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ABSTRACT 
 
For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness 
of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is 
the reason of a wide range of bouncing motion, observed during sliding of robotic 
manipulators on rough surfaces [1,2]. In this research work, the existence of the 
paradox zone during the sliding motion of a two-link manipulator is investigated.  
Parametric study is performed to investigate the effect of friction, link-length ratio, 
and link-mass ratio on the paradox zone.  
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NOMENCLATURE 
  
F Generalized contact forces expressed with respect to joint coordinates 

Fn Normal component of the contact force 
Ft Tangential component of the contact force 
f Vector of the generalized contact force 
H Vertical distance between the surface and the fixed pivot joint 
J Manipulator Jacobian, which depends on system orientation 
li Length of the ith link of the manipulator  
q Vector of generalized joint coordinates  

q&  Vector of generalized joint velocity 

u Vector of Coriolis and centripetal forces  
V Potential energy 
T Kinetic energy 
W Generalized active forces 

x&  Tangential (sliding) component of the velocity of the contact point  

y&  Normal component of the velocity of the contact point. 

,α β  Partitioned vectors of the Jacobian 

i
θ  Orientation angle of the ith link of the manipulator. In the case study 

i
θ  is 

chosen as the ith generalized coordinate. 

γ Link-length ratio; 2

1

l

l
γ =  

*γ   Critical link-length ration; for *γ γ≥ the paradox zone disappear. 

δ Link-mass ratio; 2 1/m mδ =  

σ  Sliding direction indicator; σ=1 if sliding to right and σ=-1 if sliding to left 
µ Coefficient of friction 

*µ  Critical coefficient of friction; for *µ µ≤  the paradox zone disappear 

Φ Inertia matrix
 

χ  Mass per unit length  
 
 
 
INTRODUCTION   
 
When a tip of a manipulator link slides against a rough surface, a bouncing motion 
could occur. If the center of mass trails the tip point, a region of uncertainty or non-
uniqueness in the solution could exist. Because of its extraordinary importance, this 
phenomenon has recently drawn a substantial intension. 
 

Génot and Brogliato [3] performed a detailed study of the Painlevé example, where a 
single rigid slender rod slides on a rough surface. They focused on the 
inconsistencies and the indeterminacies of the dynamics in the sliding regimes. Zhao 
et al. [1,2] proved experimentally that Painlevé paradox is behind a wide range of 
bouncing motion observed during sliding of robotic manipulators on rough surfaces. 
Their experiment used a two-link robotic system that comes in contact with a rough 
moving belt. Analytically, tangential impact is used to solve the paradox. Numerical 
simulation was carried out and the experimental results were in good agreements 
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with the numerical results. An [4] suggested eliminating the paradox by considering 
an elastic deformation in the contact zone. A new dynamical system is obtained 
when replacing the rigid contact constraint by an elastic one. He also discussed the 
case of tangential impact. Yu et al. studied the motion control of a two link 
manipulator actuated at the second joint only. He derived a first integral of the 
dynamical system through which the free and forced motions are analyzed [5]. 
Elkaranshawy [6] focused on reducing the degrading effects of Painlevé paradox on 
robotic manipulators during their functional operation. He used the self-motion, 
inherited in redundant manipulators, to escape the paradox zone or to extend the 
span of the motion of the contact point before interring to the paradox zone.  
 
In this paper, the Painlevé paradox for a general two link manipulator is studied. The 
effect of the length and mass ratios of the first link to the second one are 
emphasized. In the second section the equation of motion of a two link manipulator 
with different lengths and different masses is derived. In the third section the 
phenomena known as Painlevé paradox is introduced. In the fourth section the effect 
of the system parameters on the paradox region is considered. Finally, conclusion is 
drawn in the last section. 
 
 
EQUATION OF MOTION 
 
The equation of motion of two-link robot during sliding contact is [1,2]: 
 

+ = +Φq W(q,q) u F&& &  (1) 

           
where 

 q: vector of generalized joint coordinates 2 1R ×∈q  

 Φ(q): inertia matrix ,
 

2 2R ×∈Φ(.)  

 u(q,q)& : vector of Coriolis and centripetal forces, 2 1R ×∈u(., .)  

 W: generalized active forces, 2 1R ×∈W  

 F: generalized contact forces expressed with respect to joint coordinates, 

2 1R ×∈F . 
F is related to the components of the contact force at the contact point through the 
relation: 
 

T=F J f  with  
n

t

F

F

 
 
 

=f  (2) 

where 
 f: the contact force with respect to normal and tangential coordinates, 

2 1R ×∈f  

 Fn: the normal component of the contact force 
 Ft: the tangential component of the contact force 
 J(q): the manipulator Jacobian, which depends on system orientation, 

2 2R ×∈J(.)  . The Jacobian can be written as:  
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T

T

 
 
 

α
J =

β
 (3) 

 

where ,α β : the partitioned vectors of JT, 2 1R ×∈α  and
 

2 1R ×∈β  

In sliding motion, Ft can be expressed in terms of Fn, the friction coefficient µ, and 
the constant σ, as follows [4]: 
  

t nF Fµσ= −  (3a) 

with  

x

x
σ =

&

&

 
(3b) 

where 
 σ: sliding direction indicator; σ=1 if sliding to right and σ=-1 if sliding to left 
 x& : tangential (sliding) component of the velocity of the contact point  

  
Consequently, Eq. (1) can be written as: 

n
F= +q ε δ&&  (4a) 

with  

1( )−= −ε Φ W u  (4b) 

and  
1( )µσ− −δ =Φ α β  (4c) 

 
 
PAINLEVÉ PARADOX 
 
The velocity of the contact point is given as: 
 

=v Jq&   with  
y

x

 
=  
 

v
&

&
 (5) 

where 

 y& : normal component of the velocity of the contact point. It follows that: 
 

T
y = α q&&  (6) 

                                 
Time differentiation of Eq.(6) combined with substitution of Eq.(4) leads to: 
 

n
y A BF= − +&&

 (7a) 

where  

T
TA = − −α q α ε& &

 
(7b) 

and
  

TB =α δ  (7c) 
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The normal component of the acceleration and the normal component of the contact 
force, in Eq. (7), should satisfy the following condition to continue the sliding [3]: 
 

0y =&&  and 0
N

F ≥  (8) 
 

If the contact tip leaves the surface, then [3]: 
 

0y ≥&&   and  0
N

F =  (9) 

 
According to the signs of A and B, the states of solution give n in Table 1 arise. 
Hence, if B is positive a unique solution can be found and a range of inconsistency 
or non-uniqueness of solution could be found if B<0. This phenomenon is called 
Painlevé paradox. Therefore, it is ultimately important to carefully look into the sign 
of B. It is worth to notice from Eqs. 4c and 7c that B does not depend on applied 
loads or motion velocities. It only depends upon system configuration (orientation: α 
and β and mass properties: Φ), sliding direction (σ), and coefficient of friction (µ). 
Hence, for any specific coefficient of friction, a paradoxical configuration can be 
specified. 
 
 
CASE STUDY 

The two degrees of freedom manipulator shown in Fig. 1, consists of two uniform 
links connected by a revolute joint. The first link has a length l1 and mass m1 and the 
second link has a length l2 and mass m2. The free end of the manipulator slides on a 
rough surface with coefficient of friction µ. The vertical distance between the surface 
and the fixed pivot joint is H. Torques τ1 and τ2 are applied at the two joints and the 
orientation angles θ1and θ2 are the chosen two generalized coordinates.  
 
The vector of generalized joint coordinates for this manipulator is

   

1

2

θ

θ

 
 
 

=q   

the kinetic energy is: 
 

2 2 2 2
1 2 1 1 2 2 2 2 1 2 1 2 1 2

1 1 1 1
( ) cos( )

2 3 6 2
T m m l m l m l lθ θ θ θ θ θ= + + + −& & & &  

 

    

and the potential energy is: 
 

1 1 2 1 2 1 1 1 2 1 1 2 2

1 1
( ) ( ) cos ( cos cos )

2 2 2
V m gl m g l l

π
τ θ τ θ θ θ θ θ= − + − − − +   

    
Consequently, using Euler-Lagrange model to derive the equations of motion, the 
matrices in Eq.(1) are obtained as follow: 
 

2

1 2 1 2 1 2 1 2

2

2 1 2 1 2 2 2

1 1
( ) cos( )
3 2

1 1
cos( )

2 3

m m l m l l

m l l m l

θ θ

θ θ

 
+ − 

Φ =  
 −
  

, 

2

2 1 2 2 1 2

2

2 1 2 1 1 2

1
sin( )

2

1
sin( )

2

m l l

m l l

θ θ θ

θ θ θ

 
− 

=  
 − −
  

u

&

&

and  
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1 2 1 1 1 2

2 2 2 1

1
sin ( 2 )

2

1
sin

2

gl m m

m gl

τ τ θ

τ θ

 
− − + 

=  
 −
  

W  

 

Kinematics of the manipulator gives: 
  

1 1

2 2

sin

sin

l

l

θ

θ

 
=  
 

α  and
1 1

2 2

cos

cos

l

l

θ

θ

 
=  
 

β   

 

Painlevé paradox occurs only when the center of mass trails the contact point. 
Hence, it could occur for the forward motion to the right i.e.  σ=1.  Since α and β are 
functions of θ1 and θ2 the substitution in Eqs.(4 and 7) leads to expression  for 
B(θ1,θ2) as: 
 

1 2
1 2 1 1 1 2 2 2 3 4

( , ) (sin cos )(2 3 ) (sin cos )( 2 )
6 2

l l
B h h h h

f f
θ θ θ µ θ θ µ θ= − − − − −

 
 

  
where  

2 2 2 2
1 2 1 2 2 2 1 2

1 1 1
( cos( ))
9 3 4

f l l m m m m θ θ= + − − , 

2
1 2 1 2 1

sinh m l l θ= ,           2
2 2 1 2 2 1 2

sin cos( )h m l l θ θ θ= − , 

2
3 2 1 2 1 1 2

sin cos( )h m l l θ θ θ= − , 2 1
4 1 2 2 23

sin ( )
m

h l l mθ= +  

 

 

Due to the unilateral constraint, the following relation between θ1 and θ2 is applied 
 

1 1 2 2
cos( ) cos( )l l Hθ θ+ =  (10) 

 
Consequently, θ2 can be eliminated in the expression of B which becomes a function 

of θ1 only. Putting B=0 leads to 1 2

1 1B( )= B( )= 0θ θ  
with 

1 2

1 1 1 1 1[0, ) ( , ), ( ) 0F
Bθ θ θ θ θ∀ ∈ ∪ > the case is out from Painlevé paradox i.e. the 

solution is consistent, and
1 2

1 1 1 1( , ), ( ) 0Bθ θ θ θ∀ ∈ <   Painlevé paradox is found. 1

Fθ is 

the maximum possible value for θ1 to keep the touching between the robot end and 
the rough surface. It has to be noticed that these results are applicable when σ=1 i.e. 
the motion is to right. Typically similar results can be obtained when the motion is to 
left i.e. σ=-1 but with negative signs for the angles. Therefore, the vertical line 
passing through the pivot joint works as a mirror in that regard. 
 
 
SIMULATION AND DISCUSSION 
 

To investigate the effect of friction, link-length ratio, and link-mass ratio on the 
dynamical behaviour of the system, a numerical experiment is conducted.  
 
In the first bunch of tests, the following numerical values are assigned to the robot 

parameters: ,0.6µ = 1 2
12 ,m m 0. kg= =

1 21 ,l 0. m=
 

and 3775H 0. m= . The 
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following range of link-length ratio 2

1

l

l
γ =  is considered: 0.7976 1.7976γ≤ ≤ . Figure 2 

shows the variation of B with respect to the angular displacement 1θ for the specified 

range of link-length ratio. For each curve the motion starts with 1θ = 0 and ends 

when 1 1

Fθ θ= . Angles
1 2

1 1
andθ θ , which specify the paradox zone, are indicated by the 

intersection of each curve with the horizontal straight line; B=0. It is clear that when 
γ increases the paradox region, B<0, decreases. For * *; 1.2435γ γ γ≥ = the paradox 

region totally disappears. Increasing length ratio also increases the corresponding 

maximum possible angle 1

Fθ . 

In the second bunch of tests, same numerical values of H , µ , 1m , and 1 2 0.21l l m= =  

are used and the effect of the link-mass ratio 2 1/m mδ =  is investigated, see Fig. 3. 

The paradox zone decreases slightly by increasing the mass ratio. However, if there 
is a paradox zone corresponding to the specified length ratio, the variation of mass 
ratio does not eliminate that zone.  It can also be noticed that, the curves become 
closer to the horizontal line 0B =  with the increase of mass ratio. Thus, at any 

angular displacement 1θ  the higher mass ratio makes the absolute value of B smaller 

and the trade-off of using the mass ratio to reduce the paradox region will be moving 
the whole working conditions of the system closer to the boundary of the paradox. 
           
In the third bunch of tests, the mass per unit length is considered constant i.e. 

1 1m lχ= , 2 2  and  .m l contχ χ= = . In this case the mass ratio equals to length ratio. For 

0.5714χ = , ,0.6µ = 1
12 ,m 0. kg=

1 21 ,l 0. m=
 
and 3775H 0. m= , Fig.4  shows, as 

expected, that the overall behavior of the relation between B and 1θ is the same as 

first case, see Fig.2, except that in the current case * 1.2365γ = .   

 

For two identical links with 12 ,m 0. kg= 21 ,l 0. m=
 
and 3775H 0. m= , Fig. 5 shows 

a family of curves represent the relation between the angular position of the first link 

1θ and the coefficient of friction µ  at different values of B. For any given value of 1θ  , 

there is a minimum value for the coefficient of friction to enter the paradox region. 

For any specified system configuration there is a value *µ represents the global 

minimum of the coefficient of friction below which the paradox zone totally 

disappears. For the current system configuration this value is * 0.3650µ = . 

When ,0.6µ = 12 ,m 0. kg= 21 ,l 0. m=
 
Fig. 6 shows the relation between 1θ  and B 

at different values of ( )H / l . Obviously, the paradox region increases at higher 

values of the ratio H / l , and totally disappears when ( ) ( )
*

H / H /l l< , 

where ( )
*

H / 1.515l = .  

It might be interesting to redraw the same relation using a higher value for the 
coefficient of friction. A value of 4 / 3µ = is used in Fig. 7, hence, all the curves have 
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their lower parts below the horizontal line 0B =  and the paradox zone exists despite 

the value of ( )H / l . 

In the described numerical experiment, the effect of system parameters on the 
paradox zone has been investigated.  Specifically, link-length ratio, link-mass ratio, 
the coefficient of friction, and the height to length ratio (H/l) have been considered. 
The paradox zone decreases with the increase of the link-length ratio and link-mass 
ratio but no critical ratio can be specified to eliminate the paradox. Though the effect 
of mass ratio is inconsequential, the effect of length ratio is significant; if its value is 
greater than a critical ratio the paradox zone disappears. When the mass per unit 
length is considered constant, the length and mass ratios are the same and the 
change in the ratio is more significant. Friction also has a crucial rule in Painlevé 
paradox. A minimum value for the friction coefficient can be specified to produce the 
paradox. The height to link-length ratio is also critical; decreasing this ratio 
decreases the range for the paradox. Depending on the value of the friction 
coefficient, a critical value could be specified to eliminate the paradox zone.   
 
In general, these parameters can be used to reduce or eliminate the Painlevé 
paradox effect in the two link robotic system. Though the coefficient of friction can be 
used to avoid the paradox, it might be practically difficult to change this coefficient. 
Hence the most practical and effective choice is to increase the link-length ratio to 
decrease the paradox zone or even to eliminate it. 
 
 
CONCLUSION 
 

In this research work, the equation of motion of a two link robot has been 
constructed and the condition leading to Painlevé paradox has been derived. A 
numerical experiment has been conducted to investigate the effect of link-length 
ratio, link-mass ratio, friction, and height to length ratio on the dynamical behaviour 
of the system. Different scenarios are possible through the dynamical system 
parameters. The paradox zone decreases with the increase of the length ratio and 
mass ratio. In the other hand it decreases with the decrease of the coefficient of 
friction and the height to length ratio. Generally, critical values, to eliminate the 
paradox, can be specified to length ratio, friction coefficient, and height to length 
ratio. Practically the link-length ratio can be regulated by making the length of the 
second link adjustable.   
 
  
REFERENCES 
 
[1]  Zhao, Z.,  Liu, C., Ma, W., and Chen, B., “Experimental Investigation of the 

Painlevé Paradox in a Robotic System,” J. Appl. Mech., Vol. 75, No. 4, 2008.  
[2] Liu, C., Zhao, Z., Chen, C., “The Bouncing Motion Appearing in the Robotic 

System with Unilateral Constraint,” Nonlinear Dyn., Vol. 49, 1999, pp. 217-232.  
[3] Genot, F., brogliato, B “New Results on Painleve Paradox,” Eur. J. Mech. 

A/Solids, Vol. 18, 1999, pp. 653-677.  
[4] Elkaranshawy, H., “Using Self-Motion in Redundant Manipulators to Cope with 

Painleve Paradox,” Proceedings of the IASTED International Conference on 
Robotics, Pittsburgh, USA,” Nov. 07-09, 2011, pp. 361-367.  



84 RC  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

  

[5] Yu, Kee-Ho, Takahasshi, T. and Inooka, H., “Dynamics and Motion Control of a 
Two-Link Robot Manipulator with a Passive Joint,” IEEE, Vol. 2, 1995, pp. 311-
316.  

[6] An, L., “The Painleve Paradox and the Law of Motion of Mechanical Systems 
with Coulomb Friction,” PMM U.S.S.R., Vol. 54, No. 4, 1990, pp. 430-438.  

 
Table 1. States of solution. 

 

 A B solution state of the solution 

1 + + 
N

A
F

B
=  sliding 

2 - + 0
N

F =  flying 

3 + - φ  Inconsistency (no solution) 

4 - - 

0
N

F = and 

N

A
F

B
=  

Indeterminacy (non-
uniqueness) 

 

                                            
  

Fig. 1. Two Degrees of Freedom Manipulator. 
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Fig. 2. The Angular Position 1θ  vs B for a Range of Values of 2 1/l lγ = . 



85 RC  Proceedings of the 15th Int. AMME Conference, 29-31 May, 2012 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The Angular Position 1θ  vs B for a Range of Values of 2 1/m mδ = . 
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Fig. 4.  The Angular Position 1θ  vs B for a Range of Values of 2 1/l lγ = considering 

the mass density 0.5714χ = . 
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Fig. 5. The Coefficient of Friction vs Angular Displacement. 
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Fig. 6. The Angular Position 1θ  vs B for a Range of Values of H / l  ( 0.6µ = ). 
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Fig. 7. The Angular Position 1θ  vs B for a Range of Values of H / l  ( 4 / 3µ = ). 
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