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ABSTRACT 
Geosynthetics are man-made materials used to increase the compression, and shear 

characteristics of soil. Geogrid-reinforced material is regarded as one of the most widely 

used soil reinforcements. Using finite element simulation, unreinforced and reinforced fine 

sand are modeled in 3-D, the load-carrying capacity is investigated for both unreinforced 

and geogrid-reinforced fine sand supporting a square footing with different sizes. The 

bearing capacity ratio (BCR) of geogrid-reinforced fine sand is influenced by the use of 

geogrid-layers with different axial stiffnesses (J). The influence of geogrid axial stiffness 

is evaluated using five investigated parameters: geogrid-layers number (N), vertical 

spacing (h/B), geogrid width/length (b/B), first geogrid-layer depth (u/B) and square 

footing size (B). The geogrid-reinforced fine sand with appropriate dimensions and proper 

geogrid-layers number has significantly increased the square footing bearing capacity. The 

load-bearing capacity of geogrid-reinforced fine sand increases with geogrid axial 

stiffness. For a square footing width of 2.0m, the bearing capacity ratio (BCR) is 1.45 and 

2.13 when the geogrid axial stiffness increases from 250 kN/m to 500 kN/m and from 250 

kN/m to 1000 kN/m, respectively. The most efficient and economical values of (u/B), 

(b/B), (h/B) and (N) are 0.30, 3.0, 0.15 and 3.0 for all values of geogrid axial stiffness, 

respectively. 

Keywords: Bearing Capacity, Square Footing, Geogrid Axial Stiffness and 

Geogrid-reinforced Fine. 

 

1.  INTRODUCTION 

Bearing capacity failure in sandy soils occurs in 

three forms: general-shear failure, local-shear failure, 

and punching-shear failure. In soils with a relative 

density (Dr) of more than 70%, general-shear failure 

happens; in soils with a relative density of between 

30% and 70%, local-shear failure happens; and in sand 

with a relative density of less than 30%, punching-

shear failure happens. Fine sand has a limited bearing 

capacity to support the loads of structures that having a 

low value of relative density (Dr). Fine sand reinforced 

with a geogrid-layer is a popular improvement 

technique for increasing soil load-bearing capacity in 

compression and shear [1]. The main objective of the 

geogrid-layer is to restrict the movement of soil 

particles in both lateral and vertical directions. It is also 

used to distribute vertical pressure over a wider area. 

The bearing capacity of reinforced-soil changed with 

various factors such as type of reinforcement materials, 

number of reinforcement layers (N), ratios of various 

parameters of reinforcement materials and footing such 

as footing width (B), first reinforcement-layer depth 

(u/B), vertical spacing between consecutive 

reinforcement-layers (h/B), length of layer-

reinforcement (b/B), footing depth from ground level 

(Df/B), soil-type, soil-texture, soil unit-weight (or 

density), etc.. The soil bearing capacity ratio (BCR) is 

the ratio between the bearing capacity of reinforced 

and un-reinforced soil. Manisana [2] investigates the 

effects of footing shapes, geogrid-layers number (N) 

and geogrid length on soil bearing capacity, shear 

failure and settlement values. It was found the optimal 

geogrid-layers number is 4.0 and the geogrid-layers 

size is 4.0B x 4.0B for different footing shapes. The 

use of geogrid-layer increases the soil-bearing 

resistance and reduces settlement values due to the 
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change of shear failure mechanisms from local to 

general failure. Rowshanzamir [3] studies how 

geogrid-layer configuration affects the bearing capacity 

of sand beds with different unit weights. Three groups 

of geogrid-layer configurations under square footing 

are described as: uniform, trapezoidal, and inverse 

trapezoidal arrangements. The BCR values range from 

1.8 to 5.35 for different geogrid-layer configurations 

and sand unit weights, while the maximum BCR value 

of geogrid-reinforced sand is obtained from inverse 

trapezoidal configurations. Hotti [4] describes an 

experimental study using square footing to illustrate 

the influence of first geogrid-layer depth (u/B) on the 

BCR values of geogrid-reinforced sand with different 

unit weights (16, 17, and 18 kN/m
3
). The optimal value 

of first geogrid-layer depth (u/B) is 0.40 with a 

geogrid-layers number of 3.0. Budania [5] reported that 

the optimal depth of the first geogrid-layer (u/B) is 

0.50 and the BCR value of geogrid-reinforced sand is 

1.3 with a geogrid-layers number (N) of 4.0. Maruthi 

[5] states the more efficient (u/B) ratio of first geogrid-

layer depth is 0.40 when investigating the load-

carrying capacity of geogrid-reinforced sand beds with 

various densities of 14.45, 14.90 and 14.96 kN/m
3
. 

Mudgal [6] presents a small-scale square footing on 

silty clay soil and reinforced with glasgrid and 

geotextile material. The maximum BCR values occur 

at the first reinforcement-layer depth (u/B) of 0.34 for 

both reinforcements. The optimal vertical spacing 

between reinforcements (h/B) was observed at 0.255 

and 0.226 for glasgrid and geotextile, respectively. The 

optimal number of reinforcing layers was obtained 

when N = 4 and N = 3 for silty clay soil reinforced 

with glasgrid and geotextile, respectively. 

Shrigondekar [7] describes the effect of vertical 

spacing between geogrid-layers (h/B), the geogrid-

layers number (N) and first geogrid-layer depth (u/B) 

on the load-carrying capacity of medium sand with a 

relative density (Dr) of 63.25% supporting a square 

footing. The maximum BCR value is 6.87 and the 

optimal value for both (u/B) and (h/B) ratio is 0.25. 

Hussam [8] investigates the influence of load 

eccentricity on the BCR values of geogrid-reinforced 

clay. The BCR values of geogrid-reinforced clay are 

2.27 and 2.12 under centric and eccentric loading, 

respectively. The optimal values for (u/B), (h/B) and N 

are 0.35, 0.26 and 4.0, respectively. Das [9] studied the 

effect of the geogrid layer with and without 

prestressing on the load-bearing capacity and 

settlement performance. The study was carried out on 

three square footing sizes (0.10 m x 0.10 m, 0.20 m x 

0.20 m, and 0.30 m x 0.30 m). The maximum footing 

size, 0.3 m x 0.3 m, gave the maximum bearing 

pressure, while 0.1 m x 0.1 m gave the minimum value. 

Furthermore, the BCR values of the footing sizes 0.10 

m x 0.10 m, 0.20 m x 0.20 m, and 0.30 m x 0.30 m are 

1.68, 1.53, and 1.47, respectively. Bathurst [10] 

investigates the effect of axial stiffness (J) on the 

bearing capacity of strip footing rested on clay soil 

with and without sand cushion, the values of axial 

stiffness are 300, 500, 1000, 2000 and 3000 kN/m and 

the BCR values are 1.61, 1.64, 1.71, 1.78 and 1.82 

respectively. 

A numerical analysis using Abaqus software is used 

to simulate unreinforced fine sand. The numerical 

model results of the unreinforced sand are validated 

with experimental results. The model was used to study 

the effect of geogrid axial stiffness (J) on the BCR 

values of square footing laid on geogrid-reinforced fine 

sand. the first geogrid-layer depth (u/B), vertical 

spacing between geogrid-layers (h/B), geogrid-layer 

width (b/B), geogrid-layers number (N) and square 

footing size (B) are also studied to determine the most 

efficient parameters. 

2.  NUMERICAL MODEL 

Mechanical stabilization and soil reinforcement 

techniques use tensile materials like geogrid-layers, 

metallic strips and geotextiles. In geotechnical 

applications, reinforced soil technique is applied to 

soils with low strength values. Abaqus (Ver. 2017) [11] 

is utilized to simulate a 3-D model of both unreinforced 

and geogrid-reinforced fine sand with a relative density 

(Dr) of 40%. The 3-D model is symmetric about the X 

and Y axes, so the simulation model represents a 

quarter of the total model with dimensions of 20m x 

20m x 20m. The effects of geogrid axial stiffness on 

the BCR values of geogrid-reinforced fine sand are 

investigated for dimensionless parameters such as 

(u/B), (b/B), (h/B) and (N). The fine sand is modeled 

by an elasto-plastic material with a non-associated flow 

rule and using the modified Drucker-Prager model with 

a hardening curve. The modified Drucker-Prager model 

is appropriate to soil behavior because it is capable of 

considering the influence of stress history, stress path, 

dilatancy, and the effect of the intermediate principal 

stress. The yield surface of the modified Drucker-

Prager/cap plasticity model consists of three parts; a 

Drucker-Prager shear failure surface, an elliptical cap, 

which intersects the mean effective stress axis at a right 

angle, and a smooth transition region between the shear 

failure surface and the cap, as shown in Figure 1 [11], 

[12]. The modified Drucker-Prager yield surface of 

three different parts is described by equations (1), (2) 

and (3). 

The Drucker-Prager shear failure surface is written as: 

  0tan  dptFs   (1) 

The transition surface is defined as: 
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The cap yield surface is written as: 
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Where: (β) is the soil’s angle of friction, (d) is its 

cohesion, (p) is the mean stress, and (q) is the Mises 

equivalent stress in the (p–t) plane. (R) is a material 

parameter (between 0.0001 and 1000.0) that controls 

the shape of the cap. ( is a small number (typically 

0.01–0.05) used to define a smooth transition surface 

between the shear failure surface and the cap. (pa) is an 

evolution parameter that represents the volumetric 

plastic strain driven hardening/softening. The 

hardening/softening law is a user-defined piecewise 

linear function relating the hydrostatic compression 

yield stress, (pb), and the corresponding volumetric 

inelastic (plastic and/or creep) strain. The volumetric 

plastic strain (v) is considered as shown in equation 

(4). 

 vb fp   (4) 

The volumetric plastic strain can be expressed as 

described by Park and Byrne [13], equation (5). 

 

atm

ro
v

P

P

C

Dx 


5.12


 
(5) 

Where: v = volumetric strain, %Dro = initial 

relative density, %, C = material constant, P = mean 

stress, kPa, Patm = atmospheric pressure, kPa. The 

evolution parameter (pa) is expressed by equation (6). 

tan 1
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Flow stress ratio (K) defines the ratio of the yield 

stress in triaxial tension to the yield stress in triaxial 

compression. (K) is a material parameter that controls 

the dependence of the yield surface on the value of the 

intermediate principal stress, to ensure that the yield 

surface remains convex requires 0.778 ≤ k ≤ 1.0. The 

Mohr–Coulomb parameters (c, ) can be converted to 

Drucker–Prager parameters using equations (7) and (8) 

[12]. 

 
sin3

sin  6
tan









x  
(7) 





sin3

cos  C  18
  d




xx  
(8) 

Tables 1 and 2 describe fine sand the geogrid 

properties.  The fine sand soil mass is described by an 

8-node linear brick, reduced integration and hourglass 

control (C3D8R), while the geogrid layers are 

described by 4-node doubly curved general-purpose 

shell, finite membrane strains (S4R). To describe the 

full contact and interlocking between the fine sand soil 

and geogrid-layers, the geogrid-layer is modeled by 

embedded region constraints, the fine sand is defined 

as host region, while geogrid-layer is an embedded 

region with the capability to implement 

Abaqus/standard [11]. 

 

Figure 1: Yield surfaces of modified Drucker-Prager 

model with a hardening curve in the p–t plane [11], [12]. 

Table 1. Fine Sand Properties 

Property Symbol Fine Sand 

Unit weight, (kN/m3)  18.0 

Poisson's ratio  0.35 

Young's modulus, MPa  20 

Material Cohesion, (kPa)  
c 1.6e-3 

d* 0.01 

Friction angle, (o) 
 30.0 

 50.19 

Cap Eccentricity R 0.40 

Init. Cap-yield surface position  --- 

Trans. surface radius  0.05 

Flow Stress Ratio k 1.0 

Relative density Dr 40% 

Table 2. Geogrid Properties  

Geogrid properties Value 

Shape of aperture Biaxial 

aperture size, mm 50 × 50 mm 

Nominal rib thickness, mm 0.50, 1.0 and 2.0  

Nominal rib width, mm 5.0  

Axial stiffness, kN/m 250, 500, 1000 

Poisson's ratio 0.35 

Young's modulus, MPa 500 

Unit weight, (kN/m3) 10.0 

3.  NUMERICAL RESULTS  

 Model Validation 3.1.

Abaqus 3-D software is used to simulate numerical 

model of unreinforced and reinforced-fine sand and 

verify the results of the proposed model with 

experimental results. The vertical pressure-settlement 

curve can be used to estimate the bearing capacity of 

unreinforced and reinforced-fine sand as shown in 

Figure 2, it is noted that no clear failure point was 

observed. If there is no clear failure pattern of the 

footing/soil system, the ultimate bearing capacity 

values are determined based on load-settlement curves 

using four different methods: the 10%B method, the 

tangent intersection method, the log-log method and 
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the hyperbolic method, as mentioned in [14], [15], 

[16]. The 10% footing width method is used in the 

study to estimate the ultimate bearing capacity for 

cases where there is no clear failure point or when the 

settlement value is more than 10%B. From the 

simulation model, the ultimate bearing capacity of 

unreinforced fine sand under a square footing is 165 

kPa. Based on experimental results of Hotti [4] and 

Gupta [17], the bearing capacities of unreinforced fine 

sand are 162 kPa and 177 kPa, respectively. 

Furthermore, the bearing capacity from Meyerhof's 

equation is 180.46 kPa, while the ultimate bearing 

capacity of geogrid-reinforced fine sand when the 

values of u/B, b/B and N are 0.40, 3.0 and 1.0 from the 

Abaqus model and experimental results of Hotti [4] is 

224 kPa and 226 kPa, respectively. The bearing 

capacity of unreinforced and geogrid-reinforced fine 

sand was found to be in good agreement with the 

experimental results.  

 

Figure 2: Settlement versus vertical stress of unreinforced 

and reinforced-fine sand from Abaqus and experimental 

results 

 The Bearing Capacity of Reinforced Fine 3.2.

Sand 

The Abaqus model is considered a good tool for 

estimating the bearing capacity of square footing 

resting on reinforced fine sand. A wide range of 

parameters are considered in the analysis, such as first 

geogrid-layer depth, geogrid width, vertical spacing 

between the successive geogrid-layers, and the 

geogrid-layers number used to investigate the bearing 

capacity of reinforced fine sand with a geogrid-layer 

having different values of axial stiffness, all parameters 

studied are listed in Table 3. 

Table 3 . Parametric study of reinforced fine sand. 

Group 
B, 

m 
N u/B b/B h/B 

Geogrid axial stiffness, 

kN/m 

Sand 

1.5 

Unreinforced Fine Sand 2 

2.5 

Group 2 1 0.1 3 0 250 500 1000 

A 2 1 0.2 3 0 250 500 1000 

2 1 0.3 3 0 250 500 1000 

2 1 0.4 3 0 250 500 1000 

2 1 0.5 3 0 250 500 1000 

Group 

B 

2 1 0.3 1 0 250 500 1000 

2 1 0.3 2 0 250 500 1000 

2 1 0.3 3 0 250 500 1000 

2 1 0.3 4 0 250 500 1000 

2 1 0.3 5 0 250 500 1000 

Group 

C 

2 2 0.3 3 0.1 250 500 1000 

2 2 0.3 3 0.15 250 500 1000 

2 2 0.3 3 0.2 250 500 1000 

2 2 0.3 3 0.3 250 500 1000 

2 2 0.3 3 0.4 250 500 1000 

Group 

D 

2 1 0.3 3 0 250 500 1000 

2 2 0.3 3 0.15 250 500 1000 

2 3 0.3 3 0.15 250 500 1000 

2 4 0.3 3 0.15 250 500 1000 

2 5 0.3 3 0.15 250 500 1000 

Group 

E 

1.5 1 0.3 3 0 250 500 1000 

2.5 1 0.3 3 0 250 500 1000 

3.2.1 First geogrid-layer Depth (u/B) 

In the Abaqus 3-D model, the geogrid-layer is placed 

at different depths from the ground surface on which 

the vertical stress is applied to study the effect of the 

first geogrid-layer depth on the bearing capacity of 

geogrid-reinforced fine sand supporting a square 

footing with dimensions of 2.0 m x 2.0 m. The ratio 

between the first geogrid-layer depth and the footing 

width is described as (u/B); the (u/B) values are 

changed from 0.10 to 0.50 in 0.10 increments. The 

geogrid axial stiffness (J) is described as the 

relationship between the geogrid elastic modulus 

(Egeogrid) and geogrid thickness (tgeogrid). The geogrid 

axial stiffness (J) values used in the study are 250 

kN/m, 500 kN/m, and 1000 kN/m. To achieve geogrid 

axial stiffness values, geogrid elastic modulus remains 

constant and is 500 MPa, while the geogrid thickness 

changes and is 0.50 mm, 1.0 mm, and 2.0 mm, 

respectively. Figure 3 shows the fine sand and geogrid-

layer arrangement. Figure 4 shows the soil domain 

meshing, vertical displacement shading of geogrid-

reinforced fine sand and vertical displacement within 

the geogrid-layer. 

 

Figure 3: Fine sand and geogrid-layer arrangement 
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Figure 4: Numerical results of geogrid-reinforced fine 

sand; a) Vertical displacement of the reinforced fine sand, 

b) Zooming of square footing displacement and c) 

Vertical displacement within the geogrid-layer. 

 

Figure 5 shows the settlement versus applied 

vertical stress for different cases of (u/B): a) J = 250 

kN/m; b) J = 500 kN/m; c) J = 1000 kN/m; d) Bearing 

capacity ratio (BCR) versus (u/B) ratio and e) Bearing 

capacity ratio versus geogrid axial stiffness. The (BCR) 

values for geogrid axial stiffness (J) of 250 kN/m are 

1.01, 1.44, 1.75, 1.56 and 1.25 with (u/B) values of 

0.10, 0.20, 0.30, 0.40 and 0.50, respectively. The (BCR) 

values for geogrid axial stiffness (J) of 500 kN/m are 

1.45, 2.10, 2.54, 2.25 and 1.80, while these values are 

2.12, 3.07, 3.73, 3.30 and 2.61 when the geogrid axial 

stiffness (J) increased to 1000 kN/m at the same values 

of (u/B). The (BCR) values increase with the (u/B) 

value until (u/B) reaches 0.30 and then decrease with 

the increasing of (u/B); the optimal and more efficient 

value of (u/B) is 0.30, as shown in Figure 5-d. At (u/B) 

= 0.30, the increase in (BCR) value with geogrid axial 

stiffness (J) is 1.45 times and 2.13 times for the 

variation of geogrid axial stiffness from 250 kN/m to 

500 kN/m and from 250 kN/m to 1000 kN/m, 

respectively. Figure 5-e shows the relationship between 

the bearing capacity ratio (BCR) and the geogrid axial 

stiffness. In the simulation models, the geogrid axial 

stiffness (J) increased to 2500 kN/m with a (u/B) value 

of 0.30, attempts are carried out to derive the 

relationship between (BCR) and (J) as described in 

equation (9). 

  65.7ln67.1  JxBCR  (u/B = 0.3) (9) 
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Figure 5: Settlement versus vertical stress for different 

values of u/B; a) J = 250 kN/m, b) J = 500 kN/m, c) J = 

1000 kN/m, d) Bearing capacity ratio (BCR) versus (u/B) 

ratio, and e) Bearing capacity ratio versus geogrid axial 

stiffness 

3.2.2 Geogrid-layer width (b/B) 

Abaqus software is used to conduct a series of 

numerical models to evaluate the effect of geogrid 

width at the optimal value of (u/B) = 0.30. The ratio 

between geogrid width and the footing width (b/B) 

varies from 1.0 to 5.0 with an increment of 1.0 at 

values of geogrid axial stiffness (J) of 250 kN/m, 500 

kN/m and 1000 kN/m.  Figure 6 illustrates the relation 

between the settlement and the vertical stress under the 

square footing for the different values of (b/B) and 

geogrid axial stiffness (J). The results indicate that 

(BCR) values increase with the (b/B) ratio. The 

maximum (BCR) value occurs when the (b/B) ratio is 

equal to 3.0, and then the (BCR) value decreases with 

increasing (b/B) ratio for different cases of geogrid 

axial stiffness (J). At (b/B) ratio = 3.0, the (BCR) 

values increase with increasing geogrid axial stiffness 

(J), the (BCR) values are 1.75, 2.54, and 3.73 for 

geogrid axial stiffness of 250 kN/m, 500 kN/m, and 

1000 kN/m, respectively. The results show that the 

increase in bearing capacity ratio (BCR) is 1.45 times 

and 2.13 times when the geogrid axial stiffness 

increases from 250 kN/m to 500 kN/m and 250 kN/m 

to 1000 kN/m, respectively. The bearing capacity ratio 

remains relatively constant once the (b/B) ratio exceeds 

4.0, as shown in Figure 6-d. 
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Figure 6: Settlement versus vertical stress for different 

values of b/B; a) J = 250 kN/m, b) J = 500 kN/m, c) J = 

1000 kN/m, and d) BCR value versus (b/B) ratio. 

3.2.3 Vertical Spacing between Geogrid-

Layers (h/B) 

Figure 7 shows the relationship between settlement 

and vertical stress under square footing resting on the 

geogrid-reinforced fine sand. The first geogrid-layer 

depth (u/B) is 0.30 and the geogrid-layer width (b/B) is 

3.0, while the depth of subsequent geogrid-layer (h/B) 

changes from 0.10 to 0.40 with an increment of 0.10. 

The (BCR) value increases with geogrid axial stiffness 

and decreases with increasing (h/B) values. At a (h/B) 

ratio of 0.10, the (BCR) values are 2.31, 3.38 and 4.80 

for the geogrid axial stiffness (J) of 250 kN/m, 500 

kN/m and 1000 kN/m, respectively. When the geogrid 

axial stiffness (J) increases from 250 kN/m to 500 

kN/m, the (BCR) value increases by 1.46 times, and 

when the geogrid axial stiffness increases from 250 

kN/m to 1000 kN/m, it increases by 2.08 times. The 

results indicate the (BCR) values decrease with 

increasing (h/B) values; the optimal value of the (h/B) 

ratio is 0.15 in order to achieve a greater embedded 

depth of the geogrid-layer, to allow a full interlocking 

between it and fine sand, and to protect the geogrid-

layer from environmental effects. Figure 7-b illustrates 

the relationship between (BCR) value and geogrid axial 

stiffness (J) at the optimal value of (h/B) = 0.15. In the 

numerical study, the values of geogrid axial stiffness 

are increased to 2500 kN/m in an attempt to drive a 

fitting equation as described in Equation (10). 

  88.6ln67.1  JxBCR  (h/B = 0.15) (10) 

 

 

 

Figure 7: Vertical Spacing between Geogrid-Layers (h/B); 

a) BCR values versus (h/B), and b) BCR values versus 

geogrid axial stiffness. 

3.2.4 Number of geogrid-layers (N) 

The number of geogrid-layers (N) is the main 

affecting parameter on load-carrying capacity of 

geogrid-reinforced fine sand. A numerical model is 

conducted at the optimal values of (u/B), (b/B) and 

(h/B); these values are 0.30, 3.0 and 0.15, respectively. 

For different values of the geogrid axial stiffness of 

250, 500 and 1000 kN/m, the number of geogrid-layers 

(N) is varied from 1.0 to 5.0 with an increment of 1.0 

layer. Figure 8 shows the relationship between the 

bearing capacity ratio and the number of geogrid-layers 

when the geogrid axial stiffness is 250 kN/m, 500 

kN/m and 1000 kN/m. The numerical results show the 

(BCR) values increase with the geogrid-layers number 
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until they reach N = 3.0 and remain constant thereafter. 

The optimal geogrid-layers number is 3.0 for a square 

footing that rests on geogrid-reinforced fine sand. The 

(BCR) values at geogrid-layers number of 3 layers are 

2.50, 3.67, and 5.02 for geogrid axial stiffness of 250 

kN/m, 500 kN/m, and 1000 kN/m, respectively. Figure 

6-b shows an attempt to derive an equation that 

representing the relationship between bearing capacity 

ratio and the geogrid axial stiffness at the optimal value 

of the geogrid-layers number of (N = 3.0) described in 

Equation (11). 

  34.6ln62.1  JxBCR  (N = 3.0) (11) 

 

 

Figure 8: Number of Geogrid Layers Effect (N); a) 

Bearing capacity ratio (BCR) versus (N), and b) Bearing 

capacity ratio versus geogrid axial stiffness (J). 

3.2.5 Effect of square footing size (B) 

In this section, the effect of square footing size on 

the bearing capacity ratio of reinforced fine sand with 

different axial stiffness is investigated. The values of 

(u/B), (b/B) and the number of geogrid layers (N) are 

0.30, 3.0 and 1.0, respectively. The square footing 

dimensions are 1.50 m x 1.50 m, 2.0 m x 2.0 m and 

2.50 m x 2.50 m. The relationship between bearing 

capacity ratio (BCR) and geogrid axial stiffness (J) is 

shown in Figure 9. The results show that the (BCR) 

increases with geogrid axial stiffness (J) and decreases 

with footing sizes. Equations (12), (9) and (13) show 

the relationship between (BCR) and (J) for footing 

widths of 1.50 m, 2.0 m and 2.50 m, respectively. 

  24.7ln69.1  JxBCR  (B = 1.50) (12) 

  65.7ln67.1  JxBCR  (B = 2.00) (9) 

  23.7ln51.1  JxBCR  (B = 2.50) (13) 

    

Figure 9: Bearing capacity ratio (BCR) versus geogrid 

axial stiffness (J) at various square footing sizes. 

4. CONCLUSIONS  

In this paper, a numerical analysis of the square 

footing on fine sand soil reinforced with a geogrid-

layer with different axial stiffness is presented. The 

Based on the results of the current work, the following 

conclusions can be drawn: 

 The validation of the numerical model with 

the experimental results of Hotti and Gupta 

agrees with a ratio of 98% and 93%, 

respectively.  

 The provision of a geogrid-layer with 

appropriate dimensions and numbers, the 

bearing capacity of square footings on fine 

sand is significantly increased. 

 The bearing capacity of reinforced fine sand 

increases with the geogrid axial stiffness. the 

increase in the bearing capacity ratio is 1.45 

times and 2.13 times when the geogrid axial 

stiffness increases from 250 kN/m to 500 

kN/m and from 250 kN/m to 1000 kN/m, 

respectively. 

 The maximum bearing capacity ratio of the 

reinforced fine sand is achieved when the 

(u/B) ratio is 0.30 for all values of the geogrid 

axial stiffness. 
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 The optimal value of the (b/B) ratio of the 

geogrid-layer under the square footing is 3.0 

for all values of geogrid axial stiffness.  

 The optimal vertical spacing (h/B) between 

successive geogrid-layers is about 0.15 times 

the square footing width for all values of 

geogrid axial stiffness. 

 The numerical results illustrate that the 

optimal geogrid-layers number is 3.0 layers 

for all values of geogrid axial stiffness. 
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