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ABSTRACT 
Developing an effective system for detecting and classifying pavement cracks is 

crucial for ensuring traffic safety. However, the procedure of manual inspection for 

identifying these cracks can be hazardous and time-consuming. Thus, it's essential to 

implement an automated approach to make the detection process more efficient. 

Overcoming challenges like varying intensity levels, inconsistent data availability, and 

ineffective traditional methods make this task complicated. This research's aim is to 

contribute to the development of an efficient system for detecting pavement cracks. 

Pavement crack detection using close range photogrammetry is a process for identifying, 

characterizing and evaluating pavement surface cracks that is revolutionizing the speed, 

accuracy and cost of assessing the structural integrity of pavements. These images are 

used by analysis software to generate detailed digital maps of the pavement surface. These 

digital maps can then be used to identify and measure pavement cracking. The use of 

close-range photogrammetry for pavement crack detection offers numerous advantages 

over traditional pavement inspection methods, including improved accuracy and flexibility 

in the analysis of pavement cracks and the ability to analyze large areas of pavement 

quickly. The quality of the images captured depends on the type of camera used, but most 

cameras offer high-resolution imaging at close range. The data was intentionally gathered 

via iphone14promax camera in Tenth of Ramdan City.  The customized YOLOv7 model, 

which is a state-of-the-art deep learning algorithm, was used in this study. The difference 

between ground truth and boundary box is 0.016, the class probability loss is 0.021 and the 

objectless loss is 0.009.  The precision of the outcome reports is 0.854 and recall from the 

custom dataset is 0.755. The results of the suggested system were satisfactory compared to 

the results of reference studies. 

Keywords: Deep Learning YOLOv7- Pavement Crack Detection-close range 

photogrammetry. 

 

1 INTRODUCTION 

Damage to asphalt pavement can be caused by both 

environmental hazards, like prolonged sun exposure, 

erosion caused by rain, and the effects of natural 

weathering, as well as human factors, such as rolling of 

vehicles, the quality of pavement materials used, the 

level of construction quality, and subsequent 

maintenance. These factors have varying levels of 

influence on the performance of pavement [1]. Failure to 
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detect and repair damaged roads in a timely manner can 

lead to a reduction in the service life and quality of the 

highway, and even increase the risk of traffic accidents 

[2].Currently, pavement detection is mostly done 

manually, which has several drawbacks, including being 

time-consuming, requiring a significant amount of 

manpower, obstructing the highway, posing safety risks 

to inspectors, and potentially affecting detection results 

due to human factors. As highways continue to undergo 

rapid development, meeting the detection demands of 

large-scale projects has become increasingly challenging. 

As a result, current approaches have fallen significantly 

short in fulfilling the requirements for the continued 

growth and expansion of highways [3]. 

To enhance the service quality of highways and 

achieve automated detection of damaged pavement, 

researchers have suggested exploring the use of visual 

technology for paved road detection. Previously, 

Technology for processing digital images was employed 

for identifying cracks [4]. There has been significant 

focus on image-based crack detection algorithms in 

recent decades. Early research methods primarily 

involved refining or integrating conventional methods 

for digital image processing like edge detection, 

geometric morphology, and thresholding [5]. These 

techniques were based on photometric and geometric 

principles and were used to analyze crack images [6]. 

Crack pixels were identified as the prominent 

photometric feature because they appeared darker in an 

image. Crack and background segmentation was 

achieved by determining a global or local threshold value 

[7]. However, these techniques were sensitive to noise 

due to their implementation at the pixel level. To address 

this, some solutions used geometric information, such as 

limiting false detection by analyzing crack continuity [8]. 

A local operator for binary patterns was also used to 

recognise whether individual pixels belonged to cracks 

by considering a local orientation [9]. With the 

implementation of multiscale analysis, wavelet transform 

has been used to distinguish between areas that contain 

cracks and those that do not, and although these methods 

are successful in detecting cracks, they may not always 

be precise in their identification of all cracks present in 

an image. As a response to this issue, researchers have 

been exploring computer vision and Artificial 

Intelligence (AI) technologies to develop automatic 

crack detection methodologies [10]. AI and machine 

vision are now employed to solve various problems 

across multiple domains, from banking and healthcare to 

engineering and other technical challenges [11]. Owing 

to the extensive use of machine learning techniques, 

especially deep learning, in research and industry, deep 

learning models can be utilized to automatically identify 

and categorize pavement cracks. Several approaches that 

rely on pattern recognition and feature extraction have 

been proposed for crack recognition since the arrival of 

machine learning. While these models have shown 

outstanding performance, their effectiveness is highly 

dependent on the extracted features and may not be 

practical for all types of pavements given the complexity 

of pavement conditions. Despite this, Deep Learning has 

the potential to significantly enhance road maintenance 

performance [12].  

2 RELATED WORKS 

2.1. Automatic Detection Based on Image 

Processing 

Image processing techniques have been used to 

automatically detect pavement cracks. Early methods 

relied on threshold segmentation algorithms to extract 

crack areas, which assume that crack pixels are generally 

darker than their surroundings. Li and Liu [13] suggested 

a new technique based on thresholding based on adjacent 

difference histograms, which achieved better results than 

traditional methods. Other researchers combined 

threshold segmentation with the connected domain 

algorithm or the neighborhood difference histogram to 
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improve detection accuracy. However, these methods are 

sensitive to noise and can produce false positives, 

especially when non-crack features are present. To 

achieve a more precise detection, Gavilán et al [14] 

suggested estimating the mean gray value of pixels in the 

inside and outside contours of linear objects present in 

the image. Another approach, used by Li and Mao [15], 

involved dividing the image into multiple sub-regions, 

computing the neighborhood difference histogram for 

each region, and then fusing the resulting crack 

information. However, these methods are still limited by 

their inability to describe global information, their 

sensitivity to noise, and their dependence on the 

selection of a threshold for detection. In practical 

applications, more advanced algorithm models are 

needed to handle the complexity of road backgrounds 

and the presence of noise. 

2.2. Automatic Crack Detection Based on 

Machine Learning Technique 

The use of machine learning depending on functional 

engineering has proved successful in numerous fields, 

including automatic detection of pavement cracks. 

Researchers have identified significant texture 

characteristics of the crack pavement and used image 

classification technologies to detect them automatically. 

Hu et al [16] proposed approach based on analysis of 

texture and shape explanation, which uses six attributes 

of texture and two translation invariant shape identifiers 

to classify images into cracks and non-cracks using 

support vector machine (SVM). Cord and Chambon [17] 

suggested a supervised learning approach based on linear 

and nonlinear filters to describe texture features of the 

crack pavement at different scales. They used the 

AdaBoost classifier to learn and classify information 

from the filters and obtain the pavement damage area. 

Shi et al [18] proposed a method called Crack Forest, 

which combined a framework based on overall channel 

features with random forest classification. To represent 

the cracks and remove noise that was incorrectly labeled 

as cracks, they utilized two feature histograms. Although 

these methods have shown some improvements in crack 

detection, they still face challenges in fine extraction of 

cracks.  

Despite some success in overcoming road noise 

interference, current machine learning-based methods for 

crack extraction struggle to meet the challenges of 

complex backgrounds. Using a data set comprising of 

projective integral and fracture properties, Hoang and 

Nguyen [19] tested the efficacy of a machine learning 

algorithm trained on the support vector machines (SVM), 

artificial neural networks (ANN), and random forest 

(RF) algorithms. However, the accuracy of these 

algorithms is highly dependent on manually extracted 

image features such as color and texture. Therefore, 

developing separate feature models to suit different 

lighting scenarios and conditions is necessary. The 

diverse road environment, with its numerous debris and 

noises, makes it challenging to extract practical attributes 

with a single feature model, resulting in poor 

performance of the detection model. Therefore, the 

machine learning-based detection model may only be 

effective within a small range of conditions and is not 

universally applicable. 

2.3. Automatic Crack Detection Based on 

Deep Learning Technique 

Automatic crack detection based on deep learning has 

improved significantly over the past few years. Object 

detection H. Maeda, et al [20] and image segmentation 

X. Wang and Z. Hu [21] have been used to extract 

cracks, but they cannot complete pixel-level detection or 

accurately determine damage severity. To address this, 

Zhang et al [22] introduced a system for pavement 

detection called CrackNet that uses convolutional neural 

networks (CNN) and pixel-level extraction to 

automatically detect 3D asphalt cracks. Unlike traditional 

CNNs, Crack Net doesn't use pooling layers to decrease 
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the output of the preceding layer and uses maintain a 

consistent image width and height technique across all 

layers of the network. Fei et al [23] improved upon 

Crack Net with a deeper and more efficient deep 

network, Crack Net-V, while maintaining the same 

learning at the pixel level. Meanwhile, Zou et al [24] 

developed a trainable deep CNN, Deep Crack that learns 

advanced crack representations and is end-to-end 

trainable. These studies demonstrate the effectiveness of 

technologies for deep learning in automatic detecting 

cracks in pavement at the pixel level and for identifying 

different types of damage accurately. To enhance crack 

detection, the deep crack network was developed using 

multiscale deep convolution features learned from 

various layers to create a linear structure. This network, 

built on the encoder-decoder architecture of SEG net, 

integrated convolution features from both encoder and 

decoder networks at the same scale to automatically 

identify cracks at the pixel level with a detailed 

description of expansive feature maps and thorough 

representation of compact feature maps. Compared to 

machine learning models that rely on feature 

engineering, the deep learning-based detection model 

exhibited much better detection performance. Combining 

the deep crack network with the most effective current 

model for crack pavement object detection promises a 

significant improvement in the pavement detection 

process. 

3 RESEARCH METHODOLOGY 

The current study presents a pavement crack 

detection model wherein data from a camera are used. To 

prepare the collected data for analysis, several 

preprocessing steps were involved, such as extracting 

image frames, labeling, augmentation, and data resizing.  

Data is then divided into a train, validation, and test 

samples, which are trained using the YoloV7 algorithm. 

Once the model training is completed, the performance is 

evaluated through testing. The proposed research 

approach is illustrated in Figure 1. 

 

Figure 1: Suggested Research Methodology  

 

4 COLLECTION DATA 

The data was intentionally gathered via 

iphone14promax camera in Tenth of Ramdan City. The 

primary camera of the iPhone 14 Pro Max has seen the 

biggest update. It now uses a 48MP 1/1.28" sensor with a 

Quad-Bayer color filter, a first for the iPhone. The 

camera has a 1.22µm pixel size before binning - 2.44µm 

with binning. It's coupled with a 24mm f/1.78 lens. There 

is also second-gen sensor-shift stabilization, as well as 

full-focus pixels. The number of images is 250 images 

(200 for train and 50 for test) from height 1.5m to 2m 

with angle from 45 degree to 90 degree. Figure 2 shows 

the location, the number of images collected, the 

specification of apple iPhone 14promax camera and 

some raw images. 

 



22 

 

Figure 2: Data collection location, number, specification, 

and some raw images. 

 

5 DATA PREPROCESSING 

Prior to instructing the deep learning algorithm, the 

research data undergoes various preprocessing 

techniques. These include extracting image frames from 

the recorded video clips, data labelling using the 

Roboflow data annotation tool, and data augmentation 

and resizing to enhance the number and variety of 

training data. The quantity and variety of training data 

are crucial for the accuracy of supervised deep learning 

models. However, obtaining enough data can become a 

challenge, necessitating the use of data augmentation 

techniques that apply very little data changes or use 

machine learning frameworks to generate more data 

elements. Overall, an proposed preprocessing steps are 

crucial in preparing high-quality training data for deep 

learning models. The study utilized various data 

augmentation techniques, including blurring and 

brightness adjustments. Blurring refers to a visual effect 

that makes edges of text or images appear fuzzy or 

unfocused. Brightness, on the other hand, refers to the 

overall luminance or darkness of an image. After 

implementing data augmentation, the image samples 

underwent resizing, which is a crucial pre-processing 

step for computer vision. This involves adjusting the 

visible dimensions of the image, often to smaller sizes to 

improve deep learning algorithm efficiency. In this 

study, the images from the datasets were resized to 640 x 

480 pixels. 

6 YOLOV7 MODEL 

Deep Learning is a subfield of machine learning that 

revolves around algorithms inspired by the design and 

operation of the brain's artificial neural networks. The 

central concept of Deep Learning is to train computer 

systems to learn through examples, emulating natural 

human learning. Just now, there has been a surge of 

interest in Deep Learning, as it can produce outcomes 

previously thought to be unattainable. Deep Learning 

models use multi-layered neural network architectures 

that learn right from images, text, or voice to tackle 

detection and classification duties. These models can 

achieve precision levels that occasionally surpass human 

performance, thanks to the massive amounts of labeled 

data available for training. 

YOLOv7 is the deep learning algorithm utilized in 

this study. belonging to the family of real-time object 

identification techniques that go by the name of "You 

Only Look Once", or YOLO for short. YOLO models 

use a single-stage approach for object detection, 

involving the head, neck, and spine/backbone 

architecture. In this approach, the picture frames are 

distinguished by the spine, which are combined and fine-

tuned in the network's neck before being transmitted to 

the head. At this stage, YOLO expects the positions and 

groups of objects that require bounding boxes. Finally, 

YOLO uses non-maximum suppression (NMS) during 

post-processing to arrive at its conclusive output. Figure 

3 depicts the general architecture underlying YOLO. 

 

Figure 3: YOLOv7 Architecture [25]  

 

The preprocessed image data of size 640x480 pixels 

was used as input for the YOLOv7 model in this study. 

The customized hyperparameters for the algorithm, 
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including batch size 16, number of epochs 22, initial and 

final learning rates 0.010 and 0.10, weight decay 

0.00050, box loss gain 0.050, cross-entropy loss 0.30, 

and momentum 0.937. YOLOv7 was chosen as the 

model for this research due to its advanced features, 

including Extended Efficient Layer Aggregation, Model 

Scaling Techniques, Re-parameterization Planning, and 

Auxiliary Head Coarse-to-Fine. These features were 

deemed crucial to achieving accurate results in crack 

detection. 

It is crucial for the network's convolutional layers to 

be highly efficient in the backbone, enabling fast 

inference. YOLOv7's developers have improved upon 

previous work in this domain by considering both the 

distance a gradient must travel through the layers for 

back-propagation and the memory required to store these 

layers. Smaller gradients lead to faster network learning 

rates, after all. Finally, the YOLOv7 model utilizes E-

ELAN, an improved variant of the ELAN computational 

block, which serves as the preferred layer aggregation 

method. Figure 4 shows this mechanism in more detail. 

 

Figure 4: Evolution of layer aggregation strategies in 

YOLOv7 [26] 

 

Object detection algorithms often consider metrics 

like network depth, breadth, and resolution that were 

employed in the instruction. In the case of YOLOv7, the 

developers take a unique approach by scaling the 

network's depth and breadth simultaneously through the 

concatenation of layers as shown in Figure 5. This 

method is backed by research demonstrating that it 

maintains optimal model creation when scaling up or 

down. 

 

Figure 5: YOLOv7 Scaling [26] 

 

Reparameterization techniques often involve 

averaging the weights of a set of models to create a more 

robust model capable of handling general patterns. 

Recent research has focused on reparameterization at the 

module level, where individual nodes within the network 

employ distinct strategies. To identify which network 

modules, require reparameterization, YOLOv7 examines 

the pathways of gradient flow. Although the YOLO 

network's forecasts originate from the "head" module, 

located at a considerable distance down the node chain, 

adding an auxiliary head nearer to the network center can 

be beneficial. While in training, supervision is applied to 

both the detection and prediction heads. Given the 

shorter network distance between the auxiliary and 

prediction heads, YOLOv7 developers experimented 

with various levels of oversight for this head, before 

ultimately deciding on coarse-to-fine oversight with 

increasing levels of granularity, passed back from the 

leading head to enhance training efficiency, as illustrated 

in Figure 6. 
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Figure 6: Auxiliary head supervision in the YOLOv7 from 

coarse to fine.[26]  
 

7 RESULTS AND DISCUSSION   

7.1. Evaluation Matrices 

Performance evaluation of the developed model 

involves utilizing various metrics within the machine and 

deep learning domains, including accuracy, precision, 

recall, the confusion matrix, F1-score, and others. For 

classification models, the confusion matrix is a vital 

component of statistical analysis, providing a two-

dimensional table of both approximated and actual 

values, as illustrated in Figure 7. 

 

Figure 7: Confusion Matrix  

 

 

The equation for accuracy, precision, recall, and F1 

score is as follows: 

Accuracy = 
     

  
 (1) 

 

Precision = 
  

     
 (2) 

 

Recall = 
  

     
 

 

               (3) 

 

F1- Score = 2 × 
                 

                
 

 

 (4)  

 

7.2. Experimental Results 

We trained our YOLOv7 model on a custom dataset 

using a batch size of 16 and 22 epochs. Table 1 provides 

the box loss, segmentation loss, and objectness loss for 

each epoch, while Table 2 and 3 show the precision, 

recall, and mean average precision scores for the model 

with IoU thresholds of 0.5 and IoU thresholds ranging 

from 0.5 to 0.95 for boxes and masks, respectively. 

Results are depicted in Figures 8, 9, and 10. From figure 

8 the difference between ground truth and boundary box 

is 0.016, the class probability loss is 0.021 and the 

objectless loss is 0.009. The highest box precision of 

0.899 was achieved on epoch 14 and the highest mask 

precision of 0.777 on epoch 20. Additionally, the highest 

box recall of 0.779 was attained on epoch 17, and the 

maximal mask recall of 0.691 was seen on epoch 17. 

These outcomes are particularly noteworthy as the model 

detected both longitudinal and transverse cracks. Overall, 

the results were highly encouraging, demonstrating the 

effectiveness of a single model for crack detection. 

After testing the developed model on a custom 

dataset, its accuracy was determined to be 85%.   

This level of accuracy is quite promising, especially with 

respect to other existing models. Notably, Figures 11, 12, 

and 13, show the testing predictions made by the 

developed system and the accuracy of crack prediction 

on all figures.
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Table 1. The box loss, segmentation loss and objectless loss for custom data 

Epoch  Box loss Segmentation loss objectless loss 

1 0.071 0.042 0.025 

2 0.049 0.025 0.018 

3 0.047 0.024 0.014 

4 0.043 0.024 0.014 

5 0.039 0.024 0.013 

6 0.035 0.024 0.013 

7 0.033 0.023 0.013 

8 0.031 0.023 0.012 

9 0.029 0.023 0.012 

10 0.028 0.023 0.012 

11 0.026 0.023 0.011 

12 0.026 0.022 0.012 

13 0.024 0.022 0.011 

14 0.023 0.022 0.011 

15 0.022 0.022 0.010 

16 0.021 0.021 0.010 

17 0.020 0.021 0.010 

18 0.019 0.021 0.010 

19 0.018 0.021 0.010 

20 0.017 0.021 0.009 

21 0.017 0.021 0.009 

22 0.016 0.021 0.009 

 

 

 Figure 8: Performance metrics; a) Box loss, b) Segmentation loss, and c) Objectless loss 

 

a b 

c 
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Table 2. The Box precision, Box recall and mean average precision. 

Epoch Box precision Box recall MAP@0.5  MAP@0.5:0.95  

1 0.716 0.55 0.595 0.247 

2 0.734 0.609 0.615 0.28 

3 0.486 0.438 0.4 0.166 

4 0.63 0.659 0.565 0.238 

5 0.686 0.685 0.625 0.308 

6 0.752 0.696 0.688 0.366 

7 0.747 0.695 0.698 0.399 

8 0.796 0.739 0.764 0.445 

9 0.795 0.716 0.718 0.487 

10 0.716 0.775 0.74 0.495 

11 0.77 0.727 0.749 0.483 

12 0.887 0.731 0.797 0.555 

13 0.847 0.71 0.765 0.539 

14 0.899 0.707 0.785 0.556 

15 0.861 0.727 0.8 0.566 

16 0.853 0.767 0.808 0.569 

17 0.823 0.779 0.807 0.579 

18 0.823 0.727 0.808 0.604 

19 0.856 0.755 0.831 0.622 

20 0.887 0.751 0.821 0.624 

21 0.816 0.755 0.8 0.615 

22 0.884 0.738 0.807 0.628 

 

Figure 9: Performance metrics; a) Box precision, b) Box recall, c) MAP@0.5 and d) MAP@0.5:0.95 

 

 

d 

b a 

c 
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Table 3. The Mask precision, Mask recall and mean average precision. 

Epoch Mask precision Mask recall MAP@0.5  MAP@0.5:0.95  

1 0.448 0.373 0.306 0.0767 

2 0.613 0.526 0.432 0.111 

3 0.344 0.355 0.245 0.0642 

4 0.45 0.522 0.306 0.0893 

5 0.585 0.578 0.464 0.125 

6 0.612 0.542 0.447 0.13 

7 0.568 0.582 0.475 0.135 

8 0.63 0.586 0.477 0.136 

9 0.68 0.613 0.53 0.162 

10 0.607 0.655 0.552 0.177 

11 0.696 0.614 0.586 0.184 

12 0.776 0.653 0.628 0.197 

13 0.763 0.643 0.632 0.186 

14 0.762 0.618 0.593 0.192 

15 0.751 0.627 0.6 0.182 

16 0.71 0.64 0.593 0.199 

17 0.73 0.691 0.654 0.221 

18 0.759 0.655 0.665 0.218 

19 0.741 0.69 0.666 0.229 

20 0.777 0.659 0.66 0.219 

21 0.724 0.671 0.652 0.205 

22 0.745 0.621 0.604 0.204 

  

 

  

Figure 10: Performance metrics; a) Mask precision, b) Mask recall, c) MAP@0.5 and d) MAP@0.5:0.95 

a b 

c d 

mailto:MAP@0.5
mailto:MAP@0.5:0.95
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Figure 11: Predictions on Testing Data. 

 

 

Figure 12: Predictions on Testing Data. 

 

Figure 13: Predictions on Testing Data. 
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8 COCLUSION 

Road and traffic safety are crucial, and detecting 

cracks in pavement plays a vital role in maintaining 

them. To tackle this issue, we propose using YOLOv7, 

regarded as one of the cutting-edge object identification 

models, to detect and classify pavement cracks. In order 

to ensure that our training data is clean and balanced, we 

applied various pre-processing methods like 

augmentations, resizing, and blurring. Our experimental 

results show off that the YOLOv7 model achieved an 

impressive detection accuracy of 90%. We conducted 

experiments using custom datasets and achieved 

precision and recall values of 0.854 and 0.755, 

respectively. Our research benchmarked recent similar 

studies and the proposed system yielded promising 

results, surpassing the benchmarks in several areas. 
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