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ABSTRACT  
 
This paper presents a dynamic model of a six-legged robot. The direct and inverse 
kinematic analyses for each leg are considered in order to develop an overall 
kinematic model of the robot. Feet forces distributions of the hexapod are calculated 
in order to solve for the dynamic model of the hexapod. Lagrange-Euler formulation 
is then used to determine the joint torques required for each leg of the hexapod. 
However, in order to have a better understanding of walking, dynamic stability, 
energy efficiency, and on-line control, kinematic and dynamic models based on a 
realistic walking robot design are necessary. Here, an attempt to carry out 
kinematics, dynamics and optimal feet force distributions of a realistic six-legged 
robot. 
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INTRODUCTION 
 
Recently, many studies have been carried out on multi-legged walking robots 
because walking robots offer better mobility. Multi-legged robot has the advantage 
over the wheeled robot as it used the isolated point to support the robot body not the 
continuous path that is needed by wheeled robot. All of the advantages make the 
multi-legged robot become significant and vigorous area of research in the field of 
mobile robots. 
 
Design of the legged-robot is a complicated problem in both applied mechanics and 
robotics. It needs solving many problems like kinematics, gait planning, trajectory 
generation, dynamics, control etc. In order to develop efficient control algorithm of 
robots, it is important to have good models describing the kinematic and dynamic 
behaviors of the complex multi-legged robotic mechanism.   
 
To control the motion of the robot, the motion controller calculates the resultant 
control force-couple system that should be applied to the robot’s body by its 
supporting legs. Therefore, one of the important issues of a legged robot’s active 
force control is the successful distribution of its body force to the feet. For a statically 
stable multi-legged robot, at least three legs should be on the ground at any instant. 
If a three-dimensional reaction force vector is considered on each ground leg, the 
foot force distribution problem becomes indeterminate during the walking because of 
the closed chain system. Multiple solutions might exist, which can satisfy the force-
moment balance criteria [1-5]. The trajectory in multidimensional space describing 
motion of a hexapod leg is presented in [6].  
 
Although the above attempt could find the optimal values of feet forces of the multi-
legged robot, they may not be suitable for real-time implementations because the 
used optimization techniques are iterative in nature. Moreover, due to inherent 
complexity of a realistic walking robot, it is not an easy task to include inertial terms 
in the modeling. The most of the studies on walking dynamics are conducted with a 
simplified model of legs and body.  
 
 
KINEMATIC MODEL OF HEXAPOD ROBOT 
 
The coordinate frames of reference for the robot legs following the Denavit-
Hartenberg notation are assigned as shown in Fig. 1[7]. Let the reference frame of 
the hexapod robot at the center of mass of its body G00 so that Z00 is vertical and X00 
refer to the direction of walking forward. Let the reference axis of each leg at G0n 
where n is the leg number (1 to 6) as shown in Fig. 2. The kinematic equation of the 
hexapod leg has the form of: 
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Fig. 1. Hexapod legs reference frames relative to body reference frame

 
Fig. 2. D-H representation of the hexapod leg. 

 

 
Given a desired position (x,y,z) of the foot tip of the  hexapod leg, the joint variables 
are then calculated. Inverse kinematic problem of 3 DoF leg is solved algebraically 
using Paul method [7, 8] as following: 

 1 1 2 23 1 2X YP c P s L c L c+ = +  (2-a) 
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 2 23 3θ θ θ= −  (6) 

where ci = cos(θi , cij = cos(θi+θj), si = sin(θi), sij = sin (θi+θj). 
  
Jacobian matrix J0 of the hexapod leg is a time varying linear transformation 
that relates leg’s joint rates to Cartesian velocity of the foot tip of hexapod leg. 
By inverting the Jacobian matrix joint rates are obtained via knowing the 
Cartesian velocity of the tip of hexapod leg as: 
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PATH GENERATION AND MOTION CONTROL  
 
The trajectory in multidimensional space, which describes the desired motion of a 
hexapod leg, is an important factor in studying the dynamic model of the hexapod 
robot during robot walking [6]. Speed is also an extremely significant factor for robot 
locomotion. It depends on the step width (W), the cycle time (T), the duty factor β, 
and the number of legs. The flying phase is configuration where the leg is in the air in 
order to make the next step. Whereas the support phase is the configuration, where 
the leg touches the ground and moves the robot forward within. The ratio of the 
duration of the support phase to the total step time is called the duty factor. Robot 
velocity is defined accordingly as: 
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Figure 3 shows a wave gait with β = 1/2, which is the most common for hexapod 
robots since it produces the smallest duty factor for hexapods and thus results in the 
fastest walking speed while keeping static stability. This gait is called a tripod gait 
since the three legs 1, 4, 5 or 2, 3, 6, support a robot [9].  
 

 

Fig. 3. Tripod gait of a hexapod robot. 
 
 

 
Step cycle consist of two phases: [A] and [B]. Legs number 1, 4 and 5 will be in 
phase [A], while legs number 2, 3 and 6 will be in phase [B]. Moreover, after the time 
equal [T] the phases will exchange. By knowing the step parameters, the path of the 
step of every hexapod leg in the Cartesian coordinate relative to body reference 
frame is determined as shown in Fig. 4 using the following control parameters: 
[Pi] is the start point of the path of the leg tip. 
[Pf] is the end of the path of the leg tip. 
[Pm] is the via point at the middle of the path of the leg tip. 
[T] is the step duration time. 
 
Using inverse kinematic model of the hexapod leg it is possible to solve for these 
three points and then obtain the three configurations of the leg joints. Boundary 
conditions for the two phases are shown in Fig. 4.  
 
To make the hexapod leg move smoothly, every joint angle starts and ends at rest 
with zero acceleration. A higher order polynomial of the 7th degree is suitable to 
describe the path of every joint angle. Results for the joints angles, velocities, and 
accelerations relative to the time during step path are shown in Fig. 5.  
 
Figure 5, also, gives the required span of each joint. For instance, joint (1) ranges 
from 75o to 105o so it is now able to install some suitable motor covering this range 
unlike joint (2) which rotate from an angle -10o to 15o. Moreover, maximum allowable 
angular speed of each actuator is also determined. 
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Fig. 4. The path of leg tip in the Cartesian space. 
 

 
Fig. 5. Joint angles, velocities, and accelerations during step cycle. 

 
 
HEXAPOD DYNAMIC EQUATIONS 
 
The objective of the hexapod dynamic equations is to determine all joint torques’ 
variations over a hexapod robot step cycle. Lagrange dynamics formulation is 
expressed in the vector-matrix form as follows [6]: 
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where : 
 

[M(θ)]i is the 3 ×3 mass matrix of  ith  leg. 
[B(θ)]i   is the  3 ×3  matrix of Coriolis coefficient of  ith leg 
[C(θ)]i   is the 3 ×3 matrix of centrifugal coefficient of ith  leg 

�J��
� is the 3 ×3 Jacobin matrix of ith leg. 

[G(θ)]i is the  3 ×1 vector of gravity terms of  ith leg. 
[Q]i       is the 3 ×1 vector of joints torques of ith  leg . 
[f]i is the 3×1 vector of ground reaction forces of ith leg. 

 

 
GROUND REACTION FORCE DISTRIBUTION ON HEXAPOD LEGS 

 
The following assumptions are made for computing foot-force distributions: 

1. No slip occurs at the tip point of all legs throughout the support phase. 
2. The contacts of the tip of all feet with ground are modeled as hard point 

contacts with friction. 
3. The effect of inertia of flying legs on trunk body is negligible; transfer legs 

exert no forces on the trunk body. 
 

During the leg’s flying phase, there is no foot–terrain interaction, and the ground 
reaction forces become equal to zero. However, during the support phase, ground 
contact exists and system of equations become indeterminate, which has to be 
solved using an optimization criterion, e.g., optimal foot force distribution [10,11].The 
ground-reaction force vector on foot [i] at the tip point of the leg is defined as, Fig. 6: 

 
x y z

T

i i i i i
f f f =  f  (10) 

The position vector of the tip point of leg number [i] relative to the origin of the 
reference frame is defined as: 

 [ ]
T

i i i ix y z=P  (11) 

where i = 1, 2, . . . , m where  m is the number of ground legs at a particular instant 
(for example, m = 3 for tripod gait). The force-couple system that contains the forces 
and moments that acting on the robot’s center of gravity, and represents the robot’s 
payload, including the effect of surface gradient, external forces and inertial effects of 
the robot’s body is then defined as: 

 
T

x y z x y z
F F F M M M =  W  (12)  

 

For tripod gate, there exists two phase of motions. Legs number (i= 1, 4, 5) are in 
phase and legs number (i= 2, 3, 6) are in another phase and these legs change their 
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Fig. 6 Reaction force distribution on hexapod legs’ tips 

 
 
phase during the step cycle. Under these conditions and for statically stable system, 
equilibrium equations are defined as: 

 ∑ ∑i i i

i i

f = -F , P × f = -M
v vv v v

 (13) 

This leads to a system of 6 equations in 9 unknowns as: 
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Knowing the feet positions, the feet forces during the hexapod step cycle are 
computed using the least squared method, which gives the minimum norm solution 
of the indeterminate equilibrium equations. In other words, the solution minimizes the 
sum of the squares of components of feet forces [9]. Solution of eq. (14) for a step 
cyclic time of 4 sec. using MATLAB software is presented in Fig. 7. 
 
The total reaction force acts on leg number 4 is greater than the sum of the total 
reaction force affect legs number 1 and 5. In addition, the sum of reaction forces 
affected on the three legs, essentially, equals the total weight of the hexapod robot. 
Now after calculating the reaction force distribution on hexapod feet, which are in 
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support phase, the derivation of the dynamic model of the 3DOF robot leg using 
Lagrange dynamic formulation in the model in matrix form is presented in the next 
section. 
 
 
LAGRANGE DYNAMIC FORMULATION 
 
The general motion equation of robot leg is expressed through the direct application 
of the Lagrange dynamic formulation to non-conservative systems [8]. This 
formulation relies on energy equation and gives the dynamic model equations in a 
well structure form. Moreover, Lagrange formulation is expressed explicitly in vector 
matrix form suitable for control analysis and designing a controller in state space as 
[6, 9]: 

 [ ] [ ] [ ]
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i i i

d T T U
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− + =
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 (15) 

where T is the total kinetic energy of the hexapod leg, U is the total potential 
energy of the hexapod leg, qi.is the generalized coordinate of the hexapod leg, 
q�� .is the generalized velocity of the hexapod leg and Qi is the generalized 
torque applied to the system at joint i. 

 
 

Fig. 7. Reaction forces components for legs number (1, 4, and 5) that in support phase. 
 
 

Parameters for all links, constitute each leg, are now computed and summed then 
substituted in eq. (15) as: 
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After differentiating and then substituting in eq. (15), equation of motion is then 
expressed as: 
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All coefficients are determined as functions of links mass, inertia, dimensions, and 
orientations. Results of path generator are implemented for the robot leg shown in 
Fig. 4. These results are then introduced in eq. (16) to determine joint torques as 
functions of time as shown in Fig. 8. Using the forward dynamic model, the Cartesian 
position, velocity, and acceleration of the hexapod leg tips are calculated and 
demonstrated Fig. 9. 

 
 

Fig. 8. Torque at the three joints of robot legs including reaction force effect. 
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Fig. 9. The tip Cartesian position, velocity, and acceleration of one leg of the 

hexapod during step cycle. 
 

 
EFFECT OF STEP PARAMETERS ON THE DYNAMIC PERFORMANCE IN 
FLYING PHASE 
 
Now using the dynamic model of the hexapod robot we can study the effect of 
changing the step parameters as step width, step height, and step angle on joint 
dynamics during flying phase as shown in Figs. 10, 11, and 12 where the step time is 
one second. 
 
Figure 10, presents five choices for step width ranging from 10 mm to 90 mm. Other 
parameters such as step height and step angle are kept constant. For this 
simulation, step height is 60 mm and step angle is zero. Remarkable increase in joint 
(1) torque as a result of increasing step width, while that for joint (2) is behaving 
contradictorily. Minor effect on joint (3) torque takes place.  
 
In the second case, both step width and step angle are kept constant. Step width is 
50 mm, and step angle remains zero, while Step height is ranging from 10 mm to 90 
mm. Torque of joint (1) is constant regardless changing step height, as this joint 
motion provides no vertical displacement. On the other hand, other two joints 
experience considerable change in their torques, Fig. 11. 
 
At last, while considering step angle variation it is noted that whilst the step angle is 
90o joint (1) torque is zero. Deviation away from this angle, in both directions, 
increases joint (1) torque remarkably. This deviation has minor effect on joint (2) 
torque, and negligible effect on joint (3) torque, Fig. 12. 
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Fig. 10. Effect of hexapod step width on the leg joints’ torque in flying phase. 
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Fig. 11. Effect of hexapod step height on the leg joints’ torque in flying phase. 
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Fig. 12. Effect of hexapod step angle on the leg joints’ torque in flying phase. 
 

 
CONCLUSIONS 
 
This paper proposed a full dynamic model for a hexapod moving in a straight line. A 
higher order polynomial of the 7th degree gives a smooth path generation for the 
model under consideration. Performance of the hexapod is controlled via selecting 
step parameters: step width, step height, and step angle through which step time 
and hexapod speed are then calculated. The required span of each joint is 
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determined that permit installing some suitable motor covering this range. Moreover, 
maximum allowable angular speed of each motor is also determined. 
    
An algorithm using the least squared method is used to solve for the indeterminate 
equilibrium equation. The produced results show that the total reaction force acts on 
leg number 4 is greater than the sum of the total reaction force affect legs number 1 
and 5. This difference is referred to the spatial distribution of these legs relative to 
the robot body. In addition, the sum of reaction forces affected on the three legs 
equals the total weight of the hexapod robot all over the cycle that validates the 
model. The hexapod will accordingly walk in a fashion that affects the joint 
kinematical parameters that along with the ground force reactions determine joint 
torques required to perform successful robot maneuver. 
 
Torques for joint number (1), gives similar results for all the three legs for both the 
support and the flying phases. Whereas for joints number (2) and (3) torques at leg 
number (4) are noticeably greater than the sum of the torques required for legs 
number (1) and (5). This difference is referred to the disparity in ground forces apply 
to each leg. During the flying phase, analogous joints in all legs require the same 
torques since legs are in fact identical. 
 
By studying of the effect of the step parameters on the joints torques of the robot we 
can select the optimum step width, step height, and step angle that achieve the 
minimum joints torques during robot walking.  
 
So the proposed method proved its ability to solve for the dynamic problem of 
hexapod and is useful in analyzing the motion of the hexapod robot. 
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