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ABSTRACT 
 

In the present work, a finite element modeling and analysis is introduced for isotropic and 
anisotropic beams subjected to different mechanical loads. The assumed field 
displacements of the beam are represented by a simple higher order shear deformation 
theory made by Reddy [1]. The equation of motion is obtained using the principle of virtual 
work. A hermit cubic shape function is used to represent the transverse displacement 

w and its derivatives. The axial displacement u, and the normal rotation x  are represented 

by a linear shape function.  A MATLAB code is developed to compute the natural 
frequency, and the static deformations of the structure due to the applied loads of different 
boundary condition. The results of the proposed model are compared with the available 
results of other investigators; good agreement is generally obtained. 
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INTRODUCTION 

 

     Several researchers are interested in solving the beam structures using different 
theories. Reddy [1] developed a simple higher-order shear deformation theory of laminated 
composite plates which gave parabolic distribution of the transverse shear strains. He 
obtained the exact closed-form solutions of symmetric cross-ply laminates. His results were 
compared with three-dimensional elasticity solutions and first-order deformation theory 
solutions. The results gave more accurate prediction of deflections and stresses, and 
satisfied the zero tangential traction boundary condition on the surfaces of the plate. 
 
     Khdeir and Reddy [2] presented the solution of the governing equations for the bending 
of cross-ply laminated beams using the state-space concept in conjunction with the Jordan 
canonical form. They used classical, first-order, second-order and third-order theories in 
their analysis. They determined the exact solutions for symmetric and asymmetric cross-ply 
beams with arbitrary boundary conditions subjected to arbitrary loadings. They studied the 
effect of shear deformation, number of layers and orthotropic ratio on the static response of 
composite beams. They found that the effect of shear deformation caused large differences 
between the predicted deflections by the classical beam theory and the higher order 
theories, especially when the ratio of beam length to its height decreased. They also 
deduced that the symmetric cross-ply stacking sequence gave a smaller response than 
those of asymmetric ones. In asymmetric cross-ply arrangements, increasing the number 
of layers for the same thickness decreased the beam deflection. Finally, they deduced that 
the increase of the orthotropic ratio decreased the beam deflection. 
 
Chandrashekhara and Bangera [3] developed a finite element model based on a higher-
order shear deformation theory to study the free vibration characteristics of laminated 
composite beams. They incorporated the Poisson’s effect, the in-plane inertia and rotary 
inertia in their formulation. They concluded that: (i) shear deformations decrease natural 
frequencies of the beam, (ii) the natural frequencies increase by increasing the number of 
layers, (iii) the clamped-free boundary conditions exhibited the lowest natural frequency, 
(iv) the increase of fiber orientation angle decreases the natural frequency, and (v) the 
natural frequency decreases by increasing the material anisotropy. 
Lee and Schultz [4] presented a study of free vibration of Timoshenko beams and axi-
symmetric Mindlin plates. Their analysis is based on the Chebyshev pseudo spectral 
method. They deduced that their method has merits over other semi-analytic methods. 
They concluded that rapid convergences, good accuracy as well as the conceptual 
simplicity characterize the pseudo-spectral method. The results from this method agreed 
with those of Bernoulli-Euler beams and Kirchhoff plates when the thickness-to-length ratio 
was very small. However, they deviated considerably as the thickness-to-length ratio grew 
larger. 
 
Jafari and Ahmadian [5] investigated free vibration analysis of a cross-ply laminated 
composite beam (LCB) on Pasternak foundation. Their finite element model was based on 
Timoshenko beam theory. They designed the model on such a way that it could be used for 
single-stepped, and cross-section-stepped foundation and multi-span beams. Their results 
indicate acceptable accuracy, good agreement, and indicated that as lamina deviated from 
symmetric to non-symmetric order, the natural frequencies decreased. 
 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM  - 15 3 

 

Raghu and Pavan [6] presented a mathematical model for the stress analysis of symmetric 
composite end notch flexure specimen using CBT, FOBT, SOBT and TOBT to determine 
the strain energy release rate. In their formulation, appropriate matching conditions have 
been applied at the crack tip by enforcing the displacement continuity at the crack tip in 
conjunction with the variational equation. They found that the third order shear deformation 
model was better than other beam models in determining the strain energy release rate for 
unidirectional cross-ply and multidirectional composites interlaminar fracture. 
 
Yunhua Luo [7] presented an efficient three-dimensional Timoshenko beam element with 
consistent shape functions for two-nodes, constructed from the general solution to the 
homogeneous Euler-Lagrangian equations. Their numerical results showed that the 
developed 3D Timoshenko beam element was completely free from shear locking, and 
furthermore, the performance of the element in convergence was superior to the 
isoparametric Timoshenko beam element with reduced integration. 

 
Elshafei et al. [8,9] proposed a finite element model, to study the static and the free 
vibration response of isotropic and anisotropic beams subjected to axial, bending, and 
torsion loads with warping effect using the classical beam theory. They found that an 
additional node in the middle of the beam element was required to give a better presenting 
in the torsion deformation. The obtained results founded reasonable in comparison with 
FOBT and HOBT.   
 
In the present work, a finite element model has been proposed, based on Reddy beam 
theory [1], to predict the static and dynamic responses of advanced isotropic and 
anisotropic beams. A MATLAB code is constructed to compute the structure response due 
to different applied loads at different boundary conditions. 
 
 
THEORETICAL FORMULATION 
 

The displacements field equations of the beam are presented as [2]: 
 

   
3

2

1 2 3( , ) ( ) ( ) ( )  
   

        
   

dw dwzu x z u x z c c x c z x c x
hdx dx

  , (1)a 

  

( , ) 0v x z  , (1)b 

and  

( , ) ( )w x z w x . (1)c 

 
u ,v  and w  are the displacements field equations along the x , y  and z  coordinates, 

respectively, 0u and ow   denote the displacements of a point ( , ,0)x y  at the mid plane, 

and ( ) x  and ( ) x  are the rotation angles of the cross-section as shown in Fig. 1. 

Selecting the constant values of Eqn. (1) a as:
  1 2 3

40, 1 0
3

c c c c h     . The 

displacements field equations for Third -order theory (HOBT), made by Reddy, at any 
point through the thickness can be expressed by [1]: 
 

3

2

4
( , , ) ( )

3
 

 
     

x x

w
u x y z u x z z

h x
   
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( , , ) 0v x y z   (2) 

( , , ) ( )w x y z w x    

where the third term accounts for warping and permits a parabolic shear strain distribution. 
To get the strain displacement equations, the following assumptions are also considered:  

1- Plane stress, where transverse components of normal stresses yy  and zz  are 

negligible compared to the axial stress xx . 

2- As the beam length is too long compared to the other dimensions thus the following 

values of the strains components will be applied, 0yy zz xy yz        

3- After deformation, the cross sections of the beam don’t remain planar or normal to 
the centroidal axis, but become parabolic [10] as shown in Fig. (1). 

 

By applying the above assumptions, the remaining strains components are xx
, and xz

 , can 

be represented by [11]: 
 

     

2
3 3

22 2

( , ) 4
( , , )

3

x x
xx x x x

u x z u w
x y z z z z z

x x x h x x

 
   

    
        

     
   (3)a 

  

   
2 2

22

( , , ) ( , , ) 4
( , , )xz x x xz xz

w x y z u x y z w w
x y z z z

x z h x x
    

    
            

  (3)b  

 
where;  

 x

u

x






 , 
  xxz

w

x
 


 




,  
x

x
x








  (4)a 

 

2

12 2

x

x

w
c

x x




  
   

  
,   22 xxz

w
c

x
 

 
    

 (4)b 

 

and 1 2

4

3
c

h
  , 2 2

4
c

h
 ,

 x



 is the reference surface extensional strain in the x-direction, 

 xz



 is the in-plane shear strain , 

 x



 and 

 2 x
  are the reference surface curvatures in the 

x-direction, 
 2 xz

  is the reference surface curvature in the z-direction. Thus the strains 

components xx , and xz  can be expressed as: 

 

     

   

3

2

2

2

( , , )

( , , )

xx x x x

xz xz xz

x y z z z

x y z z

   

  

  

 

 



 (5) 

 
 
VARIATIONAL FORMULATION 

 
The equation of motion of the structure is derived herein using the principle of minimum 
potential energy. The total potential energy of the structure, Π, is represented by [11]: 
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WU   (6)

 

 

The internal strain energy for a beam element, U , is represented by [11]:  
 

1
( )

2
xx xx xz xz

v

U dv      (7)

 

 
Case I: Isotropic beam 
 
The stress-strain relation is given as [12]:  
 

 xx xx    (8)a

 

xz xzG 
 

(8)b

  
Substituting equation (8) into equation (7) 
 

 2 21

2
xx xz

v

U E G dV    (9) 

 

Substituting equation (5) into equation (9) results in: 
 

           
2 2

3 2

2 2

1

2
x x x xz xz

v

U E z z G z dV         
       (10) 

 

Substituting equation (4) into equation (10) results in: 
 

22 2
2 3

2 2

2
2 2

4 6

2 2 4 2

2

2

2

4
2 2

3

1 4 16
2

2 3 9

8

x x x

x x x

x x

u u uw
z z z

x x x x h x x x
E

w w
U z z

x h x x h x x

w w
G z

x h

  

  

 

             
            

                
 

                           

  
    

  

  

2 2

4

4

16

v

x

dV

w
z

x h x


 
 
 
 
 
 
 
 

                 


 

(11) 

 

Rearranging equation (11) gives, 
 

22 2
2 3

2 2

22 22 2 2
4 6

2 2 4 2 2

8
2

3

8 161
2

3 92

x x x

x x x x

v

u u u u w
z z z

x x x x h x x x x
E

w w w
z zU

h x x x h x x x x

  

   

             
           

                


            
                              



   

2

2 4 2

2 4

8 16
1 2x x

dV

w w
G z z

h h x x
 

 
 
 
 
 
 

 
 

       
                   

 
(12) 

 
By taking the first variation of Eqn. (12), the incremental change of the strain energy of the 
beam is represented by: 
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2

2 2
3

2 2 2

2 2
4

2 2 2

6

4

2 2 2

8

3

81
2

32

32

9

x x x x

x x

x x x x

x x

u u u u
z z

x x x x x x x x

u u u w u w
z

h x x x x x x x x
E

w w
zU

h x x x x x x

z
h x

    

   

   


 

          
       

            

       
    

        

     
    

      

 


 

2 2 2 2

2 2 2 2

2 4

2 4

8 16
1 2 2 2 2

v

x x

x x x x

dV

w w w w

x x x x x x x

w w w w
G z z

h h x x x x

  

 
   

  
  
  
  
  
  
  
   

  
                     

 
                        


 

(13) 

 

Equation (13) defines the stiffness matrix constituents of the beam element as: 
 

11

v

u u
k E dV

x x

  
  

  
   

2
3

12 21 2 2

4

3

T

v

u w
k k E z dV

h x x

   
     

   
   

3

13 31 2

4

3

T x x

v

u u
k k E z z dV

x x h x x

         
      

       
  (14) 

2 2
6 2 4

22 4 2 2 2 4

16 8 16

9
v

w w w w w w w w
k E z G z z dV

h x x x x h x x h x x

                     
                              
   

2 2
4 6

2 2 4 2

23 32

2 4

2 4

4 16

3 9

8 16

x x

T

v

x x x

w w
E z z

h x x h x x
k k dV

w w w
G z z

x h x h x

  

  
  

       
      

        
   

          
                  


  

     

2 4 6

2 4

33

2 4

2 4

8 16

3 9

8 16

x x x x x x

v

x x x x x x

E z z z
x x h x x h x x

k dV

G z z
h h

     

     

             
        

            
  

        

   

 
Case II: Anisotropic Beam 
 

The stress-strain relation of a lamina in matrix notation is given by [12-13]: 
 


























xz

xx

xz

xx

Q

Q









55

11
~

~

 (15)

 

 

The complete derivation of Eqn. (15) can be seen in Appendix A. 
 
The strain energy for the laminate is obtained by substituting Eqn. (15) into Eqn. (7) as:  
  

 2 2

11 55

1

2
   xx xz

v

U Q Q dV   (16) 
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Substituting by Equations (3),(4), and (5) into Equation (16), one can obtain: 
 

22 2
2 3

2 2

11 2
2 2

4 6

2 2 4 2

2

2

55 2

4
2 2

3

1 4 16
2

2 3 9

8

  

  

 

              
            

                
 

                           

 
    

 

x x x

x x x

x x

u u w u
z z z

x x x x h x x x
Q

w w
U z z

x h x x h x x

w
Q z

x h




2 2

4

4

16


 
 
 
 
 
 
 
 

                   
x

dV

w w
z

x h x

 

(17) 

 
Integrating Eqn. (17) through the thickness of the laminate, the strain energy for anisotropic 
beam element is represented by:  
 

22 2

11 11 11 11 2 2

22 22 2 2

11 112 2 4 2 2

8
2

3

8 161
2

3 92

  

   

             
           

                


            
                              

x x x

x x x x

u u u u w
A B D E

x x x x h x x x x

w w w
F HU

h x x x h x x x x

2

2

55 55 552 4

8 16
2 

 
 
 
 
 
 
 
 

       
                   


A

x x

dA

w w
A D F

h h x x

 
(18) 

 
By taking the first variation of equation (18), incremental strain energy for the laminated 
beam element is represented by: 
 
 

11 11 11

2 2

11 2 2 2

2 2

11 2 2

2 2 2

8

3

8
2

3

1

2

    

    

   



          
       

            

         
      

           

     
   

      



x x x x

x x

x x x x

u u u u
A B D

x x x x x x x x

u u u w u w
E

h x x x x x x x x

w w
F

h x x x x x x

U

 

2

2 2

2 2

11 4 2 2

2 2

55 55 552 4

2 2
16

9
2

2 2
8 16

2

   




   

 
 
 
 
 
 
 

   
   

   
        

     
                  

      

  
  

   
   

 


x x x x

x x x x

w w

x x x x x x
H

h w w

x x

w w

x x
A D F

h h 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
   
   
   
    
    

      


A

dA

w w

x x
       

                                                                                                                               (19) a 
            
Equation (19) defines the elements stiffness matrix constituents as: 
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11 11

A

u u
k A dA

x x

  
  

  
  

 
2

12 21 11 2 2

4

3

T

A

w u
k k E dA

h x x

  
    

  
  

 

13 31 11 11 2

4

3

T x

A

u
k k B E dA

h x x

  
    

   
                                                                     (19) b 

 

2 211 554

22 2 2

55 552 4

16

9

8 16
A

H A
w wh

k dA
x x

D F
h h



 
   

   
     

 

  

 
2

23 32 11 11 55 55 552 4 2 2 4

4 16 8 16

3 9

T x
x

A A

w w
k k F H dA A D F dA

h h x x h h x

  


       
           

       
   

 

 33 11 11 11 55 55 552 4 2 4

8 16 8 16

3 9

x x
x x

A A

k D F H dA A D F dA
h h x x h h

 
 

     
         

     
   

 

FINITE ELEMENT FORMULATION 
 
A two node beam element with four mechanical degrees of freedom at each node is used 
and shown in Fig. (2).The axial displacement u  is expressed through the nodal 

displacement in the present model as follows [14-15]: 
 

1 2

2

1 2

1

( ) e e e e

j j

j

u x u u u  


    (20) 

 

where the linear interpolation functions 1  and 2  are given by: 
 

1 21  ,  
x x

L L
     (21) 

 
The transverse displacement w  and the rotation   are expressed in the finite element 

model by a Hermite cubic interpolation shape functions such as [16]: 
 

1 2 3 4

4

1 2 3 4

1

( ) e e e e e e

j j

j

w x w w w w w    


      (22) 

where; 
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2 3

1

2

2

2 3

3

2

4

1 3 2

1

3 2

x x

L L

x
x

L

x x

L L

x x
x

L L









   
     

   

 
   

 

   
    

   

  
    

   

 

(23) 

  
The rotation of the normal to the mid-plane about the y axis x  is expressed in the 

proposed model as follows [17]: 
 

1 2

2

1 2

1

( ) e e e e

x j j

j

x      


    (24) 

 

where the linear interpolation functions 1  and 2  are given by: 
 

1 21  , 
x x

L L
     (25) 

Case I: Isotropic beam  
 

Substituting by the shape functions, Eqn.(20) to Eqn.(25), into Eqn (14) and perform the 
integrating by considering the beam element has a length L, a width b and a height h, the 
isotropic beam element stiffness matrix is obtained and given in Appendix B. 

 

Case II: Anisotropic beam 
Substituting by the shape functions, Eqn.(20) to Eqn.(25), into Eqn (20)a and perform the 
integrating by considering the beam element has a length L, a width b and a height h, the  
 
anisotropic beam element stiffness matrix is obtained and given in Appendix B. 
  
Mass matrix: 
 
The kinetic energy is introduced to obtain the consistent mass matrix for a beam element 
and is given by [18]: 

 2 21

2
v

T u w dV  
   (28) 

By substituting Eqn. (2) into Eqn. (28) yields: 
 

/ 2
2 4 2 6

1 1
/ 2

h

x x x x
h

A

w w
T u z c z c z w dV

x x
    



      
               
      (29) 

 

where; 0   is the mass density of the material.  By taking the first variation of Eqn. (29) 

yields [10]: 

2 4 4

1 1
/ 2

/ 2
2 6

1

x x x x x x
h

h
A

x x

w w
u u z c z c z

x x
T dV

w w
c z w w

x x


      

 


  


      
             

    
      

    

  

 

 (30) 
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Perform the integration Eqn. (30) through the thickness of the beam yields: 
 

2 2

1 4 1 6 1 6

2 2

2 1 4 1 4 1 6 1 62

x x

A
x x x x

w w
I u u I w w c I c I c I

x x
T dA

w w
I c I c I c I c I

x x


   



   

    
        

   
      

   


 

 (31) 

 

Equation (31) defines the mass matrix constituents of the beam element such as: 
 

 11

A

m I u u dA     

(32) 

  2

22 6 1

A A

w w
m I w w dA I c dA

x x




  
     

  
   

2

23 6 1 4 1x x

A A

w w
m I c dA I c dA

x x

 
 

    
    

    
   

     2

33 6 1 4 1 22x x x x x x

A A A

m I c dA I c dA I dA           

12 13 21 31 0m m m m     

where;                         
/ 2

2 4 6

2 4 6
/ 2

, , , 1, , ,


 
h

h
I I I I z z z dz   

    
By substituting the shape functions equations (22), (24), and (26) into Eqn. (32) yield the 
mass matrix of the beam element given in Appendix B.  
 
 

Load vector: 
 
The virtual work done by external loads is given by [11]: 

       
0 0

. . . .

L L

axial shearW P x u u dx P x w w dx        , (33) 

where; shearP  and axialP  are transverse and axial forces  

By substituting the shape functions equations (22), (24) and (26) into Eqn. (33) and perform 
the integration over the length of the beam yields the element load vector given in 
Appendix B:  
 
Equation of Motion: 
The system equation of motion is obtained by summing the individual matrices of whole 
elements; mass, stiffness, and load such as [18]: 
 

       FqKqM   (34) 

 

where;  M  is the global mass matrix,  K  is the global stiffness matrix,  F  is the global 

nodal forces vector,  q  is the global nodal accelerations, and  q is the global nodal 

displacements. The solution of the equation of motion Eqn. (35) gives the static as well as 
the dynamic responses of the structure system. 
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Numerical Examples 
 
A MATLAB code is constructed to perform the analysis of isotropic and anisotropic beams 
using the present finite element model. The static and free vibration analyses are 
preformed for beams subjected to different kinds of mechanical loads. The model inputs 
are the beam dimensions, material properties and number of beam layers. The present 
model is capable of predicting the nodal (axial and transversal) deflections, the 
fundamental natural frequency and the mode shape of the beam, respectively. 
 
RESULTS AND DISCUSSIONS 
 
Case I: Isotropic beam results 
 
Model convergence 
 
The effect of number of elements was studied to converge the model results of cantilever 
beam shown in Figure (3) and its properties are given in Table (1). The obtained results are 
shown in Figure (4).  

 

Table (1):  Properties of an isotropic beam 

Property Value Unit Property Value Unit 

E  100 GPa Length (L) 1 m 

G 40 GPa Width (b) 0.2 m 

  1000 3/Kg m  Height (h) 0.02 m 

 
 
a) Static Analysis 
 

Table (2) compares the maximum transverse displacement at mid span (x = L / 2) for the 
given cantilever beam subjected to uniform distributed load with various boundary 
conditions using eight number of elements. The obtained results are compared with the 
exact solution of Ref. [10]. 
 

Table (2): Mid span deflections of isotropic beam under uniform load 
 

Parameter Mid span deflections, [mm] 

Boundary 
Conditions 

clamped – clamped hinged – hinged 

load (N/m) Ref.[10] Present Model Ref.[10] Present Model 

175.126  0.00262 0.00264 0.0132 0.0132 

875.634  0.0115 0.0132 0.0661 0.0661 

1751.268  0.0188 0.0264 0.1322 0.1323 

 
b) Dynamic Analysis 
 

A free vibration analysis is performed for a given cantilever beam. The first natural 
frequency is obtained by the proposed model using eight elements and compared to the 
exact solution proposed by Ref. [19] and given in Table (3). 
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Table (3):  Natural frequency (rad/s) for isotropic cantilever beam 
 

mode Ref.[19] Present Model Exact solution 

1 200 (rad/s) 205 (rad/s) 203 (rad/s)   

 
Figures (5)a - (5)d show the first four mode shapes for aluminum beam with a properties 
given in Table(4) using twenty number of elements.  
 

Table (4): Material and geometric properties for isotropic beam. 
 

Property Aluminum Unit Property Aluminum Unit 

E  206.82 Gpa Width (b) 0.0254 m 

  0.25 - Height (h) 0.0254 m 

Length (L) 2.54 m   m 

 
Case II: Anisotropic Beam Results 
 
Model convergence 
 
The effect of number of elements was studied to convergence the model results of a 
composite beam under various boundary conditions as shown in Figure (6). The 

dimensionless material properties are given as, 25/ 21 EE , 212 5.0 EG  , 

25.012  , 100/ hL , and it is subjected to a uniformly distributed load. The model 

convergence was obtained at (20) elements for clamped – free beam, and (50) elements of 
clamped – clamped beam.  
Figures (7)a and (7)b present the effect of number of elements on the non-dimensional 
transverse deflection of the beam with length to height ratio of 50 as clamped – free and 
clamped – clamped boundary conditions, respectively. The beam is solved for anti-

symmetric cross-ply with fiber orientation angles )90,0(  . The laminate is assumed to be of 

the same thickness and made of the same material. The transverse deflection is non-

dimensioned and given as;
4

22

2 10

Lf

hwAE
w



  ; where w is the actual transverse deflection. It 

can be seen that the transverse deflection reaches an asymptotic value at small number of 
elements, which proves convergence of the proposed model results. 
 
a) Static Analysis 

 
The predicted displacements by the proposed model for anisotropic beams with various 

boundary conditions for the case of symmetric cross-ply )0,90,0(   and anti-symmetric 

cross-ply )90,0(  laminations with L/h=10, respectively are listed in Tables (5) and (6) in 

comparison with the respective results of Ref. [2].  
The predicted displacements of the proposed model for a beam subjected to uniformly 
distributed load and has different number of layers with L/h=10 are compared with the 
corresponding results of Ref. [2] and represented in Figures (8)a, and (8)b which show the 
effect of ply-orientation and number of layers on non-dimensional transverse deflection of 
composite beams with clamped – free and hinged - hinged boundary conditions with the 
same laminate thickness  
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Table (5): Non- dimensional mid-span deflection of anti-symmetric cross-ply  
      (0/90/0) composite beams for various boundary conditions. 

 

Parameter Non- dimensional mid-span deflection 

Boundary 
conditions 

H - H C - H C  -  C C  -  F 

L/h Ref. [2] 
Present 
Model 

Ref.[2] Model Ref.[2] 
Present 
Model 

Ref.[2] 
Present 
Model 

5 2.412 2.417 1.952 1.955 1.537 1.539 6.824 6.840 

10 1.096 1.098 0.740 0.740 0.532 0.532 3.455 3.461 

50 0.665 0.668 0.280 0.281 0.147 0.147 2.251 2.263 

 

Table (6): Non- dimensional mid-span deflection of anti-symmetric cross-ply 

      ( 0/90 ) composite beams for various boundary conditions. 

Parameter Non- dimensional mid-span deflection 

Boundary 
Conditions 

H - H C - H C  -  C C  -  F 

L/h Ref.[2] 
Present 
Model 

Ref.[2] 
Present 
Model 

Ref.[2] 
Present 
Model 

Ref.[2] 
Present 
Model 

5 4.777 4.784 2.863 2.864 1.922 1.921 15.279 15.303 

10 3.688 3.696 1.740 1.742 1.005 1.006 12.343 12.369 

50 3.336 3.344 1.346 1.348 0.679 0.680 11.337 11.364 

 
b) Dynamic Analysis 

The predicted values for the fundamental natural frequency of composite beams are 
compared with the results given by Ref. [3]. The geometric properties of the beam are 
shown in Figure (9) and the material properties of AS4/3501-6 graphite/epoxy composite 

are, 80.1441 E  GPa, 65.92 E  GPa, 14.41312 GG  GPa, 45.323 G GPa, 3.012    and 
3/23.1389 mKg . The beam has length to height ratio of hL / 15. The fundamental 

natural frequency is non-dimensionized as; )/( 2

1

2 hEL   , where,   is the 

fundamental natural frequency. 
Tables (7) and (8) show a good agreement between the predicted results of the 
fundamental natural frequencies of the proposed model with the results given by Ref. [3] for 
the cases  symmetrically laminated [0/90/90/0], [45/-45/-45/45] and anti-symmetric 
laminated [0/90/0/90], [45/-45/45/-45] and [30/50/30/50] composite beams. Figures (10)a, 
(10)b and (10)c represent the effect of ply-orientation angles on the first three mode shapes 
of a composite beam with clamped – free boundary condition. It is clear from the obtained 
results that the effect of the shear deformation are greater for the higher modes. 
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Table (7): Comparison of non-dimensional fundamental natural frequencies of 
             symmetric laminated beams under various boundary conditions. 

 

Parameter Non-dimensional fundamental natural frequencies 

Ply 
Orientation 

Angles 
[ 0/90/90/0 ] [ 45/-45/-45/45 ] 

Boundary 
Conditions 

Ref.[3] Present Model Ref. [3] Present Model 

H - H 2.5023 2.4957 0.8295 0.9084 

C – C 4.5940 4.6432 1.8472 1.9958 

C – H 3.5254 3.5369 1.2855 1.3992 

C - F 0.9241 0.9223 0.2965 0.3253 

 
Table (8): Ply orientation angles effect on the non-dimensional fundamental natural  

     frequencies of composite beams with clamped - clamped edges. 

 

Parameter Non-dimensional fundamental natural frequencies 

Ply 
Orientation 

Angles 
[ 0/90/0/90 ] [ 45/-45/45/-45 ] [ 30/50/30/50 ] 

Mode No. Ref.[3] 
Present 
Model 

Ref.[3] 
Present 
Model 

Ref.[3] 
Present 
Model 

1 3.7244 3.7147 1.9807 1.9958 2.2526 2.5937 

2 8.9275 8.9024 5.2165 5.2462 5.8624 6.6352 

3 15.3408 15.2940 9.6912 9.7264 10.7609 11.9859 

4 22.3940 22.3279 10.5345 15.1215 11.9506 18.1997 

5 24.3155 29.7372 15.0981 15.1915 16.5747 20.9952 

 

CONCLUSIONS 
 
The following conclusions have been drawn: 
1. The good agreement between the deflections and the natural frequencies predicted by 

the present model and the corresponding predictions of other investigators using other 
theories proves the predictive capabilities of such a model. 

2. The transversal displacements predicted by the present finite element model are 
found to converge towards an asymptote at reasonable number of elements. 

3. As the number of layers increases, the transversal deflection decreases and the 
accuracy of the present model for the natural frequencies increases.  

4. The predicted results found reasonable compared with the other theories without 
using the shear correction factor. 
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5.  Further work is needed to improve the predictive capabilities of the present model by 
covering the following: 
(a) Using a higher order displacement theory made by E. Wu et al. [21-22], which 

consider the effect of transverse shear deformation to obtain an accurate 
response.  

(b) Taking into account the geometric nonlinearities. 
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Appendix A 

  
The stress-strain relation for a thin orthotropic lamina of an anisotropic beam having 
coincidence of principal axis on geometric axis is given by [1]: 
 

1 11 12 1

2 12 22 2
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    

     

 

(A-1) 

   

where, ijQ  is the reduced stiffness coefficient.  

The components of the lamina stiffness matrix in terms of the engineering constants are 
given as [20]: 
 

1 12 2
11 12 66 12

12 21 12 21

2
22 44 23 55 13

12 21

, ,
1 1

, , ,
1

E E
Q Q Q G

E
Q Q G Q G



   

 

  
 
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

 
(A-2) 

 

where; 1E  and 2E  are the Young’s modulus in the longitudinal and the transversal 

directions of the fiber, respectively, and 12 , and 21 are Poisson’s ratios in the two 

directions. The stress-strain relation of a lamina in the geometric directions x, y and z is 
given by [12]: 
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(A-3) 

 

where; 
ijQ is the transformed reduced stiffness coefficient. The stress-strain relation of a 

lamina is rewritten as: 
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(A-4) 

 

where, 
ijQ is the transformed reduced stiffness coefficient and given by: 

 

ij ij i3 j3 33Q Q Q Q /Q     For  i, j = 1

 
ij ijQ Q     For  i, j = 5

 

(A-5) 

 
The resultants of normal force, moment, and shear force acting on the laminate thickness 
are calculated as: 
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(A-6) 

 

where , ,xx xx xN M Q are force, moment and shear acting on a laminate, xxP is an additional 

higher order resultant related to warping, xR is an additional higher order shear resultant.    

 
The laminate stiffness coefficients are defined as [1]: 
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(A-7) 

 

where h  is the laminate thickness, z  is the distance from the middle surface to the surface 

of the nth lamina. 
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Appendix B 
 

B.1: Mass matrix for the Beam element: 

   

2 2

2 2 2 2 2 2

2 2

2 2 2 2

3

2 2

2 2 2 2 2 2

2

140 70
0 0 0 0 0 0

156 2 22 1 8 54 2 13 1 8
0 0

6 3 6 3

22 1 4 2 4 13 1 3 1 4
0 0

6 9 9 6 18 9

8 4 68 8 4 34
0 0

3 9 9 3 9 9

70 140420
0 0 0 0 0 0

54 2 13 1 8 156 2 22 1 8
0 0

6 3 6 3

13
0

e

h h

L L

h L h L L h L h L L

L L L L

h L h h L h

Ah L L
M

h h

L L

h L h L L h L h L L

L

h




   

 
   

 



  
   


2 2

2 2 2

1 3 1 4 22 1 4 2 4
0

6 18 9 6 9 9

8 4 34 8 4 68
0 0

3 9 9 3 9 9

L L L

L h h L h

L L

  
   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
(B-1) 

 
B.2: load vector for the beam element  
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B.3:  Stiffness matrix for isotropic beam element: 
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B.4:  Stiffness matrix for anisotropic beam element   
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Figure (1): Un-deformed and Deformed cross section [10] 
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Figure (2): Degrees of freedom at each node of the beam element 

 

 

 

 

 
 
 

Figure (3): An isotropic cantilever beam 

 
 
 
 

 
 

 

Figure (4): Effect of the number of elements on the transverse deflection 
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                                             Figure (5) a: The first mode shape. 

 

 

                                      Figure (5) b: The second mode shape. 
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Figure (5) c: The third mode shape. 

 

 

 

                                     Figure (5) d: The fourth mode shape. 
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Figure (6): Geometric characteristics of C-F and C-C composite beams  

 

 

 

                    Figure (7) a: Effect of the number of element on tip deflection 
of clamped-free beam. 
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             Figure (7) b: Effect of the number of element on mid span deflection 
                                              of clamped-clamped beam. 

 

 
 
 

                 Figure (8) a: Non dimensional transverse deflection of cantilever  
                                                       composite beam. 
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                Figure (8) b: Non dimensional transverse deflection of hinged-hinged 
                                                       composite beam. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure (9): Geometry of C-H and H-H composite beams 
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                                         Figure (10) a: The first mode shape. 
 
 

 

 
 

                                      
                                     

                                     Figure (10) b: The second mode shape. 
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                                     Figure (10) c: The third mode shape. 
 

NOMENCLATURE 
 

Symbols              Definition 

 em  Mass matrix of the beam element. 

 ek  Element stiffness matrix. 

 eF  Element nodal forces. 

  Total potential energy. 

eq  Nodal displacement. 

eq  The second derivative of the nodal displacement. 

U Internal strain energy. 
W  External work. 

u, v and w Displacements of a point in the x, y, &z directions. 

u , w  Displacements at reference surface along x and y axes. 

zzyyxx and ,,  Linear strains in the x, y, and z directions. 

 x



 Reference surface extensional strain in the x-direction. 

 xz



 The in-plane shear strains. 

 x



,

 2 x
  Reference surface curvatures in x-direction. 

 2 xz
  Reference surface twisting curvature. 

xy  , yz  Transverse shear strains. 

n  Number of layers in a laminate. 

Beam length (m) 

N
o

rm
a

l 
m

o
d

e
 (

m
m

) 
 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM  - 15 28 

 

N  Total number of beam layers. 

A  The beam surface area. 

xx  Stress in x-direction. 

xz  Shear stress in x-z plane. 

E,G Isotropic young’s and shear modulus. 

1c , & 2c , 3c  4c  Constant values. 

1u  , 2u  Displacements at the boundaries of the beam element. 

1w  , 3w  Transverse displacements. 

2w  , 4w  Slopes at the boundaries. 

L Length of a beam element. 
b Width of a beam element. 
h Height of a beam.  

T  Kinetic energy. 
  Mass density of material. 

i  Axial displacement shape function. 

i  Transverse displacement shape function. 

i  Rotation displacement shape function. 

shearP  Transverse forces. 

axilP  Axial forces. 

ijQ  Components of the lamina stiffness matrix. 

ijs  Compliances of the lamina. 

1E , 2E  Young’s modulus in the fiber and normal directions. 

xN  Force per unit length. 

xM  Moment per unit length. 

ijA  Extensional stiffness matrix element. 

ijB  Bending-extension coupling stiffness matrix element. 

ijD  Bending stiffness. 

ijE  Warping-extension coupling stiffness. 

ijF  Warping-bending coupling stiffness. 

ijH  Warping - higher order bending coupling stiffness. 

ijklc  Elastic constants. 

  Circular frequency of the system. 

HOBT Third-order Beam Theory. 
SOBT Second-order Beam Theory. 
FOBT First-order Beam Theory. 
CBT Classical Beam Theory. 

 


