incompressible viscous fluids, in a two 
dimensional cavity of length L and height H as shown in Fig.1, The rectangular cavity 
has a rigid walls and the interface is assumed initially to be flat at t=0. However, for 
later times, the interface is allowed to deform according to the thermocapillary induced 
velocity components.  
 
The present predicted interface deformation compared with the numerical results of 
Ref. [10] can be shown in Fig.15. At the beginning (t=0) the interface was assumed to 
be flat. By the time, deformation is observed in the interface. At high viscosity ratio the 
results indicate a similar behavior of the present and compared results, however at 
small viscosity ratio (µ*=0.5) there is a deviation between the two results near the cold 
wall. At µ* >1, the lager pressure in the encapsulant layer near the cold wall causes the 
interface to dip into the melt, while the smaller pressure in the encapsulant layer near 
the hot end gives rises protrusion of the interface into the encapsulant layer. In 
contrary, when µ* <1, the interface deformation gives a reverse behavior. 
 
Figures 16 and 17 show the effect of viscosity ratio on the horizontal velocity and 
interface deformation. When the viscosity ratio decreases the absolute value of the 
velocity increases and there is a symmetric behavior in the velocity profile. When the 
viscosity of the upper layer is greater than that of the lower layer, the larger pressure in 
the encapsulant layer near the cold wall causes the interface to dip into the melt, while 
the smaller pressure in the encapsulant layer near the hot end gives rises protrusion of 
the interface into the encapsulant layer. In contrary, when the viscosity of the upper 
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layer is smaller than that of the lower layer, the interface deformation gives a reverse 
behaviour. 
 
Two Fluid Layers with Actual Properties 
 
The Thermocapillary convection for a B2O3 (Boron trioxide)-GaAs (Gallium arsenide) 
and Silicone oil (2 cSt)-silicone oil (0.65 cSt) system has been investigated for the 
aspect ratios (A=L/H1=4). The physical properties of B2O3-GaAs shown in table 1 and 
Silicone oil (2 cSt)-silicone oil (0.65 cSt) shown in Table 2. 
 
The midplane velocity and interface deformation for two-layer systems with different 
Marangoni number are presented in Figs. 18 and 19. As the Mai numbers are 
increased, the absolute of velocity at both the liquid-liquid interface and the absolute 
interface velocity increases. The effects of increasing Mai the interface deformation 
increase. At µ*<1, the smaller pressure in the encapsulant layer near the cold wall 
causes the interface to rises protrusion into the encapsulant layer, while the lager 
pressure in the encapsulant layer near the hot end gives dip into the melt layer. 
 
The midplane velocity and interface deformation for two-layer systems with different 
Marangoni number are presented in Figs. 20 and 21. As the Mai numbers are 
increased, the absolute of velocity at both the liquid-liquid interface and the absolute 
interface velocity increases. The effects of increasing Mai the interface deformation 
increase. At µ* >1, the lager pressure in the encapsulant layer near the cold wall 
causes the interface to dip into the melt, while the smaller pressure in the encapsulant 
layer near the hot end gives rises protrusion of the interface into the encapsulant layer. 

 
CONCLUSIONS  
 
In this work, a numerical procedure for two immiscible flow simulations is developed. 
This kind of flows have several applications in general metal casting operations, crystal 
growth methods, and the heat transfer phenomena occurring in day-today processes 
like the presence of air pockets in heat exchangers, water layers in multiple Layer glass 
windows, chip encapsulation, etc., The numerical model interprets tangential and 
normal surface tension by level set methods that follow the moving deformable 
interface between two different fluids. The time dependent Navier-Stokes equations are 
solved by means of the control volume approach on a staggered rectangular grid 
system.  
 
A numerical investigation of pure thermocapillary convection (g=0) has been carried out 
for two immiscible liquid layers in a rectangular cavity subjected to a temperature 
gradient parallel to the liquid–liquid interface. In the simpler case of rigid top boundary, 
a true cavity, the influence of viscosity ratio and diffusivity ratio of the two layers has 
been investigated for different orientation of two fluid systems. The unrealistic case of 
'asymmetric' system with equal diffusivity and viscosity in each layer are considered; 
but with a temperature dependence on surface tension. In such cases, the flow 
structure and temperature fields are found to be perfectly symmetric with respect to the 
interface. For asymmetric systems with different thermal diffusivities (α1 ≠ α2) but equal 
viscosity, the flow is symmetric while the temperature field is not. For asymmetric 
systems with different viscosities (µ1 ≠ µ2), both velocity and temperature fields are 
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asymmetric. Increasing viscosity or reducing diffusivity in the encapsulant layer helps to 
reduce the convection intensity in the melt. 
  
The experimentally relevant case of a B2O3 (Boron trioxide)-GaAs (Gallium arsenide) 
system was studied for two top surface conditions: either rigid or free but subject to 
thermocapillary forces. In case of free surface, a so called "halt condition" is obtained 
when λ=0.5, which stands for the ratio of the free surface's and the interface's 
Marangoni number. It is noted that, the use of highly viscous encapsulated layer reduce 
the intensity of thermocapillary convection in the melt. 
 
The case of two immiscible liquid layers with deformed interface is examined for 
different aspect-ratios of two layers and a wide range of the dynamics parameters. The 
flow pattern in the encapsulated layer is strongly dependent on both the thickness and 
the viscosity of the encapsulant layer. Interface deformations are found to be small 
when the contact lines of the interface are pinned on the solid boundaries. The higher 
viscosity of the encapsulant layer gives rise to a larger pressure gradient in that layer, 
thereby resulting in interface deformations. The numerical results are compared with 
the available analytical models and experimental results. The comparisons showed an 
acceptable agreement between the present predicted results and the available data 
shown in the previous references. 
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Table1. Physical properties of the B2O3 liquid and the GaAs liquid in Ref. [7]. 
 

Fluid α [m2/s] k[W/m/k] µ[Kg/m s] ν[m2/s] ρ[Kg/m3] Β[1/k] Pr 

GaAs 7.17x10-6 17.8 2.79x10-3 4.9x10-7 5720 1.87x10-4 0.068 

B2O3 2.52x10-6 2 3.9 2.37x10-3 1648 9.0x10-5 939.1 

B2O3/ 

GaAs 

0.352 0.112 1398 4829 0.288 0.481 13741 

 

 

Table2. Physical properties of the 0.65 cSt liquid and the 2 cSt liquid in Ref. [19] 
 

Fluid α [m2/s] k[W/m/k] µ[Kg/m s] ν[m2/s] ρ[Kg/m3] Β[1/k] Pr 

2 cSt 0.8x10-7 0.12 1.75x10-3 2x10-6 873 0.00117 27 

0.65 cSt 0.77x10-7 0.1 4.927x10-4 0.65x10-6 758 0.00134 8.2 

0.65cSt/ 

2cSt 

0.9625 0.112 0.2815 0.325 0.868 1.145 0.303 
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Fig.1. Schematic of the physical setup. 
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Fig.2. A Schematic of Two-layer problem with deformable interface. 
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Fig.3. Horizontal al velocity at x*=A/2 for Mai=1000, Pr1=Pr2=1, H*=µ*=α*=ρ*=k*=1.0 

and A=L/H1=4.0. 
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Fig.4. Horizontal velocity at x*=A/2 for Pr1=Pr2=1, H*=µ*=α*=ρ*=k*=1.0 and 

A=L/H1=4.0. 
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Fig.5. Horizontal velocity at x*=A/2 for Mai=1000, Pr1=H*=α*=k*=1.0 and A=L/H1=4. 
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Fig.6. Streamlines and isotherms for asymmetric system µ*=10, Mai=1000, 

Pr1=H*=α*=k*=1.0 and A=L/H1=4. 
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Fig.7. Streamlines and isotherms for asymmetric system µ* =0.1, Mai=1000, 

Pr1=H*=α*=k*=1.0 and A=L/H1=4. 
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Fig.8. Horizontal velocity at x*=A/2 for Mai=1000, Pr1=H*=µ*=k*=1.0 and A=L/H1=4. 
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Fig.9. Streamlines and isotherms for asymmetric system α*=0.1, Mai=1000, 

Pr1=H*=µ*=k*=1.0 and A=L/H1=4.  
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Fig.10. Streamlines and isotherms for asymmetric system α*=10, Mai=1000, 

Pr1=H*=µ*=k*=1.0 and A=L/H1=4. 
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Fig.11. Horizontal velocity at x*=A/2 for different Mai at Pr1=0.068, H*=1, µ*=1398, 

k*=0.112, α*=0.352, A=L/H1=4.0. 
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Fig.12. Streamlines (above) and isotherms (below) for asymmetric system for 

A=L/H1=4.0, H*=1 at: (a) Mai=1500 and (b) Mai=60000. 
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Fig.13. (a) Horizontal velocity profiles on X*=2, (b) Temperature profile at 
X*=2, for Pr1=0.01, Pr2=1.0, α*=0.1, µ*=10, Ma2=5.0 at A=L/H1=4.0. 
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Fig.14. Maximum Absolute interface velocity at X*=A/2, as function of µ*, and two typical 

flow structures at µ*=1398 and µ*=1.398, for free surface at A=L/H1=4.0, Mai=3750, 
λ=0.5. 
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Fig.15. Interface Deformation with Mai=10, Re=10, Pr=1, k*=1.0 :( a) µ*=0.5, A=H/L=1 
(b) µ*=10, A=H/L=0.5. 
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Fig.16. Horizontal velocity at different viscosity ratios of encapsulant phases, 

X*=L/2, with Pr1=1, Mai=10, α*=1, k*=1and A=H/L=1. 
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Fig.17. Interface Deformation with Mai=10, Re=10, Pr=1, µ*=k*=1.0 and A=H/L =1. 
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Fig.18. Horizontal velocity at x*=A/2 for different Mai at A=L/H =2.0. 
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Fig.19. Interface deformation for different Mai at A=L/H=2.0. 
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Fig.20. Horizontal velocity at x*=A/2 for different Mai at A=L/H=2.0. 
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Fig.21. Interface deformation for different Mai at A=L/H=2.0. 




