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ABSTRACT

In the present work, a finite element modeling and analysis is introduced for isotropic and
anisotropic beams subjected to different mechanical loads. The assumed field
displacements of the beam are represented by a simple higher order shear deformation
theory made by Reddy [1]. The equation of motion is obtained using the principle of virtual
work. A hermit cubic shape function is used to represent the transverse displacement
w and its derivatives. The axial displacement u, and the normal rotation ¢, are represented
by a linear shape function. A MATLAB code is developed to compute the natural
frequency, and the static deformations of the structure due to the applied loads of different

boundary condition. The results of the proposed model are compared with the available
results of other investigators; good agreement is generally obtained.

KEY WORDS: Finite element method — Reddy's Theory - higher order shear deformation
theory — mechanics of composite materials — solid mechanics.
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INTRODUCTION

Several researchers are interested in solving the beam structures using different
theories. Reddy [1] developed a simple higher-order shear deformation theory of laminated
composite plates which gave parabolic distribution of the transverse shear strains. He
obtained the exact closed-form solutions of symmetric cross-ply laminates. His results were
compared with three-dimensional elasticity solutions and first-order deformation theory
solutions. The results gave more accurate prediction of deflections and stresses, and
satisfied the zero tangential traction boundary condition on the surfaces of the plate.

Khdeir and Reddy [2] presented the solution of the governing equations for the bending
of cross-ply laminated beams using the state-space concept in conjunction with the Jordan
canonical form. They used classical, first-order, second-order and third-order theories in
their analysis. They determined the exact solutions for symmetric and asymmetric cross-ply
beams with arbitrary boundary conditions subjected to arbitrary loadings. They studied the
effect of shear deformation, number of layers and orthotropic ratio on the static response of
composite beams. They found that the effect of shear deformation caused large differences
between the predicted deflections by the classical beam theory and the higher order
theories, especially when the ratio of beam length to its height decreased. They also
deduced that the symmetric cross-ply stacking sequence gave a smaller response than
those of asymmetric ones. In asymmetric cross-ply arrangements, increasing the number
of layers for the same thickness decreased the beam deflection. Finally, they deduced that
the increase of the orthotropic ratio decreased the beam deflection.

Chandrashekhara and Bangera [3] developed a finite element model based on a higher-
order shear deformation theory to study the free vibration characteristics of laminated
composite beams. They incorporated the Poisson’s effect, the in-plane inertia and rotary
inertia in their formulation. They concluded that: (i) shear deformations decrease natural
frequencies of the beam, (ii) the natural frequencies increase by increasing the number of
layers, (iii) the clamped-free boundary conditions exhibited the lowest natural frequency,
(iv) the increase of fiber orientation angle decreases the natural frequency, and (v) the
natural frequency decreases by increasing the material anisotropy.

Lee and Schultz [4] presented a study of free vibration of Timoshenko beams and axi-
symmetric Mindlin plates. Their analysis is based on the Chebyshev pseudo spectral
method. They deduced that their method has merits over other semi-analytic methods.
They concluded that rapid convergences, good accuracy as well as the conceptual
simplicity characterize the pseudo-spectral method. The results from this method agreed
with those of Bernoulli-Euler beams and Kirchhoff plates when the thickness-to-length ratio
was very small. However, they deviated considerably as the thickness-to-length ratio grew
larger.

Jafari and Ahmadian [5] investigated free vibration analysis of a cross-ply laminated
composite beam (LCB) on Pasternak foundation. Their finite element model was based on
Timoshenko beam theory. They designed the model on such a way that it could be used for
single-stepped, and cross-section-stepped foundation and multi-span beams. Their results
indicate acceptable accuracy, good agreement, and indicated that as lamina deviated from
symmetric to non-symmetric order, the natural frequencies decreased.
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Raghu and Pavan [6] presented a mathematical model for the stress analysis of symmetric
composite end notch flexure specimen using CBT, FOBT, SOBT and TOBT to determine
the strain energy release rate. In their formulation, appropriate matching conditions have
been applied at the crack tip by enforcing the displacement continuity at the crack tip in
conjunction with the variational equation. They found that the third order shear deformation
model was better than other beam models in determining the strain energy release rate for
unidirectional cross-ply and multidirectional composites interlaminar fracture.

Yunhua Luo [7] presented an efficient three-dimensional Timoshenko beam element with
consistent shape functions for two-nodes, constructed from the general solution to the
homogeneous Euler-Lagrangian equations. Their numerical results showed that the
developed 3D Timoshenko beam element was completely free from shear locking, and
furthermore, the performance of the element in convergence was superior to the
isoparametric Timoshenko beam element with reduced integration.

Elshafei et al. [8,9] proposed a finite element model, to study the static and the free
vibration response of isotropic and anisotropic beams subjected to axial, bending, and
torsion loads with warping effect using the classical beam theory. They found that an
additional node in the middle of the beam element was required to give a better presenting
in the torsion deformation. The obtained results founded reasonable in comparison with
FOBT and HOBT.

In the present work, a finite element model has been proposed, based on Reddy beam
theory [1], to predict the static and dynamic responses of advanced isotropic and
anisotropic beams. A MATLAB code is constructed to compute the structure response due
to different applied loads at different boundary conditions.

THEORETICAL FORMULATION

The displacements field equations of the beam are presented as [2]:

d , 3 d
ux,z)=u_(x)+z {cod—v)\(/+cl¢(x)}+czz w(x )+c3(%) [¢(x)+d—v)\:] (Da
v(x,z)=0, (1)b
and
w(x,z)=w_(x). (Q)c

u,v and w are the displacements field equations along thex , y and z coordinates,
respectively, u,and w, denote the displacements of a point (x,y,0) at the mid plane,
and ¢(x) and w(x) are the rotation angles of the cross-section as shown in Fig. 1.
Selecting the constant values of Egn. (1) aas: ¢, =0, ¢, =1 c¢,=0 ¢, =—(%)h . The

displacements field equations for Third -order theory (HOBT), made by Reddy, at any
point through the thickness can be expressed by [1]:

u(x,y,z)=uo<x)+z¢x—3;]%z3[¢x+85W—X}
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v(x,y,z)=0 (2)
w(X,y,z) =W, (x)
where the third term accounts for warping and permits a parabolic shear strain distribution.

To get the strain displacement equations, the following assumptions are also considered:
1- Plane stress, where transverse components of normal stresses o, and o, are

negligible compared to the axial stresso,, .

2- As the beam length is too long compared to the other dimensions thus the following
values of the strains components will be applied, s, =¢, =y,, =7,,=0

3- After deformation, the cross sections of the beam don’t remain planar or normal to
the centroidal axis, but become parabolic [10] as shown in Fig. (1).

By applying the above assumptions, the remaining strains components are € and”x | can
be represented by [11]:

£, (X, y,7)= % = %u +1 aaﬁx -7 3:]'2 ﬁ;ﬁ: + gj(\iv} =&, T LKyt Z3K2(X) (3)a
, (oyi2) aw(z,X v.2) au(xa,zy, D _y g % { b+ Z_\ﬂ s %A(/ TR (@
where;
Eix) = % Vxe) = +Z_\)/(v y Koy = % (4)a
N L -
and ¢ :% , C, :%,go(x) is the reference surface extensional strain in the x-direction,

Y.x) IS the in-plane shear strain , «,, and «,,, are the reference surface curvatures in the

(x )

x-direction, «,,, is the reference surface curvature in the z-direction. Thus the strains

)

XX 1

components &,,, and y,, can be expressed as:

(X Y,2) = &, + 2K, + Ky

(5)
Y xa (X’ y’ Z) = 7o(xz) + ZzKZ(xz)

VARIATIONAL FORMULATION

The equation of motion of the structure is derived herein using the principle of minimum
potential energy. The total potential energy of the structure, 1, is represented by [11]:
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The internal strain energy for a beam element, U , is represented by [11]:

U = %J\_!’I (UXX XX + O-)(Z }/XZ )dv

Case I: Isotropic beam

The stress-strain relation is given as [12]:

Oy = E Exx

O-XZ = G}/XZ
Substituting equation (8) into equation (7)

U :%I(ngx+eyfz)dv

Substituting equation (5) into equation (9) results in:

— 3 2 2
_—J.[ ( + 2K, +12 KZ()) +G( ) T2 K‘Z(XZ)) }dv
Substituting equation (4) into equation (10) results in:
2
(55 o255
OX OX OX
E
2
U=1 -27* ((Mj 2((% +a }rz6 164( X —J av
ox )3h?( ox  ox? 9h* ox &
ow) ,8 owY .16 ow
“{(W&) SR O]

Rearranging equation (11) gives,

B 2 2
au, 27 au, og, +zz% _238 au, og, au 6w
OX OX OX OX 3h? 6x OX 6x 8x
E
.8 [(08) og 0w 16((0g,Y 080w (w ’
j - —| | = +0— | | = — dv
g 3h OX 6x ax 9h OX 8x ax OX

, 8 ,16Y ., ow')
+G[(1 z h—+z h“)(¢ +2¢, _x+(6xj]]

c
1
N -
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(6)

(7)

(8)a

(8)b

(9)

(10)

(11)

(12)

By taking the first variation of Eqn. (12), the incremental change of the strain energy of the

beam is represented by:
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(Za_u@}h(a&u og, , 2u 954, j+222(a¢x 55¢xj"
OX OX OX OX OX OX OX OX
s 8 (06U 04, 0ouds,  oou azw+ ou 82§Wj
3h2| ox ox ax oXx  Ox ox° ox ox?
1 _,+ 8 (,00, 00, 04, O°ow 054, O*w ]
2 3h? 6x X ax X X ox

: 32 (04, 054, 04, & 5W+65¢ 82w+82w6 5wj

dv

+28 ==
| 9h*| ox ox ax ox? ox ox*  ox* ox?

+GK1 z2h£+ z“Ej(zqﬁ sp+ 24, 200 8W5¢ +2‘3W65Wﬂ

OX OX

Equation (13) defines the stiffness matrix constituents of the beam element as:

ou Oou
k,=|E Vv
H I (8x axjd
oou o*w
=k;, = dv
“ JV. { 3h2[ ox ox? ﬂ
0ou 0¢, 4 (0ou o,
:kT — E Z X _ZS % dV
ks =kn I {(ax ax] 3h2(ax axﬂ
2 2
kzz=J{E{z~—%w—mww H2 Al
? 9h"{ ox° ox ox Ox h*\ ox ox h*{ ox ox
s 4 (0°6wog, ¢ 16 ( 0°6w 0,
Tl )t ad ox
o |

B _I E . 8 (ow 16 ( dow
J7 e e e 1o 2,
3

v aéw
X h2 h4

e[ aé@% ¢ 8 (004,00, 0 16 (259,
oX OX 3h OX OX 9h

0

k33=.|. 16 v

e {(5¢X¢X)-ZZ%(5¢X¢ )+ (s )}

Case ll: Anisotropic Beam

The stress-strain relation of a lamina in matrix notation is given by [12-13]:

O yx _ 611 Exx
Oy, - 655 €z

The complete derivation of Eqn. (15) can be seen in Appendix A.

The strain energy for the laminate is obtained by substituting Egn. (15) into Eqn. (7) as:

U= %J(dllgxzx +Q~557/x22 )dV

(13)

(14)

(15)

(16)

6
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Substituting by Equations (3),(4), and (5) into Equation (16), one can obtain:
3] (3@ )
_ | \ox oX OX ox 3n? | ox  ox? J\ox
27 4(%ji(%+ﬂ\]+z 6 E(%-I— aZ\N J
OX
+Q55 |:(¢x +§j [¢x + ax (¢x + j il

3h2l ox  ox? 9h*{ ox  ox°
ow w jz
Integrating Eqn. (17) through the thickness of the laminate, the strain energy for anisotropic
beam element is represented by:
o4, \
Joul5) e )

(2] van, (220
OX OX OX
—Fni{[a@ jz + ]4— Huﬁ((a@ jz +2 J ]
3h? oh* |\ ox
16 o gy QW (WY
Fj(¢x +2¢x OX +(8X j ]}

OX
{(ASS -D,—+F,

By taking the first variation of equation (18), incremental strain energy for the laminated
beam element is represented by:

(17)

—zZ%

ow

vzt = —
oX

h4

8

OX OX  OX Ox2

|

H@_u%ﬁ_ua?w

ow
ox 2

o4, oW
X ox*?

o4, oW
X ox*?

dA (18)

u:%g

8

h2

ZAM[a_u oou j+2811[8_u 00g, +6¢X oou j+2Dn(8¢x 00, j
OX OX OX OX OX OX OX OX
8 ou 06¢, O¢, dou ou 0°Sw  8du ow
—En—|| — + +| — >+ 5
3h OX OX OX OX OX OX OX OX
2
F,-8 2(6@ 65¢xj+ 0g, O*Ow_, 054, OW
3h OX OX OX OX OX OX
l 2
SU :_j 2(5@ 0S¢, j+2 o¢, 0 &/2\/ | 999, 82\/\/2 dA
25 16 OX OX ox OX OX OX
“on* oW o*Sw
+2 5 >
OX OX
2[4, 59, ]+2(¢X 9N 54, %j
8 16 OX OX
=+ ASS_DSSF_'—FS F [aw a&v)
+2| —
oX OX
(19) a

Equation (19) defines the elements stiffness matrix constituents as:
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R = 4 (a?w aaujdA

2 "3n?l ox® ox
4 ou 009,

Kis = k;l = !(Bn =t W](&Wjdp\ (19) b

16

Angneths o a2on
= 8 _ 16|\a )
A Dy +Fg o N
4 16 \( 04, O°w 8 16 OOW

kZSZk;Z:A[(_F113h2+H119h4J(8X ox 2 ]dA"'J\.(Ass_DSSF"'FssFJ(@W A

8 16 \( 0¢, 054 8 16
Ky, = (D ~F,— +H J[ X deA+ (A D, —+F —j(¢x5¢x)dA
33 ! 11 11 3h 2 11 9h4 ax ax ! 55 55 h 2 55 h4

FINITE ELEMENT FORMULATION

A two node beam element with four mechanical degrees of freedom at each node is used
and shown in Fig. (2).The axial displacement u is expressed through the nodal
displacement in the present model as follows [14-15]:

2
U(X) = Ug® +U,% = > U] (20)
j=1

where the linear interpolation functions ¢, and ¢, are given by:

X X
glzl_t ) gzzt (21)

The transverse displacement w and the rotation @ are expressed in the finite element
model by a Hermite cubic interpolation shape functions such as [16]:

4
W(X) = WE* +WoET +Wol” +W,E7 = D Wid] (22)
j=1

where;
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sorea(E) o=(E)
==s(2) =(x)
Lo ()%

The rotation of the normal to the mid-plane about the y axis ¢, is expressed in the
proposed model as follows [17]:

(23)

2
8 () =4L7+8L7 =D 4¢] (24)
j=1
where the linear interpolation functions ¢1and ¢z are given by:

glzl__ léVz:_ (25)

Case I: Isotropic beam

Substituting by the shape functions, Eqn.(20) to Eqn.(25), into Egn (14) and perform the
integrating by considering the beam element has a length L, a width b and a height h, the
isotropic beam element stiffness matrix is obtained and given in Appendix B.

Case I1: Anisotropic beam
Substituting by the shape functions, Eqn.(20) to Eqn.(25), into Egn (20)a and perform the
integrating by considering the beam element has a length L, a width b and a height h, the

anisotropic beam element stiffness matrix is obtained and given in Appendix B.

Mass matrix:

The kinetic energy is introduced to obtain the consistent mass matrix for a beam element
and is given by [18]:

1 . .
T=Ej‘pc(u2+wz)dv (28)
By substituting Egn. (2) into Eqn. (28) yields:

h/2 a\N 8W
T= ./[I—hlz P. |:u° + 22¢X5¢x _Clz4 (¢x +&j+c1226 (¢x +&]+W¢ldv (29)

where; p, is the mass density of the material. By taking the first variation of Eqn. (29)
yields [10]:
h/2
oT = JA.J.—h/Z'DO

[Ty (¢X +8—Wj5¢x - (5¢ +8§—ij¢x

dv (30)
+c/z° (qﬁ +—j( 5p, + a5Wj+w5w
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Perform the integration Eqn. (30) through the thickness of the beam yields:

awj OOW |
OX

l.usu + I°W5W—(cll4¢x —c’l g —c’l, =
dA (31)

ow
+(|2¢x_2C1|4¢x_C1 P +C1|6¢ +C1|6 j5¢
X
Equation (31) defines the mass matrix constituents of the beam element such as:
my, = [ 1. (8uasu )dA
A

= [ 1. (owosw) dA+_|.I ¢ (aWMWJdA
" OX OX

0oW 0OW
{ ( jdA II“( oX jdA (32)

m,,
j 2 (.50, JIA— 2j|4c1 ¢5¢)dA+j| (4,50, )IA

my, =My =M, =My = 0

h/2

where; (L dplale)=[  p(Lz%2%2°%)dz

-h/2

By substituting the shape functions equations (22), (24), and (26) into Egn. (32) yield the
mass matrix of the beam element given in Appendix B.

Load vector:

The virtual work done by external loads is given by [11]:
j aX|aI U 5U dX+I shear (W 6W ) d (33)

where; P,.., and P, are transverse and aX|aI forces

v * shear
By substituting the shape functions equations (22), (24) and (26) into Egn. (33) and perform
the integration over the length of the beam yields the element load vector given in
Appendix B:

Equation of Motion:
The system equation of motion is obtained by summing the individual matrices of whole
elements; mass, stiffness, and load such as [18]:

[MHa} + [KJaj = {F} (34)

where;[M] is the global mass matrix, [K] is the global stiffness matrix, {F} is the global
nodal forces vector, {g} is the global nodal accelerations, and {g}is the global nodal

displacements. The solution of the equation of motion Eqn. (35) gives the static as well as
the dynamic responses of the structure system.
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Numerical Examples

A MATLAB code is constructed to perform the analysis of isotropic and anisotropic beams
using the present finite element model. The static and free vibration analyses are
preformed for beams subjected to different kinds of mechanical loads. The model inputs
are the beam dimensions, material properties and number of beam layers. The present
model is capable of predicting the nodal (axial and transversal) deflections, the
fundamental natural frequency and the mode shape of the beam, respectively.

RESULTS AND DISCUSSIONS

Case I: Isotropic beam results

Model convergence

The effect of number of elements was studied to converge the model results of cantilever
beam shown in Figure (3) and its properties are given in Table (1). The obtained results are

shown in Figure (4).

Table (1): Properties of an isotropic beam

Property Value Unit Property Value Unit
E 100 GPa Length (L) 1 m
G 40 GPa Width (b) 0.2 m
P 1000 Kg/m® Height (h) 0.02 m

a) Static Analysis

Table (2) compares the maximum transverse displacement at mid span (x = L / 2) for the
given cantilever beam subjected to uniform distributed load with various boundary
conditions using eight number of elements. The obtained results are compared with the
exact solution of Ref. [10].

Table (2): Mid span deflections of isotropic beam under uniform load

Parameter Mid span deflections, [mm]

goonudr}ﬂg% clamped - clamped hinged — hinged

load (N/m) Ref.[10] Present Model Ref.[10] Present Model
175.126 0.00262 0.00264 0.0132 0.0132
875.634 0.0115 0.0132 0.0661 0.0661
1751.268 0.0188 0.0264 0.1322 0.1323

b) Dynamic Analysis

A free vibration analysis is performed for a given cantilever beam. The first natural
frequency is obtained by the proposed model using eight elements and compared to the
exact solution proposed by Ref. [19] and given in Table (3).
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Table (3): Natural frequency (rad/s) for isotropic cantilever beam

mode Ref.[19] Present Model Exact solution

1 200 (rad/s) 205 (rad/s) 203 (rad/s)

Figures (5)a - (5)d show the first four mode shapes for aluminum beam with a properties
given in Table(4) using twenty number of elements.

Table (4): Material and geometric properties for isotropic beam.

Property Aluminum Unit Property Aluminum Unit
E 206.82 Gpa Width (b) 0.0254 m
% 0.25 - Height (h) 0.0254 m

Length (L) 2.54 m m

Case II: Anisotropic Beam Results
Model convergence

The effect of number of elements was studied to convergence the model results of a
composite beam under various boundary conditions as shown in Figure (6). The
dimensionless material properties are given as,E, /E, =25,G, = 0.5E,,

7, = 0.25,L/h=100, and it is subjected to a uniformly distributed load. The model

convergence was obtained at (20) elements for clamped — free beam, and (50) elements of
clamped — clamped beam.

Figures (7)a and (7)b present the effect of number of elements on the non-dimensional
transverse deflection of the beam with length to height ratio of 50 as clamped — free and
clamped — clamped boundary conditions, respectively. The beam is solved for anti-
symmetric cross-ply with fiber orientation angles (0°,90°) . The laminate is assumed to be of
the same thickness and made of the same material. The transverse deflection is non-
WAE,h?10?

dimensioned and given as;w = B ; where w is the actual transverse deflection. It

can be seen that the transverse deflection reaches an asymptotic value at small number of
elements, which proves convergence of the proposed model results.

a) Static Analysis

The predicted displacements by the proposed model for anisotropic beams with various
boundary conditions for the case of symmetric cross-ply (0°,90°,0°) and anti-symmetric

cross-ply (0°,90°) laminations with L/h=10, respectively are listed in Tables (5) and (6) in

comparison with the respective results of Ref. [2].

The predicted displacements of the proposed model for a beam subjected to uniformly
distributed load and has different number of layers with L/h=10 are compared with the
corresponding results of Ref. [2] and represented in Figures (8)a, and (8)b which show the
effect of ply-orientation and number of layers on non-dimensional transverse deflection of
composite beams with clamped — free and hinged - hinged boundary conditions with the
same laminate thickness
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Table (5): Non- dimensional mid-span deflection of anti-symmetric cross-ply
(0/90/0) composite beams for various boundary conditions.

Parameter Non- dimensional mid-span deflection
cBoOnudnitciig?; 2l Sl e-C C
L/h Ref. [2] | Tooeht | Ref.[2] | Model | Ref[2] | Tleoeht | Ref[2) | FVeSEnt
5 2.412 2.417 1.952 1.955 1.537 1.539 6.824 6.840
10 1.096 1.098 0.740 0.740 0.532 0.532 3.455 3.461
50 0.665 0.668 0.280 0.281 0.147 0.147 2.251 2.263

Table (6): Non- dimensional mid-span deflection of anti-symmetric cross-ply
(0/90 ) composite beams for various boundary conditions.

Parameter Non- dimensional mid-span deflection

Conditions | H°" C-H c-¢ C-F
L/h Ref.[2] | eS| Ret[2] | 1 ooeht | Ref[2] | eoeTt | Ref[2] | eSS
5 4.777 4.784 2.863 2.864 1.922 1.921 15.279 15.303
10 3.688 3.696 1.740 1.742 1.005 1.006 12.343 12.369
50 3.336 3.344 1.346 1.348 0.679 0.680 11.337 11.364

b) Dynamic Analysis

The predicted values for the fundamental natural frequency of composite beams are
compared with the results given by Ref. [3]. The geometric properties of the beam are
shown in Figure (9) and the material properties of AS4/3501-6 graphite/epoxy composite
are,E, =144.80 GPa, E, =9.65 GPa, G,,=G,; =414 GPa, G,, =3.45GPa, 7,, =0.3 and

p =1389.23Kg/m®. The beam has length to height ratio of L/h =15 The fundamental

natural frequency is non-dimensionized as; @ = wl’\/(p/E,h*), where, o is the

fundamental natural frequency.

Tables (7) and (8) show a good agreement between the predicted results of the
fundamental natural frequencies of the proposed model with the results given by Ref. [3] for
the cases symmetrically laminated [0/90/90/0], [45/-45/-45/45] and anti-symmetric
laminated [0/90/0/90], [45/-45/45/-45] and [30/50/30/50] composite beams. Figures (10)a,
(10)b and (10)c represent the effect of ply-orientation angles on the first three mode shapes
of a composite beam with clamped — free boundary condition. It is clear from the obtained
results that the effect of the shear deformation are greater for the higher modes.
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Table (7): Comparison of non-dimensional fundamental natural frequencies of
symmetric laminated beams under various boundary conditions.
Parameter Non-dimensional fundamental natural frequencies
Ply
Orientation [ 0/90/90/0 ] [ 45/-45/-45/45 ]
Angles
Boundary
Conditions Ref.[3] Present Model Ref. [3] Present Model
H-H 2.5023 2.4957 0.8295 0.9084
c-C 4.5940 4.6432 1.8472 1.9958
C-H 3.5254 3.5369 1.2855 1.3992
C-F 0.9241 0.9223 0.2965 0.3253
Table (8): Ply orientation angles effect on the non-dimensional fundamental natural
frequencies of composite beams with clamped - clamped edges.
Parameter Non-dimensional fundamental natural frequencies
Ply
Orientation [ 0/90/0/90 ] [ 45/-45/45/-45 ] [ 30/50/30/50 ]
Angles
Present Present Present
Mode No. Ref.[3] Model Ref.[3] Model Ref.[3] Model
1 3.7244 3.7147 1.9807 1.9958 2.2526 2.5937
2 8.9275 8.9024 5.2165 5.2462 5.8624 6.6352
3 15.3408 15.2940 9.6912 9.7264 10.7609 11.9859
4 22.3940 22.3279 10.5345 15.1215 11.9506 18.1997
5 24.3155 29.7372 15.0981 15.1915 16.5747 20.9952

CONCLUSIONS

The following conclusions have been drawn:

1. The good agreement between the deflections and the natural frequencies predicted by
the present model and the corresponding predictions of other investigators using other
theories proves the predictive capabilities of such a model.

2. The transversal displacements predicted by the present finite element model are
found to converge towards an asymptote at reasonable number of elements.

3. As the number of layers increases, the transversal deflection decreases and the
accuracy of the present model for the natural frequencies increases.

4. The predicted results found reasonable compared with the other theories without

using the shear correction factor.
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5. Further work is needed to improve the predictive capabilities of the present model by
covering the following:
(a) Using a higher order displacement theory made by E. Wu et al. [21-22], which

consider the effect of transverse shear deformation to obtain an accurate
response.

(b) Taking into account the geometric nonlinearities.
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Appendix A

The stress-strain relation for a thin orthotropic lamina of an anisotropic beam having
coincidence of principal axis on geometric axis is given by [1]:

O, i Q. Q, O &
0,(=|Qy Qp 0 |i&
O | 0 0 Qllé&s

O, __Q44 0 |]e,
Os __ 0 Qu]le&s

where, Q; is the reduced stiffness coefficient.

The components of the lamina stiffness matrix in terms of the engineering constants are
given as [20]:

E, _

= 1 - 1 = G
Qu 1-v,va vl VioVo s .
(A-2)
E,
sz = ) Q44 = st’ st = GlS’
1-v,v,

where; E;, and E, are the Young’'s modulus in the longitudinal and the transversal
directions of the fiber, respectively, and v,,, and v,, are Poisson’s ratios in the two

directions. The stress-strain relation of a lamina in the geometric directions x, y and z is
given by [12]:
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O-xx Qll Q12 Qle 8xx
Ow (= ?12 (222 (326 Ey
ny L Q16 QZG Q66 ‘9xy

Jyz _ _644 645 gyz
ze - _645 655 gxz

where; Q; is the transformed reduced stiffness coefficient. The stress-strain relation of a

lamina is rewritten as:
{O-XX} — |:Q11 - :|{8XX} A 4
ze Q55 gxz ( )

where, Qij is the transformed reduced stiffness coefficient and given by:

(A-3)

Qij = (_?ij _Qiséjs /(_233 For i,j=1

Qij = (_?ij For i,j=5 (A-5)
The resultants of normal force, moment, and shear force acting on the laminate thickness
are calculated as:

N

* N ez Q, Nofez |1
MXX :z I yA (O‘X)k dz ,{R }:Z{L“{ZZ}(O‘XZ)I( dZ} (A-6)
Pxx 23 i

X

where N Q,.are force, moment and shear acting on a laminate, P, is an additional

Xxx1 XX’

higher order resultant related to warping, R, is an additional higher order shear resultant.

The laminate stiffness coefficients are defined as [1]:

h/2

(Ail’Bll’Dll’Ell’Fll'Hll ZJ. (Qll) 12,22123124726)‘12

h/2

(A-7)
A55’ s P Z:J.h/z(Qf’f’) 122’24)dz

where h is the laminate thickness, z is the distance from the middle surface to the surface
of the nth lamina.
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Appendix B

B.1: Mass matrix for the Beam element:

e

(140
hZ

0

pAR°
420

156
h2
22L
hZ

54
hZ
_13L
h2
8

2
=
L
1

+
6L

2
LZ
1
6L

3L

B.2: load vector for the beam element

— _Paxia/ Psearl/ PsearL7
Fe—{ A" M A 0

B.3: Stiffness matrix for isotropic beam element:

w w ||
©|R ol |—|oo

0 0 0
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a s el s Bl
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15L 315L ' 45 E+ 3151
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~Ebh’ 16Gbh  —Ebh’  4Gbh 4Gbh
A B 4L _? H
Ebh" 4Gbh  Ebh® 4GbhL  4Ebh’ 2GbhL
E+? w2 L 45

—~4Gbh 4Ebh" 2GbhL  -8Gbh 17Ebh’
15L L 45 L 3L

P

axial

P

~Ebh
—_— 0
L
-Ebh’  16Gbh
20 2L
-Ebh’  4Gbh
ne 1
4Gbh
15L
Ebh
— 0
L
Ebh® 16Gbh
0 —+
a0 5L
0 ~Ebh’  4Gbh
pne B
4Gbh
15L
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140
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B.4: Stiffness matrix for anisotropic beam element

A ; 45 Bb 4
L 3L L 3L
o OO 6D MDD WED Vb AD 40 BRD A D 8D
M 5L ShiL 5hL P 10 Sht 5hf 2 h? h*
-4Ep 32Hnb+i5b_£55b @ 64Hub 2A L 16D55bL 32F L -4Fb 16Hﬂb AssbL 2Dl 4F55bL
ML P 10 Sht ohf 9hL 15 15h? 15h4 3L 9hL 12 3 3
Bb 4ED  -AD Db SR  ARp I6Hp ABL DL 4RO Db GFp IGHp ABL BDOL IRl
K L3 2 h? h* ML L 12 3 3 L 3L oL 3 3 KN
| -Ap ; & B KD
L 3L L 3L
o LD BAD #Db %RD b Ab Db BED Ab Db 8b
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Figure (1): Un-deformed and Deformed cross section [10]
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Figure (2): Degrees of freedom at each node of the beam element
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Figure (3): An isotropic cantilever beam
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Figure (4): Effect of the number of elements on the transverse deflection
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Figure (5) a: The first mode shape.
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Figure (5) b: The second mode shape.
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Figure (5) c: The third mode shape.
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Figure (5) d: The fourth mode shape.
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Figure (6): Geometric characteristics of C-F and C-C composite beams
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Figure (7) b: Effect of the number of element on mid span deflection

of clamped-clamped beam.
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Figure (8) b: Non dimensional transverse deflection of hinged-hinged
composite beam.
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Figure (10) c: The third mode shape.
NOMENCLATURE
Symbols Definition

[m]
[k.]
[F.]

I
Qe
Je
U
W
u, vand w
uo ) Wo

Eypr €y ande,

Xx1 € yy z

Mass matrix of the beam element.
Element stiffness matrix.

Element nodal forces.

Total potential energy.
Nodal displacement.

The second derivative of the nodal displacement.

Internal strain energy.
External work.
Displacements of a point in the X, y, &z directions.

Displacements at reference surface along x and y axes.
Linear strains in the X, y, and z directions.

Reference surface extensional strain in the x-direction.
The in-plane shear strains.

Reference surface curvatures in x-direction.

Reference surface twisting curvature.

Transverse shear strains.
Number of layers in a laminate.
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Ciii

HOBT

SOBT

FOBT
CBT
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Total number of beam layers.
The beam surface area.

Stress in x-direction.

Shear stress in x-z plane.
Isotropic young’s and shear modulus.
Constant values.

Displacements at the boundaries of the beam element.
Transverse displacements.

Slopes at the boundaries.

Length of a beam element.
Width of a beam element.
Height of a beam.

Kinetic energy.

Mass density of material.

Axial displacement shape function.

Transverse displacement shape function.

Rotation displacement shape function.

Transverse forces.

Axial forces.

Components of the lamina stiffness matrix.
Compliances of the lamina.

Young’s modulus in the fiber and normal directions.
Force per unit length.

Moment per unit length.

Extensional stiffness matrix element.
Bending-extension coupling stiffness matrix element.
Bending stiffness.

Warping-extension coupling stiffness.
Warping-bending coupling stiffness.

Warping - higher order bending coupling stiffness.

Elastic constants.

Circular frequency of the system.
Third-order Beam Theory.
Second-order Beam Theory.
First-order Beam Theory.
Classical Beam Theory.
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