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ABSTRACT 
 
Mathematical and simulation models for a single mass resonant gyroscope are 
discussed in this paper. The mathematical model discusses the dynamics of a single 
mass that oscillates in two orthogonal directions and subjected to an angular rotation 
rate about the third direction. The equations of motion are then solved to get the 
amplitude of the drive and sense mode responses. The solution is applied to a 
resonant gyroscope. The sense mode response of the gyroscope as subjected to an 
angular rate input is determined. Sensitivity analysis is then performed to show the 
effect of the driving force frequency and the natural frequencies of the drive and 
sense modes. Finite element simulations of a symmetrical resonant gyroscope are 
presented, and consequently the mechanical coupling between the two vibrating 
modes is determined. The sense mode response relative to the angular rate input is 
simulated and the results are compared to the analytical results. 
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INTRODUCTION 
 
Micro electromechanical systems (MEMS) are widely used in many fields especially 
for low cost and low performance applications. Resonant vibratory gyroscopes are 
one of MEMS sensors that have received a great interest recently. They have met 
the required specifications of a lot of important applications such as navigation 
systems, remote devices, automotive industry, and stabilization systems. 
 
However there are recent applications that need the use of high performance MEMS 
sensors. Increasing the sensitivity and performance of the vibratory gyroscopes has 
a great deal of research [1-4]. Many key factors can be improved to increase the 
performance of MEMS sensors such as the fabrication technologies which take a 
large area of the research development [5, 6]. The sensitivity can be analyzed and 
optimized during the design process by studying the dynamics of the vibrating 
structure and modeling the designed device to predict the performance 
characteristics before the fabrication process. The dynamics are studied and the 
errors are analyzed in [7, 8]. Finite element simulation is an effective tool for 
analyzing the operation and the performance of the designed resonant gyroscopes. 
Simulation models are introduced in [4, 9]. 
 
Micro gyroscopes have advantages of miniaturization, low cost and the ability of 
integrated electronics on the same chip, while the conventional gyroscopes are large 
and expensive.  
 
Resonant gyroscopes have various vibrating structural elements such as tuning 
forks, beams, rings and shells. The principle of operation depends on transferring the 
energy between two vibrating modes due to the Coriolis forces. During operation, a 
proof mass is driven into vibration by an alternating force (drive mode). When the 
gyroscope structure is subjected to an angular rotation, secondary oscillations are 
generated (sense mode) by the Coriolis force. The angular velocity can be 
determined by measuring the amplitude of the secondary oscillations which are 
orthogonal to the drive mode. 
 
Symmetrical resonant gyroscope structure has an advantage that the drive and 
sense natural frequencies are matched. The sensitivity increases when the two 
natural frequencies are close to each other. It also increases when the drive mode is 
excited at the resonant frequency that leads to increase the drive mode amplitude 
and decrease the power needed to drive the proof mass. The drive and sense modes 
should be mechanically decoupled to achieve stable operation and decrease the 
gyroscope output at zero rate input. 
 
In section 2, the mathematical model of a single mass resonant gyroscope subjected 
to an angular rotation is derived showing the response of the drive and sense modes. 
The effect of matching the resonant frequencies of the two modes is discussed as 
well as the effect of exciting the drive mode at its natural frequency. Section 3 
presents finite element simulations that performed to show the mechanical coupling 
between the drive and sense modes. The sense mode response relative to the 
applied angular rate is simulated and the results are compared to the analytical 
results. Section 4 concludes the results and discusses the future work. 
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MATHEMATICAL MODEL OF THE RESONANT GYROSCOPE 
 
One of the important factors to improve the performance is introduced by the 
successful design of the sensors; it will not come without studying the dynamics, 
analyzing their errors and optimizing parameters to get the required performance 
characteristics. 
 
For this purpose a mathematical model of the vibrating gyroscope without decoupling 
frame is derived based on the models presented in [7, 10]. It studies the dynamics of 
a single mass resonant gyroscope with translation motion of the drive and sense 
modes and analyzes some design parameters showing their influence on the 
performance. 

 

 
Fig. 1 Schematic diagram of single-mass vibrating gyroscope 

 

Figure 1 shows a schematic diagram of the sensitive element which consists of a 
proof mass (m) and two equivalent spring systems supporting the proof mass with 
the base, the primary oscillation direction due to excitation is along Y-axis. When the 
gyroscope rotates, the secondary oscillation will appear along X-axis due to the 
Coriolis forces effect. 
 
Let us define orthogonal reference system OXYZ with the origin coincided with the 
mass center of the proof mass, axis Y is the primary (drive) direction, axis X is the 
secondary (sense) direction and axis Z is orthogonal to the plane of vibration and 
represents the rotation axis. The generalized coordinates x, y are the displacements 
of the proof mass along X axis and Y axis respectively. 
 
The gyroscope is subjected to arbitrary angular velocity Ω that is defined by its 

components along the defined reference frame as � � �Ω� Ω� Ω���. Position 

vector of the mass center of the proof mass is 	 � �x y 0��. Then the absolute 
velocity of the proof mass with respect to the reference frame is: 
 

 v � �x� �Ω�y	 y� �Ω�x	 Ω�y �Ω�x��	 (1) 
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The kinetic energy and the potential energy of the sensitive element will be: 
 

 T � �

�
m�(x� �Ω�y)� � (y� �Ω�x)� � (Ω�y �Ω�x)��	  (2) 

 

	 V � �

�
k�x� �

�

�
k�y�	  (3)	

 

where kx , ky are the total stiffness of the suspension system in the directions x , y 
respectively. Using Lagrange equation to determine the equations of motion of two 
DOF vibrating system 
 

	 i

i i

d L L
Q

dt q q

 ∂ ∂
− = 

∂ ∂ &
	  (4)	

 

where (qi=x, y) , L=T-V , Qi are the generalized forces, substituting the expressions of 
the kinetic energy and potential energy in eq. (4), after simplification we can get two 
ordinary differential equations as 
 

	 ( ) ( )2 2 2
2

nx y z z x y z x
x x y y qω+ − Ω − Ω − Ω + Ω Ω − Ω =&&& & 		 (5.a)	 	

	 ( ) ( )2 2 2
2

ny x z z x y z y
y y x x qω+ − Ω − Ω + Ω + Ω Ω + Ω =&&& & 	 (5.b)	

 

where ωnx, ωny are the natural frequencies in the secondary and primary directions, 

qx, qy are the generalized forces per unit mass in the secondary and primary 

directions respectively. 

 

These equations represent a system of two differential equations that describes the 
motion of the proof mass of a single mass resonant gyroscope, by adding damping 
forces to the system we get 

 

 ( ) ( )2 2 2
2 2x nx nx y z z x y z xx x x y y qζ ω ω+ + − Ω − Ω − Ω + Ω Ω − Ω =&&& & &  (6.a) 

 ( ) ( )2 2 2
2 2

y ny ny x z z x y z y
y y y x x qζ ω ω+ + − Ω − Ω + Ω + Ω Ω + Ω =&&& & &  (6.b) 

 

where ζx, ζy are the damping ratios in the secondary and primary directions.  
 
To determine the angular rate the system of two simultaneous differential equations 
is solved to get the relation between the displacement and the angular rate. 
Measuring the displacement of the proof mass in sense direction, the corresponding 
angular velocity is then determined. In order to simplify the solution the angular 
velocity is assumed to have one component in the direction perpendicular to the 

plane of the primary and secondary motions � = �0 0 Ω���, and then eqs. (6) is 
then expressed as: 
 

 ( )2 2
2 2

xx nx n x
x x x y y qζ ω ω+ + − Ω − Ω − Ω =&&& & &  (7.a) 

 ( )2 2
2 2

y ny ny y
y y y x x qζ ω ω+ + − Ω + Ω + Ω =&&& & &  (7.b) 
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Here, a set of parameters can describe the dynamics of the vibrating gyroscope 
motion as follows: ωnx, ωny are the natural frequencies in the secondary and primary 
directions, ζx, ζy are the damping ratios, ω is the frequency of the excitation force. 
These parameters can control the sensitivity, resolution, operating range and bias of 
the resonant gyroscopes, so adequate design of them is needed to achieve the 
required performance of the gyroscope. Given constant angular velocity, Eqn. (7) 
renders to: 

 ( )2 2
2 2

x nx nx x
x x x y qζ ω ω+ + − Ω − Ω =&& & &  (8.a) 

 ( )2 2
2 2

y ny ny y
y y y x qζ ω ω+ + − Ω + Ω =&& & &  (8.b) 

 

The system of differential equations is then solved in order to study the motion of the 
proof mass of the vibrating gyroscope subjected to constant angular velocity along Z-
axis and no external forces acting along the sense direction qx(t)=0. In the case of 
completely decoupled modes, the displacement in the secondary direction will 
depend only on the angular velocity. 
 
Let the excitation force be harmonic and it can be represented in a complex form as 

q��t� = q�e !" where qy is the amplitude of the excitation force and ω is the frequency 

of the excitation force. Since the excitation is harmonic and it is given only by the real 
part of qy(t), the response of the primary and secondary oscillations will also be given 
only by the real part of y(t) and x(t) respectively [11]. Then, the particular solution is 
represented in a complex form as: 
 

 x�t� = Xe !" (9.a) 

 y�t� = Ye !" (9.b) 

and  

 X = X%e &'  �10.a� 

 Y = Y%e &+  (10.b) 

 

where X0 , Y0 are the amplitudes of the secondary and primary vibrations respectively 
and ϕ� , ϕ� are their phases. After solving the system of differential equations, the 

amplitudes of the secondary and primary vibrations are expressed as: 
 

 
0

0

2
y

q
X

ωΩ
=

∆
 (11) 

 
( ) ( )

2 22 2 2

0

0

2
y nx x nx

q
Y

ω ω ζ ω ω− Ω − +
=

∆
 (12)  

where 

( )( ) ( )
( ) ( )

2
2 2 2 2 2 2 2 2 2

0

2
2 2 2 2 2 2 2

4

       4

nx ny x nx y ny

x nx ny y ny nx

ω ω ω ω ω ζ ω ζ ω

ω ζ ω ω ω ζ ω ω ω

 ∆ = −Ω − −Ω − − + Ω 
 + −Ω − + −Ω − 
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The relation between the angular rate and the amplitudes of the primary and 
secondary vibrations are then obtained. Once the secondary amplitude of the 
resonant gyroscope is measured, the corresponding angular rate can be determined.  
The driving force frequency is an important parameter in the design of the resonant 
gyroscope. To show the effect of changing the driving force frequency on the sense 
mode amplitude, a dimensionless parameter (r) is introduced where (r= ω/ωny) is the 
ratio of the driving force frequency and the primary mode natural frequency. 
  
Figure 2 shows the relation between the sense mode amplitude and the angular rate 
applied to the gyroscope at different values of r. One can see that the deviation of the 
driving frequency from the primary natural frequency leads to a decrease in the 
sensitivity and in the resolution of the resonant gyroscope. But it has an advantage 
that it increases the measurement range of the external angular rate. 

  

A trade-off between the sensitivity and the measurement range of the gyroscope is 
then needed in considering the design process to cover the operating range required 
with a suitable sensitivity. It is assumed that the natural frequency values are similar 
during this analysis. 
 

 

Fig. 2 Secondary amplitude response with the angular rate at different values of 
frequency ratio (r) 

 

Figure 3 describes the behavior of the sensitive element when the two resonant 
frequencies are matched or separated. The figure shows that the sensitivity reaches 
its maximum value when the primary and secondary natural frequencies are matched 
(i.e. ωnx=ωny) which is an advantage of using a symmetric design of the resonant 
gyroscope. When the two frequencies have different values the sensitivity decreases 
significantly.  
 
Although the sensitivity is maximum at ωnx=ωny, the bandwidth is minimum. The 
secondary oscillations amplitude is sensitive to the changes in the bandwidth, for a 
wide bandwidth range, the secondary vibration amplitudes are nearly constant. This 
is a trade-off between using matched frequencies for increasing sensitivity and using 
separated frequencies for increasing bandwidth, so the ratio between the resonant 
frequencies should be designed giving the necessary bandwidth. 
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Fig. 3 Secondary amplitude response with the frequency ratio showing the effect of 
natural frequencies separation on the sensitivity and bandwidth 

 

The mathematical model is applied to the resonant gyroscope presented in [12] to 
get the secondary motion amplitude response relative to the angular rate input. Using 
the resonant gyroscope model data for the primary and secondary resonant 
frequencies, the frequency ratio equals 0.98 (i.e. r=0.98). 
  
Figure 4 shows the amplitude of the secondary motion with the angular velocity 
applied to the resonant gyroscope. The response is approximately linear in a limited 
range which is the linear measurement range of the gyroscope. Therefore the 
operating angular rate range will be from 0 to 9 rad/sec. 
 

 

Fig. 4 Secondary vibrations amplitude of the designed resonant gyroscope 
 

 
FINITE ELEMENT MODEL 
 
Finite element simulations are performed using ANSYS software. The simulated 
results are used to verify the results determined from the mathematical model. The 
finite element simulations are applied to the gyroscope model presented in [12], in 



85  DV     Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

which the boundary conditions at the ends of the beams are fixed. The element type 
used in the finite element model is solid 186 with tetrahedral shape. The material 
used for the model is aluminum alloy 2024. 
 
The drive and sense modes are assumed to be completely decoupled in the 
mathematical model and they are coupled only by the angular rotation rate. Finite 
element simulation shows that the amount of mechanical coupling between the two 
vibrating modes is low. 
 
Figure 5 shows the finite element simulation of the relative displacement for the two 
vibration modes when only one mode is under vibration. It shows that during the 
vibration of one mode, the second mode is slightly affected by the vibration of the first 
mode. From this simulation, the mechanical coupling between the drive and sense 
mode is less than 4% of the vibration amplitude. 
 

 

 

Fig. 5 ANSYS finite element simulation of the relative displacement for the two 
vibration modes when only one mode is vibrating, the mechanical coupling between 

them is less than 4% 
 
The overall operation of the resonant gyroscope is simulated to show the response of 
the secondary motion of the gyroscope when it is applied to angular rate input in the 
existence of the driving force excitation. Figure 6 shows the motion of the sense 
mode coupled with the drive mode due to the effect of the Coriolis force induced from 
the angular rate input to the gyroscope. 

 

The results determined from the simulations are compared to the analytical results to 
verify the sense mode amplitude response of the resonant gyroscope. Figure 7 
shows the analytically calculated secondary amplitude compared with the simulated 
amplitude. As shown in the figure, the simulated secondary amplitude response is 
closely matched the calculated results in the operating measurement range (Ωmax) 
which satisfies the theoretical analysis. The difference between the two results at 
higher angular rates comes from the increasing of the mechanical coupling between 
the drive and sense modes at higher angular rates which are assumed to be 
completely decoupled in the theoretical analysis and the two modes are only coupled 
by the effect of the Coriolis forces. 
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Fig. 6 The secondary motion under the effect of the Coriolis force due to an applied 

angular rate 
 

 

 

 
Fig. 7 Simulated secondary amplitude of the resonant gyroscope compared with the 

analytically calculated results 
 

 

CONCLUSIONS  
 

The drive and sense mode responses of a single mass resonant gyroscope are 
determined by studying the dynamics of the system and solving the equations of 
motion. The drive and sense modes are coupled only by the applied angular rate. 
The amplitude of the sense mode response depends on the Coriolis forces 
generated due to the angular rate input. The analysis shows that the sensitivity 
increases when the driving force frequency equals the resonant frequency of the 
drive mode. On the other hand, the measurement range increases when the 
frequencies of the driving force and the drive mode are different. The sensitivity also 
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increases when the natural frequencies of the drive and sense modes are matched 
which is an advantage of the symmetrical gyroscope structure. Finite element 
simulations of the designed resonant gyroscope are presented. The mechanical 
coupling between the drive and sense modes is 4%. The response of the resonant 
gyroscope is simulated when it is subjected to angular rotation input. The amplitude 
of the sense mode response is determined. The results are close to the analytical 
results in the operating range. The simulated results verify the theoretical analysis.  
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