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Abstract: 

 
Multiple impacts problems arise in many practical applications, such as airplane 
undercarriages, impact crushers, and assembly robots. Solution of rigid body impact 
problems that involve simultaneous collisions is a challenging problem in mechanics and 
dynamics. This is one of the classical problems of contact mechanics, an area that dates 
back to Galileo. Surprisingly, the few methods that produced energetically consistent, 
unique solutions to this class of problems were proposed in the last decade. Among these 
methods, only the Impulse Momentum based method has been thoroughly verified by 
experiments. This method depends on a parameter called the Impulse Correlation Ratio 
(ICR). This parameter is physically meaningful and more effective in dealing with multiple 
impact problems. In this paper, we present a solution to the frictionless multiple impact 
problems that may arise in the rocking blocks. We use an approach based on the Impulse 
Momentum based method, the energetic coefficient of restitution, and the Impulse 
Correlation Ratio (ICR). Subsequently, we present the results of an experimental study 
that is used to compare the results predicted by the proposed method with the 
experimental outcomes. 
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1. Introduction: 

 
Multiple impacts occur in rigid bodies when several collisions take place at multiple contact 
points simultaneously. Such problems pose many difficulties and unanswered questions 
[1-3]. This problem was studied by many researchers and several models were 
introduced. Only few models produce unique and energetically consistent solutions [4-7]. 
Recently, Ceanga and Hurmuzlu [5] introduced a method that produced unique and 
energetically consistent solutions in frictionless multiple impact problems. They developed 
a new approach that used the energetic coefficient of restitution, and proposed a new 
constant, that was called the “Impulse Correlation Ratio” (ICR). This parameter is 
physically meaningful and more effective in dealing with multiple impact problems. They 
applied the method to the multiple impact problems in a linear N-ball chain. 
 
The rocking block problem, where multiple impacts are likely to occur, is one of the 
simplest rigid body impact problems that can involve multiple collisions. Understanding the 
physics of a rocking block is also important in applications such as robotics, buildings and 
tall structures subject to earthquakes, and motion of water tanks. Housner [8] introduced 
the first study to derive the mathematical equations of a free-standing rigid block under 
base excitation. This model was called the simple rocking model (SRM); where plastic 
impact at the collision point is assumed (1-DOF). The block equations of motion was 
described by piecewise nonlinear equations depending on the sign of the rotation angle. 
Many researchers analyzed the block response due to different earthquake inputs using 
Housner's approach [9-14]. 
 
The objective of this study is to extend the method given in Ceanga and Hurmuzlu [5] to 
solve the rocking block problem. Here, we consider a rigid block with two rocking ends on 
smooth surfaces that are set at arbitrary angles. Then, we develop a solution method 
based on the rigid body approach and impulse momentum methods. Finally, we verify the 
approach by conducting a set of experiments, and comparing the theoretical outcomes 
with the experimental ones. 

 
2 The Impulse Momentum Method: 

 
In this section, we summarize the Impulse Momentum Model introduced by Ceanga and 
Hurmuzlu [5]. Consider the three balls with masses mi (i=1,2,3) that are depicted in Fig. 
(1). Ball B1 strikes the other two balls (with initial velocities of v2

- and v3
-) that are in contact 

at time t = t- with a velocity of v1
- subject to v1

- > v2
-> v3

-. The collision causes the two 
normal impulses τ1,2 and τ2,3 as shown in the figure. The problem at hand is to determine 
the post impact velocities vi

+. One can write the conservation of linear momentum 
equations for the three balls, this yields: 
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Figure (1): Three ball impact 

 
where, Δvi (i = 1; 2; 3) are the changes in velocities and Δτ j,j+1 (j=1,2) are the changes in 
impulses as a result of the collision. Here, we have three equations in terms of the three 
post impact velocities and the two changes that occur in normal impulses. Using the 
hypothesis from Ceanga and Hurmuzlu [5] to establish a relationship between the normal 
impulses when B2 establishes contact and initiates a collision with B3 during the impact of 
B1 and B2. This relationship is given by: 
 

 
 
where, α is called the impulse correlation ratio (ICR) and 0 < α < 1. Accordingly, we can 
get: 
 

 
 
Next, we compute the work done during the compression (Wc) and restitution (Wr) phases 
and use the definition of Stronge's energetic coefficient of restitution [4]: 
 

 
 
where, ej,j+1 is the coefficient of restitution between Bj and Bj+1 (j=1,2). The superscripts “c” 
and “f” refer to the maximum compression and final values respectively. Thus we can 
obtain the following equations: 
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The maximum compression impulses τc

j,j+1 can be obtained by setting vj+1 = vj and solving 
for them. Hence, we get: 
 

 
 
Finally, the post impact velocities can now be computed as follows 
 

 
 
where 
 

 
 
with 
 

 
 
3. The Rocking Block Problem: 

 
Consider the system shown in Fig. (2). The impact problem takes place as a result of the 
block striking the left surface (at O1) while resting on the right surface (at O2). The block is 
symmetrical with a width of 2b, a height of 2h, mass m, and a centroidal moment of inertia 
of Icm. To simplify the calculations, we choose an inertial coordinate system whose origin 
coincides with the center of the block and its x and y axes are parallel to the respective 
edges of the block at the impact instance (i.e. the block is always horizontal at the moment 
of impact). At the instant immediately before impact, the block is undergoing a non-
centroidal rotation about O2 (where the initial velocity at O2 is equal to zero) with an 
angular velocity of ω-. In addition, we consider frictionless contacts only and choose 
surface inclinations of θ1 and θ2 at the respective contact points O1 and O2. The objective 
of solving the impact problem is to compute the angular velocity of the block and the linear 
velocity of its mass center immediately after impact in terms of the pre-impact velocities. 
The problem can be cast in terms of five scalar unknowns for the frictionless case: three 
post impact velocities and the magnitude of the normal impulses τ1

n, and τ2
n) at the two 

contact points. Here, since we consider the frictionless case, we will ignore the 
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superscripts “n” in the remainder of the paper and denote the impulses at contact points 
as τ1, and τ2. The solution is not straightforward. One can obtain three equations from the 
conservation of linear and angular momenta. An additional equation can be obtained from 
the application of the concept of coefficient of restitution at the point of collision (O1). Yet, 
one encounters difficulty in obtaining a fifth equation. A restitution equation can not be 
written for the second contact point, because the pre-impact velocity of the block is zero at 
this point. Thus, the number of equations fall one short of the number of unknowns. 
    In the next section, we apply the Impulse Correlation Ratio (ICR) concept that was 
developed in Ceanga and Hurmuzlu [5] to resolve the difficulty that is encountered in the 
present problem. 
 

 
 

Figure (2): Rigid block diagram at the moment of impact 
 
4. Velocity-Impulse Relationships: 

 
Using the law of impulse and momentum, we obtain the following equations: 
 

 
 
where, ΔVcm and Δω are the changes in the linear and angular velocity vectors of the 
mass center and the block respectively, and r1 and r2 are the vectors from the mass center 
to the contact points. The kinematic relationship among the velocities at the contact points 
and the mass center can be written as follows: 
 

 
 
where v1 and v2 are the velocities of the block at O1 and O2 respectively (see Fig. (2)). For 
the remainder of the paper, we remove the vector notation. Since, we have no friction, we 
will use Δτi and Δvi (i=1,2) for the changes in magnitudes of the normal components of the 
respective impulses and velocities. In addition, we use Δv i

x and Δvi
y (i=1,2) for the 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM - 6 6 

 
changes in the magnitudes of the velocity vectors in the x and y directions respectively. 
 

 
 

Figure (3): Rigid block contact-impact cases 
 
Now, use Eqs. (20), (21), (22), and (23) to derive the following velocity expressions in 
terms of the impulses at the contact points: 
 

 
 
where 
 

 
 
In this rigid block example, there are four possible cases that may arise during various 
phases of the collision process. Figure. (3) Shows these four cases. Note that, in Fig. (3) 
although the block is horizontal, the gap at the non-contacting end is exaggerated for 
illustrative purposes. In addition, “contact” at a particular end means that the gap at that 
end is closed with zero initial normal relative velocity. 

 
4.1. Case (a) Impact at O1 – Contact at O2: 

 
Substituting Δτ2 = α Δτ1 into Eqs. (24), (25), and (26), we obtain the following equations: 

 

 



Proceeding of the 14th AMME Conference, 25 -27 May 2010 Paper   SM - 6 7 

 

 
 
4.2. Case (b) Impact at O1 – No Contact at O2: 

 
Substituting Δτ2 = 0 into Eqs. (24), (25), and (26), we obtain the following equations: 
 

 
 
4.3. Case (c) Contact at O1 – Impact at O2: 

 
Substituting Δτ1 = α Δτ2 into Eqs. (24), (25), and (26), we obtain the following equations: 
 

 
 
4.4. Case (d) No Contact at O1 – Impact at O2: 

 
Substituting Δτ1 = 0 into Eqs. (24), (25), and (26), we obtain the following equations: 
 

 
 
For all cases a, b, c, and d we compute the changes in normal velocities of both ends as 
follows: 
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5. Solution Procedure: 

 
In this section we present the solution to the block multiple impact problems that are 
considered in this paper. We use the equations presented in the previous section to obtain 
a piecewise solution of the impact problem. At the onset of the collision, the block strikes 
the external surface at O1 while resting at O2 (this is case (a); where v1

- ≠ 0 and v2
- ≠ 0, or 

more specifically ω- = ωo ≠ 0). There are two possible bouncing patterns that result from 
the collision at O1, single impact and simultaneous collision. 

 
5.1. Single Impact: 

 
This case arises when the non-impacting end bounces at the onset of the collision (i.e. its 
normal velocity becomes positive immediately). This means that the slope of the normal 
velocity v2 is positive at the onset of impact (case (b)). Thus, using Eqs. (31) and (33) we 
may write the condition for the occurrence of this case as follows: 

 

 
 
The maximum compression impulse at O1, τ1

c, can now be found by setting v1 = 0 in Eq. 
(40). Then, we obtain: 
 

 
 
The impulse at the end of the collision at O1, τ1

f, can be found by using the energetic 
definition of the coefficient of restitution [4]: 
 

 
 
where e1 is the coefficient of restitution at O1. By solving this equation, we obtain: 
 

 
 
The post-impact velocities can be found by substituting the final impulse into the 
respective velocity expressions. So, the final velocities in this case are: 
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5.2. Simultaneous Collision At Both Ends: 

 
If the condition in Eq. (42) is violated, simultaneous impacts at O1 and O2 take place. 
Initially, we have a case where there is an impact at O1 and contact at O2 (case (a)). Using 
Eqs. (28), (29), and (40) and setting v1 = 0 yields the maximum compression impulse for 
the first impact at O1 as follows: 
 

 
 
We use the energetic definition of the coefficient of restitution to write: 
 

 
 
The final impulse for the first collision at O1 can be found by substituting the velocity 
expressions in Eq. (53) and solving for τ1

f, which yields: 
 

 
 
Now, the velocity expressions at the end of the O1 collision can be obtained by substituting 
τ1

f in the respective velocity equations to yield: 
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Although the impact at O1 ends, the collision at O2 continues. The impulse at O2 when the 
collision at O1 ends can be written as : 
 

 
 
Now that we have impact only at O2, we consider the case where there is an impact at O2 
and no contact at O1 (case (d)). The velocities during this interval can be written as follows 
: 
 

 
 
We use Eqs. (62), (64), and (41) along with the condition v2 = 0 to obtain the maximum 
compression impulse for the first collision at O2 as follows: 
 

 
 
Now, we use the energetic definition of the coefficient of restitution to write: 
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We solve this equation to find the final impulse for the first O2 collision, and we obtain: 
 

 

 
 
Substituting this final impulse in Eqs. (62), (63), and (64), we obtain the velocities for the 
end of this stage. Once again, we check the normal velocity at O1. If it is positive, there 
would be no more impacts. Otherwise, additional impacts may emerge. In this case, the 
computations will continue in a similar manner. We just switch the notations for the two 
ends of the block, and follow the procedure that we presented above. The process 
continues until all normal velocities at the contact points become positive. We have 
developed software routines in Mathematica that carries out this procedure and 
automatically stops when collisions at both ends cease. Finally, we may obtain the upper 
limit of the Impulse Correlation Ratio by considering the inside of the square root in Eq. 
(68) as follows: 
 

 
 
6. Experimental Study: 

 
We conducted a set of experiments to verify the methodology that we have presented in 
the present paper. The experimental set-up was designed such that the angular 
orientation of one contact surface could be freely adjusted and the second contact surface 
was fixed in a horizontal orientation. Figure (4.a) depicts a photograph of the experimental 
setup. Two heavy (much heavier than the mass of the block) rigid steel cylinders were 
used as contact surfaces. The angular orientation of the left cylinder and the vertical 
position of the right cylinder (the contact surface with fixed horizontal orientation) in the 
figure are adjustable. We ensured that the two contact points of the block would have the 
same altitude at the impact instance. The drop mechanism consisted of a pneumatic 
cylinder with a Teflon coated plastic attachment (to reduce horizontal motion of the 
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released end of the block) mounted to the end of its piston. Each experiment was initiated 
by placing one end of the block on the Teflon coating and triggering the cylinder away 
from the block (see Fig. (4.a)). The experiments were conducted by using a 2.5 kg steel 
block that is shown in Fig. (4.b). The two edges of the block were rounded as shown in the 
figure in order to ensure point contacts. Several markers were placed on the block and the 
contact surfaces. A high-speed video camera (1000 frames/second) was used to capture 
and digitize the motion of the markers during each experiment. Then, using the digitized 
data the pre and post impact velocities of the block were computed. 
 

 
 
Figure (4): Experiment; (a)Photo of Experimental Setup, and (b)Geometry of Rigid Block 

(units are in mm) 
 
The objective of the experimental study was to verify the theoretical outcomes. For this 
purpose, we first estimated the kinematic coefficients of restitution at both ends by 
dropping sample spheres made from the same material as the block on the two cylinders. 
Then, the ICR was estimated from a single experiment conducted at horizontal contact 
surfaces θ1 = θ2 = 0o. As a result, the coefficients were estimated as follows: e1 = 0.43, e2 
= 0.64, and α = 0.01. Subsequently, we have conducted a set of experiments with varying 
the surface orientations and using the three previously estimated coefficients. 
 
The experiments were performed for θ1 = {0o, 5o, 10o, 15o, 17.5o, 20o, 22.5o}, and θ2 = 0o. 
We conducted two sets of experiments. During the first set, the block was resting on the 
inclined surface at O1 and it impacted the horizontal surface at O2 (the configuration that is 
shown in Fig. (4.a)). During the second set, the situation was reversed, the block was 
resting on the horizontal surface at O2 and it struck the inclined surface at O1. For each 
case, the experiments were repeated three times, releasing the block from various heights 
that varied between 30 and 60 mm. The theoretical and experimental results are depicted 
in Figs. (5) and (6). Each figure depicts the normalized (with respect to the pre impact 
vertical velocity) post impact velocities in the normal directions of the contact surfaces. As 
one can observe from the figures, there is an excellent agreement among the 
experimental outcomes and the theoretical results. In addition, we observe a clear 
separation between the velocity slopes at the non-impacting ends. The separation takes 
place at an angular value of θ1~17o. This value was computed analytically as the transition 
point from single to multiple collisions for the case at hand. In other words, the contacting 
end of the block separates without impact up to θ1~17o. When this angular value 
exceeded, the contacting end rebounds with interaction with the contact surface. The 
experimental data clearly exhibit this trend, attesting to the validity of the proposed 
methodology. 
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Figure (5): Comparison of experimental and theoretical results, subset # 1 
 

 
 

Figure (5): Comparison of experimental and theoretical results, subset # 2 

 
7. Conclusion: 

 
In this paper we developed a new approach to solve the multiple impact problem of a 
rocking block. The methodology is based on the use of impulse momentum methods. The 
approach uses the Impulse Correlation Ratio (ICR) that was developed previously to solve 
the multiple impact problems in a linear chain of balls. The method also utilizes the 
energetic coefficient of restitution and yields energetically consistent solutions. Our 
formulation works for inclined foundations at both contact points, which was not studied 
before. Finally, a set of experiments were conducted to demonstrate the validity of the 
proposed methodology. We have shown that the experimental outcomes agree with the 
theoretical results. In addition, as far as the separation at the non-contacting end is 
concerned, the experiments exhibit the same trend that is predicted by the theory. The 
problem considered in this study was simplified by neglecting friction at the contact points. 
This was a necessary simplification in this initial stage of the development. Yet, including 
friction would be a good natural step for future research efforts. 
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Nomenclature: 
 

I         moment of inertia. 
ICR    impulse correlation ratio. 
KE     kinetic energy. 
V       velocity. 
W      work done. 
b        block width. 
e        coefficient of restitution. 
h        block height. 
m       mass. 
r         position vector. 
v        velocity. 
α        impulse correlation ratio (ICR). 
θ        inclination angle. 
τ        impulse. 
ω       angular velocity. 

 


