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ABSTRACT 
 

Rolling-element bearings are usually subject to faults that need prompt 
detection in order to prevent sudden failures. Many time-frequency analysis 
techniques have been used for the purpose of bearing fault detection and 
diagnosis. From these techniques, wavelets and empirical mode 
decomposition (EMD) stand out as the most widely applied methods in 
bearing fault diagnosis. Recently, a novel method named the parameterless 
empirical wavelet transform (PEWT) has been proposed to combine the 
wavelet formulation with the adaptability of the empirical mode 
decomposition. In this paper, the parameterless empirical wavelet transform 
(PEWT) is combined with envelope detection (ED) to present a new scheme 
named PEWT-ED for non-stationary signal analysis. The capabilities and 
limitations of the new method in bearing fault diagnosis are investigated 
using simulation and experiment. The results show that the new approach 
can effectively extract the bearing fault characteristics. The PEWT-ED is 
found to be a powerful tool in signal de-noising and enhancement for fault 
diagnosis purposes.  
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INTRODUCTION 
 
Rolling element bearing defects are generally the most common cause of failure in 
rotating machinery. Hence, close surveillance to detect bearing defects is essential to 
increase productivity, improve safety and reliability and prevent sudden failures of 
machinery. Conventional time-domain and Fourier-based analysis such as envelope 
detection (ED) have been widely applied for bearing fault diagnosis. These methods 
are based on the assumption of linearity and stationarity [1]. However, the presence 
of localized defects in bearings will modify the nature of system’s vibration response 
and usually induces non-linearities and non-stationary events to emerge in the 
vibration signal [2]. Hence, using conventional methods may lead to incorrect 
diagnosis or may miss important information contained in a signal. Moreover, several 
studies indicated that some faults such as rotor cracks and rotor-stator rubbing are 
better diagnosed using non-stationary run up or coast down vibration response [3-8]. 
Therefore, advanced time-frequency signal analysis has become crucial part in fault 
diagnosis of rotating machinery. For instance, signal processing techniques can be 
utilized for signal decomposition, fault feature extraction, signal de-noising, feature 
classification, etc [9, 10]. 
  
Wavelet-based methods including continuous wavelet transform (CWT), discrete 
wavelet transform (DWT) and wavelet packet transform (WPT) have been 
successfully applied to detect various types of faults in rotating machinery such as 
bearing faults [11, 12], gear faults [13, 14], rotor cracks [15-17], rotor-stator rub [7, 
18], etc. Excellent reviews on the use of wavelet analysis in fault diagnosis can be 
found in [19, 20]. However, the results obtained from the wavelet transform is 
dependent upon the pre-specified analyzing wavelet, i.e. only signal features that 
match with the wavelet function will yield high coefficients.  
 
Huang et al. [21]  proposed the empirical mode decomposition method (EMD) as a 
self-adaptive technique that overcomes the drawback in the wavelet decomposition. 
EMD decomposes a signal into intrinsic mode functions (IMFs) which represent the 
natural oscillatory modes embedded in the signal. Nevertheless, EMD has its 
shortcomings; mode mixing, end effects and lack of theoretical basis [22]. Mode 
mixing means the assignment of the same frequency component to different IMFs. 
To overcome the mode mixing problem, the ensemble empirical mode decomposition 
(EEMD) was introduced [23, 24]. The EEMD makes use of noise assisted signal 
analysis concept to reduce mode mixing.  Although  EEMD has shown increased 
efficiency over the EMD in fault diagnosis applications but still remains some 
limitations; residual noise in the reconstructed signal and absence of selection criteria 
for the noise amplitude and number of ensemble [22]. Moreover, it is considered very 
expensive in terms of computation time and resources. Despite these drawbacks, 
EMD and EEMD have been successfully applied for fault diagnosis of various rotating 
machinery faults [1, 6, 25-34].  
 

Most recently, Gills [35] developed a new time-frequency method called empirical 
wavelet transform (EWT) which combines the solid theoretical basis of wavelets with 
the adaptability of EMD.  In EWT, a wavelet filter bank is adaptively built based on 
segmentation of the spectrum of the processed signal. The EWT has been recently 
applied to decomposition of biomedical signals [36] and non-stationary signal 
analysis for gear and bearing fault detection as outlined hereafter. Cao et al. [37]  
applied the empirical wavelet transform to practical vibration signals of a wheel 
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bearing of a train and found that it can be effective in bearing fault detection. It was 
noted that the spectrum segmentation step needs more study to enable adaptivity. 
Kedadouche et al. [38] used the concept of combined mode functions proposed by 
Gao et al. [33] . The empirical wavelet transform is applied to the combined mode 
functions to detect resonances and bearing defects even in noisy signals. 
Kedadouche et al. [39] compared the empirical wavelet transform and the empirical 
mode decomposition methods (EMD and EEMD) for bearing fault diagnosis. It was 
found that the EWT showed better results and lower computation time in comparison 
with EMD methods.  Merainani et al. [28] combined the empirical wavelet transform 
with Hilbert transform for early diagnosis of gear tooth crack defect in both noisy and 
non-noisy environments. It was concluded that using EWT enhances the readability 
of the resulting time-frequency representation and enables early detection of incipient 
gear defects.   
 
However, the EWT showed some drawbacks, mostly associated with the step of 
segmenting the signal spectrum into frequency bands. Too narrow frequency bands 
may cause overestimation of the number of extracted modes and accordingly 
unnecessary redundancy. Meanwhile, too wide frequency bands may result in poor 
extraction of useful features. Most recently, there are some attempts to improve the 
conventional EWT procedure. Hu et al. [40] used the envelope approach based on 
the order statistics filter to pick useful peaks from the spectrum before segmentation 
and the method was applied to noisy and non-stationary signals.  In another recent 
study, Hu et al. [41] developed an adaptive and tacholess order analysis technique 
using the enhanced EWT to detect bearing faults in variable speed applications. Pan 
et al. [42] introduced a modified EWT (MEWT) method via data-driven adaptive 
Fourier spectrum segmentation that is suitable for mechanical fault diagnosis and 
applied it successfully to bearing fault diagnosis. Gills and Heal [43] presented an 
improvement of the segmentation procedure using scale space representation (SSR) 
that enables parameterless empirical wavelet transform (PEWT) procedure. Hence, it 
can be observed from the presented literature survey that EWT-based procedures 
show a promising potential in fault diagnosis of rotating machinery. But, the existing 
studies so far have concentrated on applying the conventional EWT to signals or 
developing modifications to the segmentation step. To the best of the author’s 
knowledge, no research has been found that investigates the application of the 
PEWT to vibration signals for fault diagnosis purposes. The new technique needs 
more exploration and development and this has motivated the present study. 
 
In this paper, the parameterless empirical wavelet transform (PEWT) is applied to 
vibration signals for the purpose of exploring its capabilities in bearing fault feature 
extraction. A fault diagnosis method based on PEWT combined with envelope 
detection (ED) and kurtosis statistical parameter is proposed to enhance feature 
extraction of bearing faults. The method is tested using a simulation signal of a 
bearing fault and real measured signals of defective bearings. 
  
The rest of the paper is organized as follows: The theoretical background of the EWT 
and PEWT is given. Next, the proposed PEWT-ED combined approach is introduced. 
Then, a simulation example is presented to illustrate the effectiveness of the new 
PEWT-ED approach over the EWT in signal decomposition. Experimental signals of 
bearing faults are analyzed using the combined PEWT-ED approach. Finally, the 
conclusions of the study are summarized. 
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THEORETICAL BACKGROUND 
 
Empirical Wavelet Transform 
 
The empirical wavelet transform is a new approach developed by Gills [35] to build 
adaptive wavelets. The modes of a signal are extracted by building a family of 
empirical wavelets that are adaptive to the analyzed signal. From the Fourier point of 
view, this process is equivalent to constructing a set of band-pass filters. The 
wavelets are adaptive because the filters’ supports depend on the location of 
information in the spectrum of the analyzed signal. The empirical wavelet transform 
involves two steps: (1) segmentation of the Fourier spectrum to separate bands 
centered around a specific frequency and of compact support; (2) building the 
empirical wavelets and applying them to the analyzed signal. The segmented bands 
correspond to the constituent modes of the signal. 
 

Consider a real valued signal  f (t) whose Fourier spectrum is denoted as ��(�). The 
first step to segment a spectrum restricted from 0 to π into N segments is to detect 
the local maxima in the spectrum and sort them in descending order. Then, the 
boundaries ωn of each segment is defined as the midpoint between two consecutive 
maxima. Each segment is denoted as Λn = [ωn-1, ωn]. Hence, it can be seen that 

⋃ Λn = [0, π]���� . A transient phase of width 2τn is defined for each  ωn, where τn is 
assumed to be proportional to ωn (τn = γ ωn) and 0 � γ � 1. It can be chosen 
according to the following condition:  
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The empirical wavelets are defined as bandpass filters on each segment Λn. The 
basis wavelet function is chosen to be the Meyer wavelet. The empirical scaling 
function and the empirical wavelets are defined as follows: 
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The function β(x) is an arbitrary function in Ck ([0,1]) such that 
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Many functions satisfy these properties, the standard example of this function is [40]: 
 

4 2 3
( ) (35 84 70 20 )x x x x xβ = − + −  (5) 

 
Similar to the conventional wavelet transform, the empirical wavelet transform can be 
defined. The approximation coefficients are defined as the inner product of the signal 
and the scaling function )�: 
 

*+,(0, -) = 〈�, )�〉 = 0 �("))�(" − -)111111111111 2" = 3445(�6(�))71(�)11111111) (6) 

 

The detail coefficients are the inner products of the signal and the empirical wavelets 
8�: 

*+,(9, -) = 〈�, 8�〉 = 0 �(")8�(" − -)1111111111111 2" = 3445(�6(�)86�(�)11111111) (7) 

 

Hence, the reconstructed signal can be obtained as: 
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where (∗) represents the convolution. Hence, the signal empirical modes can be 
written as follows: 
 

�>(-) =  *+,(0, -) ∗ )�(-), 
�?(-) =  *+,(@, -) ∗ 8?(-) 

 

 
(9) 

Parameterless Empirical Wavelet Transform 
 
The adaptivity of the EWT decomposition depends greatly on the spectrum 
segmentation step outlined above. This procedure is usually effective for signals with 
well separated frequencies. However, for noisy and non-stationary signals, poor 
segmentation may occur. Some local maxima may be generated from noise and non-
stationary events and on the other hand, meaningful maxima may be missed [40]. 
The performance of the EWT depends greatly on the number of bands, however, this 
number is not known a priori for real experimental signals and requires trial and error 
estimation. It can be estimated according to the purpose of signal decomposition and 
the type of fault to be diagnosed. 
 
Another segmentation method has been  proposed by Gills and Heal [43] based on 
scale-space representation (SSR). It has the advantage of being parameterless, i.e., 
it does not require giving the number of modes N as an input to the EWT algorithm. 
In this method, the spectrum is seen as a histogram in which the occurrence of each 
frequency within a signal is counted. The delimiting boundaries are considered 
equivalent to finding local minima in the histogram. The meaningful modes are those 



55 DV    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

having support delimited by two local minima which correspond to two long scale-
space curves. Hence, the meaningful modes can be detected by finding a threshold T 
such that scale-space curves of length larger than T are the curves corresponding to 
minima delimiting modes’ supports as shown in Fig. 1. This is considered a two class 
clustering problem on the set of scale space representations of the 
histogram/spectrum. It was concluded that although the parameterless scale-space 
procedure gives accurate estimate of the number of modes that are not known a 
priori, but too narrow frequency boundaries are usually detected for sophisticated 
signals. Hence, an overestimation of the number of modes may occur leading to 
unnecessary redundancy and spurious modes, i.e., modes lacking physical meaning.  
 
 

NEW PEWT-BASED PROCEDURE FOR BEARING FAULT DIAGNOSIS 

 
In this section, a new PEWT-based procedure for bearing fault diagnosis is 
presented. A bearing defect signal usually consists of impulses and modulation. 
Hence, a successful diagnosis of bearing defects is based upon extraction of 
impulses. Usually, the Fourier spectrum of raw vibration signal could not give obvious 
diagnostic information. Envelope demodulation technique has been an established 
benchmark method for bearing diagnostics for decades [10]. As the rolling element 
passes a local fault on the outer or inner race, or when a faulty rolling element strikes 
the inner or outer race, a shock pulse excites high frequency resonances of the 
bearing structure. These excited resonances are amplitude modulated on the bearing 
defect frequency that corresponds to the bearing fault, for example bearing outer 
race fault frequency (BPFO). In envelope detection (ED), a signal is band pass 
filtered in a high frequency band. Then, the impulses are amplified by the excited 
bearing structural resonances. Finally, the impulses are amplitude demodulated to 
form the envelope signal, whose spectrum contains valuable diagnostic information in 
terms of frequency as well as modulation. 
 
The new approach presented here depends upon combining the PEWT 
decomposition and the envelope detection technique. The new procedure illustrated 
in Fig. 2 will be referred to as PEWT-ED throughout the paper. It is based on 
selecting the most informative PEWT components and summing them up to 
determine a meaningful reconstructed signal that characterizes the bearing fault. 
Then, envelope spectrum based on Hilbert transform of the meaningful reconstructed 
signal is obtained to show the bearing characteristic frequencies (BCF). The sensitive 
PEWT components are selected based upon calculating kurtosis for all the 
components and sorting the values to find the highest kurtosis modes. Kurtosis 
parameter is used as a statistical measure because of its sensitivity to the presence 
of spikes in a signal. It is well known that kurtosis value that is greater than 3 is an 
indicator of bearing damage [39]. Several previous studies used kurtosis as a 
statistical indicator for bearing fault diagnosis [13, 14, 39]. 
 
 

SIMULATION EXAMPLE 

 
In this section, a simulated signal of a bearing defect is generated. The signal is 
carefully designed to contain bearing fault features; impulses and modulations. As 
shown in Fig. 3, the signal consists of a two-component harmonic signal with a train 
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of modulated impulses and added noise. The sampling rate is taken as 12 kHz. The 
signal can be defined mathematically as [44]: 
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where f is the rotational frequency,  fi is the resonance frequency of bearing and βi is 
a representative of damping of the impulse. Three resonance frequencies are 
considered in this example.  
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where fm is the modulating frequency and equals the defect characteristic 
frequency (BCF) and (mod) is a Matlab function which gives the modulus 
after division. A significant level of white Gaussian noise n(t) is considered to 
simulate background noise present in real measured signals. Table 1 shows 
the values for the parameters used to construct this example.  
 

Figure 4 shows the segmentation of the Fourier spectrum of the simulated signal 
using both conventional EWT and the proposed PEWT-ED. The dashed vertical lines 
represent the Fourier boundaries of the EWT method. For the case of conventional 
EWT, three different values for the number of modes are assumed; N= 10, 15 and 
20. It can be seen that the chosen number of modes N affects greatly the resulting 
spectrum segmentation. Increasing the number of modes refines the segmentation 
around peaks of the spectrum resulting in too fine boundaries. This enables the 
accurate detection of stationary harmonic components. But, till now there is no 
specific criteria for choosing the number of modes N, i.e. trial and error is used for 
estimating N. Meanwhile, the PEWT does not require prior information of the signal 
and the number of modes is automatically detected using scale-space 
representation. In comparison with conventional EWT segmentation, the PEWT 
boundaries are not too fine nor too wide. It can be noticed from Fig.4.d  that 18 
modes are detected by the PEWT. Figure 5 shows the signal decomposition using 
the conventional EWT (N = 20). Inspection of the constituent modes does not show 
the impulses contained in the signal. Meanwhile, the harmonic components are well 
separated in agreement with [40]. This implies that the conventional EWT is more 
suited to stationary signals rather that non-stationary signals.  
 
Now, the PEWT-ED scheme is tested. The modes are extracted using the SSR 
segmented spectrum and the kurtosis parameter is calculated for all the modes. 
Then, the modes with the highest kurtosis are selected as meaningful modes and  
the rest of the modes are discarded. It is worth noting that choosing more than one 
mode is found to be more accurate than choosing the mode which exhibits the 
highest kurtosis. Hence, modes having kurtosis that is above a certain threshold are 
kept. The threshold of 0.7-0.9 of the kurtosis value of the original signal is found to be 
sufficient. Figure 6 shows the meaningful modes and the reconstructed signal using 
these modes only. Inspecting Fig. 6.a , the train of impulses can be easily detected. 
The envelope detection using Hilbert transform is then applied to the reconstructed 
signal. The resulting envelope spectrum is demonstrated in Fig. 7. The BCF at 100 
Hz can be noticed in the envelope spectrum followed by its harmonics which is the 
classical symptom of bearing outer race fault for instance.   
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EXPERIMENTAL EXAMPLE 
 
In this section, real measured signals for defective bearings are used to test the 
effectiveness of the PEWT-based approach presented in this paper. The 
experimental signals are adopted from the Case Western Reserve University 
(CWRU) bearing data center available online at [45] for research purposes. The 
bearing data were collected from a 2-hp test rig. Vibration acceleration signals were 
acquired using a sampling frequency of 12 kHz at 1730 revolution per minutes 
(RPM). For the signals used in this paper, faults were seeded on the inner race of the 
drive-end (DE) bearing (SKF 6205-2RS JEM) using electro-discharge machining 
(EDM). The faults were generated in two severities; 0.18 mm and 0.53 mm. The 
corresponding record numbers are 108DE and 212DE respectively. The bearing 
passing frequency for inner race fault (BPFI) equals 5.415*fr and fundamental train 
frequency (FTF) equals 0.3983*fr where fr is the rotational frequency in Hz [46]. To 
reduce the PEWT computation cost in terms of time and memory, a portion of the 
signal may be used instead of the whole signal. Ref. [39] suggested analyzing one 
shock pulse but, in the present work, the first 10,000 samples of both signals are 
employed. It is found that this choice is better from the diagnostic point of view 
especially in case of early stages of bearing fault in which impulses are non-
distinguishable in signals.  
 
Figure 8 shows the time records and corresponding segmented spectra using scale 
space representation. A series of impulses can be noticed in the time waveform for 
both records. The impulses are modulated over the shaft speed which is the rate at 
which the fault passes through the load zone. It is expected from the large number of 
frequency bands detected by the SSR segmentation algorithm that the resulting 
decomposition will contain some components that are not related to the bearing fault. 
Other components will show the bearing defect characteristics; impulses and 
modulations. Hence, the presented procedure PEWT-ED is followed here to isolate 
the useful components. 
  
First, kurtosis value is calculated for all the PEWT components and the resulting 
values are then sorted in descending order to determine the set of modes with 
elevated kurtosis. The kurtosis values for PEWT components of both signals are 
plotted in Fig. 9. It may be noted that the kurtosis values for record 212 are generally 
higher than that for record 108 due to the increased fault severity. PEWT 
components having kurtosis values that are above a certain threshold are kept and 
the rest PEWT components are eliminated. For the two studied signals, threshold is 
taken as 3.3 and 5.6 respectively represented by the blue dashed lines in Fig. 9. 
Figure 10 shows these sensitive modes for both signals. Impulses modulated 
periodically at the shaft speed can be clearly seen in these components taking the 
characteristic pattern of a fish tail. Close inspection of the meaningful PEWT 
components shown in Fig. 10 reveals closely spaced impulses at (1/BPFI) and 
modulated over the rotational speed fr. It is worth noting that these meaningful modes 
correspond to the region of excited bearing resonances in the range of 2000 – 4000 
Hz. Next, these modes are  summed together to form the meaningful reconstructed 
signal which manifests the bearing fault characteristics. Impacts and modulations can 
be clearly observed in the reconstructed signals for both severities as shown in Fig. 
11. For lower severity (Fig. 11.a), the impacts are more obvious in comparison with 
the original signal shown in Fig. 8.a.  
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Finally, the envelope spectra based on the Hilbert transform of the reconstructed 
signals are obtained and shown in Fig. 12. The bearing defect frequency that 
characterizes the inner race fault, i.e. BPFI can be seen clearly in both spectra along 
with its harmonics. Side bands at rotational frequency and double the rotational 
frequency appear around the BPFI component. Also, the rotational frequency fr and 
its harmonics can be observed. The dominance of 2fr in Fig. 12.a may suggest the 
presence of misalignment in the experimental test rig. Comparing the amplitudes of 
the defect frequency and its harmonics in Fig. 12.a and Fig. 12.b shows an increase 
which indicates a corresponding increase in the fault severity. Also, the increase in 
the spread and amplitudes of sidebands in Fig. 12.a indicates a corresponding 
increase in the impulsive modulation.   
 
 

CONCLUSION 
 
In this paper, a new procedure based upon parameterless empirical wavelet 
transform combined with envelope detection was presented and applied for bearing 
fault diagnosis. The kurtosis parameter is chosen as a selection criterion to isolate 
the meaningful PEWT components that are useful for bearing fault diagnosis. The 
simulation results showed that the PEWT can efficiently decompose a non-stationary 
signal that simulates bearing defect features. The conventional EWT necessitates 
specifying the number of components as an input to the EWT algorithm. Meanwhile, 
PEWT does not require prior information about the analyzed signal.  Both simulation 
and experimental results showed that the proposed PEWT-ED procedure is effective 
in signal decomposition enhancement and feature extraction of the bearing fault 
characteristics. The PEWT helped in showing the impulses in the signal 
decomposition while the EWT failed to extract the impulses. The meaningful 
reconstructed signal attained by the PEWT-ED procedure and its envelope spectrum 
clearly demonstrated the features of the bearing fault. The influence of spurious 
modes and noise were effectively eliminated. 
  
It is recommended to use the conventional EWT method for decomposing low-noise 
stationary signals. For noisy and impulsive signals such as bearing signature, it is 
suggested to use the PEWT-ED scheme rather than PEWT on its own due to the 
latter’s overestimation of the number of components that yields spurious modes.  
More research is recommended to tackle improving spectrum segmentation 
algorithm. The effect of using wavelet functions other than Meyer wavelet needs 
investigation. For instance, Morlet wavelet is expected to give better results for 
localized fault detection as it has been proven suitable in impulse extraction for gear 
and bearing fault diagnosis in previous literature. In addition, the EWT applicability to 
diagnose other defects such as rotor faults needs more exploration.  
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Fig.1. Mode detection using scale-space representation [43]. 
 

 
Fig. 2. Flow chart of the proposed PEWT-ED scheme. 
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Fig. 3. Simulated bearing fault signal, (a) Time record, (b) Frequency spectrum. 

 
 
 
 
 

  

  
 

Fig. 4. Segmented frequency spectrum of simulated bearing defect signal, (a) Using 
conventional EWT (N=10), (b) Using conventional EWT (N=15), (c) Using 

conventional EWT (N=20), (d) Using scale space representation. 
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Fig. 5. Conventional EWT decomposition of simulated bearing defect signal (N=20). 
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Fig. 6. PEWT-ED results for simulated bearing fault signal, (a) Meaningful 

components, (b) Meaningful reconstructed signal. 
 
 

 
 

Fig. 7 Envelope spectrum of the meaningful reconstructed signal of simulated 
bearing fault signal. 

 

BCF harmonics 



66 DV    Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

 
 
 

(i) Record 108DE 

 

 

(ii) Record 212DE 

 
Fig. 8. Experimental bearing defect signals, (i) Record 108DE (0.18 mm inner race 
fault), (ii) Record 212DE (0.53 mm inner race fault), (a) Time record, (b) Segmented 

frequency spectrum using parameterless EWT. 
 
 
 
 

  

 
Fig. 9. Kurtosis values for PEWT components of signals (a) Record 108DE, (b) 

Record 212DE (The blue dashed line represents the threshold of kurtosis parameter). 
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Fig. 10. PEWT components of highest kurtosis, (a) Record 108DE, (b) Record 

212DE. 
 
 

 
Fig. 11. Meaningful reconstructed signal, (a) Record 108DE, (b) Record 212DE. 

 
 
 

  
 

Fig. 12. Envelope spectra of meaningful reconstructed signals, (a) Record 108DE, 
(b) Record 212DE. 
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Table 1. Simulated bearing defect signal parameters. 
 

Parameter Value 

f 20 Hz 

fm 100 Hz 

f1 1000 Hz 

f2 2500 Hz 

f3 4000 Hz 

β1 
100 

β2 500 

β3 300 

 
 

 


