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Abstract 
 
Artificial teams of mobile robots, which are capable of doing difficult jobs with relatively lower 
cost, gain a growing interest in the robotic field. In this paper, a model is used for a second 
order non-linear system to simulate a group of agents that interact via pair-wise attractive and 
repulsive potentials. a new potential field method is proposed using individually based agent 
perceptual model to successfully solve the local minimum problem, which is considered the 
main drawback in the artificial potential field based path-planning approach. The work in this 
paper is considered an extension of my earlier work to overcome local minima using internal 
agent states [1]. Allowing the potential field to be dynamic and manipulated by the model can 
solve the problem even easier. Simulation results demonstrate the ability of a single agent as 
well as group of agents to solve the problem and reach the goal position effectively. 
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1. Introduction: 

The design and control of multi-agent robotic systems to accomplish specific missions has 
drawn considerable interest in recent years [2]. As teams of self-organizing agents that 
exchange information may have a greater functionality than the individual members, the 
operating principles of natural systems have proven to be a useful tool for the design and 
control of teams of robots that contain large number of individuals [3, 4]. One of the main 
current trends is to employ teams of mobile robots in a range of applications in both civilian 
and military fields from space and sub-sea exploration to the deployment of teams of 
interacting artificial agents in disposal systems [5]. 
 
True artificial team design has been largely developed through two main approaches. The 
first is based on artificial physics [6] while the second is based on a set of practical, 
algorithmic approaches [7-10]. Both approaches have been applied to teams of autonomous 
agents and new assumptions about the architecture needed for intelligence have been 
investigated [11]. These approaches attempt to emulate natural, rather than artificial 
intelligence and are based on, or at least inspired by, biology. Natural examples of interacting 
individuals can be found in ants, bees, birds and schools of fish in the way that useful group 
properties can emerge through the interactions among the agents [12, 13]. 
 

Multi-agent robotic systems are often modelled as point mass agents in two-dimensional 
environments in which members may interact with one another through pair-wise attractive-
repulsive interactions. Introducing agents with special tasks among groups, such as group 
virtual leaders [5,14-15], has also been introduced to provide provable group behaviour to 
ensure vehicles can avoid obstacles during navigation to a goal position. The actual 
realizations of self-propelled vehicles interacting according to virtual Morse potentials have 
been reported in the robotics literature [5, 16]. These studies assume that the free 
parameters of the potential field are fixed a priori. In earlier work [1], the parameters were 
assumed to be internal states for each agent through which the agent can manipulate the 
potential field. The dynamics of these internal states were defined through set of first order 
differential equations that are applied on a collective basis. However effective, the 
aggregation behaviour has a main disadvantage as the entire team may be trapped in a dead 
end without having the chance to get help from one of the team members. This paper 
introduces the solution in such case by adopting an individual, rather than collective, 
behaviour of the team members along with increasing the perception of the agents about the 
environment and then allowing this perceptual model to manipulate the potential fields such 
that the problem can be solved easily and efficiently. 
 
In this paper a model, which includes control forces that are induced by the gradient of the 
potential field, is used. The model consists of Np agents, it is considered here for the ith agent 
with mass mi, position ri and velocity vi. A dissipative friction force with coefficient βi is added 

to control the ith agent’s speed. The global potential affecting the ith agent is characterised by 
attractive goal and repulsive obstacle potential fields of strength Cig and Cio with ranges lig 

and lio respectively and an agent interaction potential function Vinteraction(ri) that includes only 

the agent’s repulsive potential field of strength Cri with range lri. This means of defining the 

interaction potential matches studies of pedestrian dynamics [17], which define each agent to 

have no attractive force to any of the other agents in the environment. The equations of 
motion of the ith agents are defined as: 
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Vglobal = Vrepulsion/agents + Vrepulsion/obstacles + Vattraction/goal     (3) 
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where Vglobal(ri) is the global potential corresponding to the ith agent, Vrepulsion/agents is the 
repulsion potential amongst the agents, Vrepulsion/obstacles is the repulsion potential between 
each agent and the obstacles, Vattraction/goal is the attraction potential to the goal. Using an 
Adams-Bashforth numerical integration method a simulation code has been developed to 
predict the collective behaviour of the agents, which were given random initial positions and 
velocities. 
 
2. Problem Definition: 

The problem of local minima (trapped situation), shown in Fig. 1, was discussed by many 
researchers [18]. The reactive problem for an agent, or team of agents, attracted to a goal 
point at position G can be defined such that an artificial potential field at G induces motion 
towards the goal. When the agent, or team of agents, moves towards the goal the velocity of 
each individual agent rises, and the agents translate to the goal along the gradient of the 
potential field. However, in order prevent collision with a static obstacle, an additional 
repulsive potential field is required.  
 

 
Fig.1. Classical reactive problem 
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These two potential fields are then superimposed to form a global potential field that 
describes the workspace of the problem. In general however, a local minimum may form due 
to the superposition of the goal potential and that of the obstacles, resulting in the agent, or 
team of agents, becoming trapped in a state other than the goal G. 
 
Considering this problem, the entire team, or part of the team will be trapped at the obstacle 
since the agents trapped inside the obstacle will experience two virtual forces; the first force 
is the attraction to the goal while the other will be the repulsion from the obstacle. Moreover in 
most cases there will be no opportunity for the team members to escape from the local 
minimum due to the pair-wise interaction potential - particularly when the goal potential is of 
large amplitude.  
 

3. Squeeze Effect: 

Escape from complex workspaces can be seen in many natural systems in which the system 
consists of a number of agents enclosed in a trap. In order to illustrate the use of the agent 
interaction parameters, a problem in which the phenomenon of translation of agents from a 
region of high potential to low potential can be investigated (e.g. system of gas molecules 
whose individuals are enclosed in a single-exit container while they experience a change in 
their state such as a rise in temperature).  
 
Let (A, B) be two adjacent regions, as shown in Fig. 2, such that both have the same global 
potential. Using dynamic interaction parameters for a group of agents enclosed in a trap, the 
change of the interaction potential range of the system individuals, lri, simply changes the trap 
region from a local minimum into a region of maximum potential from which all the agents are 
emitted as if squeezed out, as shown in Fig. 2.  
 

 

(a) 

 
(b) 
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(c) 

 
(d) 

 

  
              (e)        (f) 

 
Fig. 2. Squeeze effect 

The use of agent perceptual model will now be considered as a means of allowing agents to 
manipulate the potential field in which they are maneuvering in order to escape from local 
minima. 
 
4. Agent Perceptual Model: 

The previous section has demonstrated that a change in the interaction potential parameters 
of the agents can lead to escape from a trap (manipulating a local minimum into a local 
maximum). This concept will now be used for a single agent maneuvering towards a goal in a 
potential field, which contains a local minimum.  
 
For a fixed obstacle, the repulsion potential range affecting the ith agent (lio) can be 
represented as a function of an obstacle constant (lo), which characterizes the physical nature 
of the obstacle, and the particle repulsion potential range (lri) which characterizes the agent 
interaction potential range. The attraction potential range of the goal affecting the ith agent (lig) 
can also be represented as a function of a goal constant (lg), which characterizes the physical 
nature of the goal, such that: 
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When an agent approaches an obstacle it suffers an elastic collision which pushes the agent 
away from the goal. The goal then attracts the agent back and the agent will never attempt to 
maneuver around the obstacle simply because it never knows it’s trapped.  
 
The agent’s perception function Qi is now defined, inspired from the learning by reward or 
punishment [19-20], and applied to the agent and its ability to perceive the environment in 
which it exists. The function is defined as the change of the modulus of the agent’s velocity 
measured in some interval of time interval. If the agent is repulsed from an obstacle Qi will 
have a negative value which is punishment, because the agent is moving away from the goal. 
If the agent is moving towards the goal Qi will have a positive value which is the reward as 
the agent senses it is moving to the goal.  
 
When an agent enters the zone of the local minimum, as demonstrated in Fig. 1, it suffers an 
elastic collision that pushes the agent away from the goal. The goal attracts it back, while the 
repulsion effect decays as the agent moves away from the obstacle. These two forces will 
lead the agent to reduce its velocity until it stops. The agent will never attempt to manoeuvre 
around the barrier simply because it never knows it is trapped. The function (Qi) is now used 
successfully to make the agent realise that it is trapped and that it should change its 
interaction characteristics. Specifically, increasing its repulsion potential parameters to 
change the obstacle zone from a region of local minimum to a region of maximum potential, 
as discussed in Section 3. In this way the agent will be emitted from the obstacle zone and a 
minimum gradient potential path is defined during relaxation of the potential as soon as the 
problem is solved (i.e. Qi has a positive value again). This gradient path will lead the agent 
directly to the goal to avoid becoming trapped again. 
 
This new algorithm allows the free parameters of the potential field to be dynamic and 
couples the agent's interaction parameters with its perception about its progress through the 
workspace. If the agent is progressing towards the goal, or its position ri relative to the goal 
position rg is less than some small limit  , then the parameters are fixed. The agent 

interaction parameters (potential field free parameters) will now be defined through a set of 
differential equations, which will allow the agents, on an individual basis, to manipulate the 
potential field in which they are maneuvering. The following set of differential equations are 
used to express the interaction parameters of the agents: 
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   (9) 

     (10) 
 

    (11) 
 
Eq. (9-10) express the repulsion amplitude and range of the ith agent, according to the use of 
the function Qi. For (Qi < 0) it can be seen that the agent will experience repulsion which 
leads to motion away from obstacles. Moreover, Eq. (11) ensures a smooth manoeuvre 
around the obstacle by slowing the agent. The damping terms in Eq. (9-11) ensure smooth 
and quick relaxation of the global potential field as soon as the problem is solved.  
 
The benefit of the function Qi is that when the agent is repelled (Qi < 0), lio takes a high value, 
which turns the workspace in the neighbourhood of the obstacles into a zone of maximum 
potential. This then leads to escape from the local minimum (Section 3), with the potential 
field relaxing after escape due to the damping terms in the differential equations for the 
interaction parameters. The relaxation effect then defines a gradient path, which the agent 
can follow to go directly to the goal. The control parameters (coefficients) Ar, Br, Aβ, λr, λq, λβ 
and αq are employed to scale the dynamics of the interaction parameters. The model analysis 
for a single agent is now considered. 
 

5. Simulation Results: 

The simulation shows that using the dynamic perceptual model, Eqs. (5-11), the potential 
field around the obstacle is converted from a local minimum into a local maximum. This will 
ensure the agent is pushed from the obstacles and will maneuver around them. After the 
agent is squeezed away it will follow the gradient of the potential field around the obstacles 
and approach the goal G.  
 
First, the case of an agent with fixed interaction parameters is considered. Here the free 
parameters describing the potential field, and so the potential field itself, are constant. The 
contour map shown in Fig. 3 is static and so the agent becomes trapped in the local minimum 
of the potential field. This is typical of conventional implementations of the artificial potential 
field method to path planning problems. 

  
For dynamical interaction parameters the contour map in Fig. 4 shows that the agent enters 
the local minimum, and when repelled (Qi<0) the repulsion potential of the agent increases in 
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a way that converts the obstacle to be a zone of maximum potential to the agent. As the 
agent escapes from the local minimum the potential field relaxes due to the damping terms in 
Eqs. (9-11). The goal potential field then drags the agent away from the obstacle zone and 
defines a gradient path that the agent follows directly to the goal. The comparison between 
the contour maps in Fig. 3 and Fig. 4 shows clearly the effect of using the function Qi and 
agent’s perceptual model to solve the reactive problem effectively.  
 
Finally, the simulation results, shown in Fig. 5, demonstrate the behaviour of a group of 
agents that adopt the individual based algorithm to solve the local minimum problem for unit 
control parameters for the same goal and obstacles parameters used for the problem 
definition. The simulation results, demonstrated in Fig. 5, show the efficiency of the model to 
the solve the problem for a group of agents. 

 

 

(a) 

 

(b) 

Fig. 3. Behaviour of a conventional agent with fixed interaction parameters 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 4. Behaviour of an agent using the perceptual model  

 

 
     (a) 

 
     (b) 
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     (c) 

 
     (d) 

 
     (e) 

 
     (f) 

 
Fig. 5. Behaviour of a group of agents using the perceptual model  

 
 
 

6. Conclusions: 

This paper introduces and extension of earlier work which is based on solving the local 
minimum problem using the aggregation concept [1]. However effective, the aggregation 
behaviour has a main disadvantage when the entire team may be trapped in a dead end 
without having the chance to get help from one of the team members. This paper introduces 
the solution in such case by adopting an individual, rather than collective, behaviour of the 
team members that are cabala of solving the local minimum problem. The new method uses 
the concept of increasing the perception of the agents about the environment and then 
allowing this perceptual model to manipulate the potential fields such that the problem can be 
solved easily and efficiently. The method allows a team of agents to escape from and 
maneuver around a local minimum in the potential field to reach a goal. Rather than moving 
in a static potential field, the agents, on an individual basis, are able to manipulate the 
potential according to their estimation of whether they are moving towards or away from the 
goal. Using the agent's perception function Qi along with the use of the squeeze effect, 
simulation results show that a team of agents can effectively escape from a local minimum. 
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Nomenclature 

Cai     Amplitude of attraction potential of the ith agent 
Cig             Amplitude of goal total potential affecting the ith agent 
Cio             Amplitude of obstacle potential affecting ith agent 
Cri              Amplitude of repulsive potential of the ith agent 
Lia               Range of attractive potential for the ith agent 
Lig               Range of goal potential affecting the ith agent 
lio               Range of obstacle potential affecting the ith agent 
lg Range of goal potential which characterizes the physical nature of the goal 
lo Range of obstacle potential which characterizes the physical nature of the 

obstacle 
 
lri               Range of repulsive potential of the ith agent 
mi               Mass of the ith agent 
Np  Number of agents 
rig                              Goal – ith agent position vector 
rio                    Obstacle – ith agent position vector 
Vglobal (ri)             Generalized Morse potential 
Vgoal(rg)               Goal potential field 
Vinteraction (ri)         i

th agent interaction potential 
vi              ith agent velocity vector 

Qi Agent's perception function  
β               Friction self-decelerating force coefficient 
 


