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Abstract: 

 
This paper presents the transverse vibration of Bernoulli-Euler homogeneous isotropic 
damped beams. These beams are subjected to a harmonic load moving with constant 
velocity. The damping characteristics of the beams are described in terms of a fractional 
derivative of arbitrary orders. In the analysis where the initial conditions are assumed to be 
homogeneous, the Laplace transform cooperates with the decomposition method to find the 
analytical solution of the handled problems. Subsequently, curves are plotted to show the 
dynamic response of two beams under different sets of parameters including different orders 
of the fractional derivatives. The curves reveal that the dynamic response increases as the 
fractional derivative order becomes greater than unity. This yields that smaller the order of 
the fractional derivative, the more oscillations the beam suffers. Finally, the literature reviews 
had shown a good command of agreement with the results obtained in this paper. 
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1. Introduction: 
 
The general problem of predicting the transverse vibrations of continuous media resulting 
from the passage of harmonic moving loads is of considerable practical interest in the 
dynamics of structures. When the subject matter is differential equations of fractional order, it 
is worth to mention that many physical problems were adequately described by this type of 
differential equations. The list of these problems is long and the areas of applications are 
broad. Among these applications are polymeric damping, fluid mechanics, and theory of 
viscoelasticity [1-5]. However, as noted by these authors and from other literature, a clear 
physical interpretation of the fractional derivative has been elusive. Good examples are: 1) In 
the diffusion process, fractional differential equations have been employed to describe an 
anomalous diffusion regime, including both sub-diffusion and super-diffusion [6]. 2) Many 
linear viscoelastic damping materials exhibit a macroscopic constitutive behavior, which has 
been the subject of many investigations involving fractional order derivative  [see ref. 7 and 
references there in]. Transverse vibration of homogeneous beams whose damping behavior 
is described by a fractional derivative of arbitrary orders was investigated in [8-9]. Agrawal [8] 
investigated the analytical scheme for stochastic analysis of a continuous beam whose 
damping characteristics are described by a fractional derivative model of order half. The 
analytical solution of an initially stationary oscillator subjected to a unit step or impulse 
excitation were the damping is described by a fractional derivative model of order a half was 
performed in [9].  
This paper presents a homogeneous isotropic fractionally damped beams with the two 
classical boundary conditions; hinged-hinged and free-fixed, subjected to a harmonic moving 
load. The basic dynamic characteristics of the beams are obtained based on the assumption 
of the moving harmonic force model. The solutions are obtained by decomposing the 
transverse displacement of the beam in the Laplace transform domain. Hence, the basic idea 
of this method is to decompose the dependent variable which is the generalized 
displacement into an infinite series. The components of the series are then found recursively 
and the problem is solved using the inverse Laplace transform of the decomposed equations. 
 
2. Formulation of the Problem: 

 
Transverse vibrations of Bernoulli-Euler homogeneous isotropic fractionally damped beams 
with the two classical boundary conditions; hinged-hinged and free-fixed, subjected to a 
harmonic load moving with a uniform velocity from left to right are investigated. The beams 
are assumed to be of finite length and originally at rest. The governing equation of the beam 
under investigation whose damping characteristics are described by a fractional derivative of 
order   can be written as  
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where E , I ,   and C  are , respectively, the modulus of elasticity, moment of inertia of cross-

sectional area, mass per unit length, and the coefficient of external damping of the beam. The 
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damping is assumed to be light viscous damping. It is also assumed that E , I , C  and   are 

constants. Furthermore, ( , )P x t  is the applied moving harmonic load, and ( , )w x t  is the 

transverse deflection of the beam at point x  and time t . In modal form, the transverse 

deflection of the beam is written as 
 

1

( , ) ( ) ( )n n

n

w x t Y t X x




 ,                                                       (2) 

 
where )(tYn

 is the generalized displacement or the modal response of the beam, )(xX n
 are the 

normal modes of the un-damped free vibration of the beam written as [10] 
 

( ) sin cos sinh coshn n n n n n n nX x x A x B x C x       ,                                                         (3) 

 
which satisfy the following differential equation 
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where the constants ,n nA B  and nC  define the shape and amplitude of the beam vibration. 

They are evaluated by considering the boundary conditions associated with each beam. The 

constant n  is the frequency parameter associated with each beam. Substituting equation (2) 

into equation (1), then multiplying by ( )mX x  and integrating over the domain (Considering the 

orthogonality condition), yields the differential equation of the n th mode of the generalized 
displacement or the modal response as 
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Where 
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are, respectively, the undamped natural circular frequency, damping ratio, generalized load 
and the mass of beam associated with the nth mode. In equation (6), the load ( , )P x t  which 

moves on the beam from left to right is written as 

0( , ) (sin ) [ ( )]P x t P t x f t   ,                                                                                               (7) 

 

where   is the excitation frequency, 0P  is the intensity of the applied moving load and 

( )f t ( ( )f t vt ) is a function describing the motion of the force at time t, in which  v   is the 

constant speed of the moving force. Hence, ( )nQ t  in equation (6) becomes  
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0 0
0

( ) sin( ) ( ) ( ) sin( ) ( )
L

n n nQ t P t X x x vt dx P t X vt     .                                                     (8) 

 
Substituting equation (8) into equation (5) yields 

 
2
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This solution satisfies the homogeneous initial conditions; 0)0( nY  and (0)
0ndY

dt
 . To find 

the exact solution of the second order initial value problem in equation (9), the problem can 

be dealt with as a linear case; accordingly, the solution )(tYn  can be decomposed into an 

infinite series of the form 
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where ( ); 0,1, 2,...k

nY t k  are the components of )(tYn . The components )(tYn  can be 

determined recursively by substituting equation (10) into equation (9) as   
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Taking the Laplace transforms of equations (10) and (11), assuming homogeneous initial 
conditions and using the Laplace transform for the Caputo fractional derivatives as given in 
[11], we get 
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where  ( ) sin( ) ( )ns t X vt  L . Taking the inverse Laplace transform of equation (12) and 

using the convolution theorem we, get 
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where the values of 1 to 38 are given in the appendix 

In equation (13) 1LommelS (.) and hypergeom (.) are, respectively, the Lommel and generalized 

hypergeometric functions [12]. Hence, the general transverse deflection of the beam can be 
found by substituting equations (3) and (13) into equation (2).  
In the aforementioned formulation and by introducing the Mittag–Leffler function in two 
parameters, the method ended with infinite series solution. The second term of this solution, 

the infinite series term, becomes zero as the generalized damping ratio of the n th mode n  

goes to zero. 
 
3. Results and Discussion: 

 
The analysis outcomes from this paper are applied to homogeneous isotropic fractionally 
damped beams with the two classical boundary conditions; hinged-hinged and free-fixed. The 
beams are subjected to concentrated harmonic loads moving with constant velocity. The 

beams are assumed to be at rest when a harmonic force 0P  moving according to equation (7) 

enters the beam from the left-hand side. The instant at which the force arrives at the right–

hand side of the beam is vLt f / . In Figures (1-2), the dimensionless dynamic deflection  
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 ,                                                                                                           (14) 

is shown for all beams versus the dimensionless time parameter  
f

t tv
s

t L
  . Thus, when 

0s  , the force is at the left-hand side of the beam, and when 1s  , the force is at the right-

hand side of the beam. In the following discussion 0w  and maxx  denote the maximum static 

deflection and the point on the beam which corresponds to this maximum deflection, 

respectively. The values for 0w  and maxx  for the hinged-hinged beam are taken as
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and for the free-fixed beam as 
3

0

3

P L

EI
, 0, respectively. The deflection max( , )w x t  is obtained from 

substituting equations (13) and (3) into (2). In these Figures, the effects of damping, speed of 
the load and the order of the fractional derivative are made clear. The effect of speed is 
represented by the dimensionless speed parameter α which is defined as 
 

1 1/ , / ,cr crv c c L       ,                                                                                (15)  

                                                                                                               

where crc  is the critical speed, and   is the excitation frequency defined as [10]. Results 

presented in Figures (1) and (2) are obtained for three values of  : 0.25, 0.5  and 1, 

three values of the fractional derivative  : 0.25, 1   and 1.75, and two value of the damping 

coefficient n : n = 0 and 0.2.  Figure 1 (a) and (b) shows the dimensionless dynamic 

deflection ( max 0( , ) /w x t w ) versus the dimensionless time ( s ) for the two beams under 

consideration. At this point, it is worth mentioning that the curves of Fig.1 fit exactly those 

presented in [10,13] for 1  , n = 0 and 0.25, 0.5   and 1.  

    
Figure (1): Normalized time variation of dimensionless dynamic deflection ( max 0( , ) /w x t w ) for 

0.25, 0.5, 1     and 0n   for: (a) free-fixed, (b) hinged-hinged beam at the 

corresponding  point of maximum static deflection maxx . 






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Figure (2): Normalized time variation of dimensionless dynamic deflection ( max 0( , ) /w x t w ) for 

a free-fixed beam at max 0x   for: (a) 0.25  , (b) 0.5  , (c) 1  and for a hinged hinged 

beam at max / 2x L  for: (d) 0.25  , (e) 0.5  , (f) 1  , all values were taken for 0.2n  . 

 

Figure 2 shows the dimensionless dynamic deflection ( max 0( , ) /w x t w ) versus the 

dimensionless time ( s ) for the free-fixed beam (a-c) and for hinged-hinged beam (d-f). 

Figures 2 (a, d), (b, e) and (c, f) are drawn, respectively, for   0.25, 0.5  and 1. In these 

Figures the effect of the order of the fractional derivative is shown clearly, it is noted that as 
the order of the fractional derivative increases the amplitude increases and shifts to the right. 
This means that the smaller the value of the derivative order  , the more oscillations the 

beams suffer. A very good agreement is found between the curves of Figure (2) for 1   and 

the corresponding curves presented in [10]. 
 
4. Conclusions: 
 
An analytical model is presented to solve transverse vibration of Bernoulli-Euler beams with 
damping characteristics that are described in terms of fractional derivatives of arbitrary order. 
The method employed is the Laplace transform with the decomposition method to find the 
analytical solution. Although, the method used has the ability to get the infinite series solution 
directly by introducing the Mittag–Leffler function. This solution may be written in a closed 
form for some special cases; otherwise, it may be truncated and fulfilled easily by using 
mathematical software like Maple.   
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Numerical results presented in this paper, show that the dynamic response increases as the 
damping factor decreases and as the fractional derivative order becomes greater than unity 
the dynamic response increases. This means that the smaller the value of the fractional 
derivative order (  ), the more oscillations the beams suffer. This may allow us to select a 

suitable mathematical model that precisely prescribes an experimental model; however, this 
selection may be the fractional derivative model. 
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