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Abstract– The In the recent years, some studies have focused 

on powered lower-limb prostheses to enable normal walking gait. 

However, most proposed prostheses use manual switch to change 

the locomotion mode, for example from walking to sitting or vice-

versa. Intelligent prostheses use micro-processing control for 

automatic switching by utilizing the advances of signal processing 

and pattern recognition techniques, where the user's intent could 

be recognized by analyzing the EMG signals sensed from the lower 

limb. After the recognition phase, the prosthesis controller controls 

different prosthesis components, to mimic the natural leg. 

Introduced in this paper is a comparative study and survey on the 

recent work on EMG signal analysis is for the purpose of 

classification and recognition. The paper presents details on the 

recent work done on each stage of EMG analysis, starting by 

preprocessing, de-noising, and segmentation through feature 

extraction till classification. It also presents recent work done using 

deep learning. The results achieved by the different research 

groups are summarized at the end of the paper 

.  

Keywords-- Pattern Recognition, User Intent, Control, Active 

Prostheses, EMG, Deep Learning. 

 

I.  INTRODUCTION  

that replace a part of the arm or the whole arm [4, 5, and 

6]. Less work has been done for lower-limb prostheses. 

Lower-limb prostheses, replace a part of the leg or even the 

whole leg. These lower-limb prostheses must be reliable and 

stable to prevent falling while performing different activities. 

The most important activity that legs do is walking. Walking is 

not an important There are thousand million people in the 

world live with disabilities (one in each seven people), of 

whom two hundred million experience considerable 

difficulties in functioning [1]. Devices that mimic a missing or 

malfunctioning part of the body are needed to overcome some 

types of disabilities. For example, hearing aids that people 

with hearing-impairment wear behind their ears, amplify the 

sound coming from the surrounding environment. Another 

type of devices that people with different type of disability use 

is the prostheses [2, 3]. Prosthesis is useful for a person with a 

missing part of his body. Researchers have studied thoroughly 

upper-limb prostheses activity itself but moving from a place 

to another to do another desired activity is the vital one. 

The movement of human leg differs during different tasks. 

Its movement during walking is different than when moving 

during stairs ascending or stepping over an obstacle. 

Therefore, the artificial leg should perform differently in these 

tasks. In recent artificial legs, changing mode through different 

tasks is done manually by the user, either by a switch button or 

by exaggerating effort done by specific muscles and joints. 

The human gait cycle is to be studied to accurately 

identify different walking modes. For example: the human 

walk process is cyclic. There are two phases in the cycle, 

Swing phase (40%), and stance phase (60%). When the foot is 

totally or partially on the ground that is the stance phase, while 

the swing phase is when the foot on the air for limb 

advancement [7, 8, and 9]. To study different human gaits, 

kinematics (the body movement) and kinetics is forces that 

affect the body while walking are studied. Kinematics could be 

recorded through many methodologies: 

(1) With the development of photography, 

Chronophotograph was the basic method. Using a set of still 

pictures captured after each other, the human gait was 

analyzed.  

(2) Using video recordings from one camera or more are 

using for measuring velocities and joint angles, that allowed 

three-dimensional analysis of the walk cycle.  

(3) Passive marker systems use infrared radiations and 

reflective balls set on the human body, allowing more accurate 

measurements of angle & delay time between anatomical 

remarks original and reflect signals.  

(4) Active marker systems work also with infrared 

radiations that trigger markers to send signals about their 

location. To calculate movement kinetics, ground force 

reaction is measured by   load transducers when load 

transducers are   put on the floor. 

(5) Electromyography (EMG) sensors are using for 

measuring the electrical activity of the muscles when being 

activated.  

(6) Another way to measure activity of muscles is the 

implantable Peripheral Nervous System (PNS) approach, 

which uses percutaneous electrodes planted in the nerves or 

using of implantable capsules to extract the signals of EMG.  

(7) Finally, implantable Central Nervous System (CNS) 

approach utilizes arrays of electrode which implanted in brain 

cortex for extracting commands of motor. 

The least invasive approaches are usually better for 

medical devices. EMG signals approach has the advantage of 

less invasiveness. Fig. 1 by Neptune et al, shows different 

muscle activities during a complete gait cycle. The 

abbreviations of the different muscle groups stand for: 
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TA:Tibialis Anterior, 

IL: Iliacus, psoas, 

BFsh: Biceps Femoris short head, 

       GMAX: Gluteus r Maximus Adductor Magnus, 

       GAS: Gastrocnemius, 

       RF: Rectus Femoris, 

HAM: Hamstrings, SOL (soleus), and TA (tibialis 

anterior). 

VAS: 3-CcomponentVastus and  

SOL: Soleus. 

Passive prostheses do not generate power by themselves. 

They only react to the contact with the ground or the contact 

with the amputee's body himself. Active prostheses are those 

that generate power and lessen the energy exerted by amputee 

wearing them. Powered prostheses include motors to provide 

power needed to pro-act rather than just react [11, 12, 13, and 

14]. Powered prostheses were only commercially available 

since 2010 [15]. 

 

 

 

 

 
 

 
Fig. 1 Muscle excitation timing during a complete gait cycle [10]. 

 

II. Gait Analysis and Positive Control 

A. The EMG signal processing framework 

We are not robots, any human movement cannot be precisely 

reproduced in the same shape, and this includes gait patterns. 

Additionally, because raw surface. Spikes of 

Electromyography (EMG) were of shape randomly, it is not 

expected that EMG data for several walk cycles of the exact 

person will be identical. The range of raw surface EMG could 

be (+or -) 500 µvolts while the range of frequency (6to500) 

Hertz [40]. 

First step for EMG processing is converting all amplitude 

which is negative amplitudes to positive amplitudes, 

rectification. The Root Mean Square (RMS) are used to 

smooth the EMG signal, there is no need to use any filter. As 

mentioned before, your gait patterns are not the same when 

same movement is done twice. Gait patterns differ when you 

are moving using different shoe or walking on a different 

terrain. It even differs when you are tired than when you are 

full of energy or about to sleep. To overcome this, the EMG 

signal is normalized to a value which is reference such as the 

Maximum Voluntary Contraction (MVC) [41, 42]. Participants 

are asked to make the maximum effort using each muscle 

separately to check the MVC value of this muscle. The 

concept of MVC is used in the most of studies which 

associated with trained and healthy subjects [16] 

 

B. Controlling Lower Limb Prostheses 

Echo Control scheme was proposed to control movement of 

joints in prostheses. This approach as shown in Fig. 2 

depended on sensors put on the healthy leg. 

 

  
Fig. 2 Echo Control Scheme. 

 

The actions performed by this healthy leg are echoed to be 

performed on the prosthesis worn on the other side. Echo 

Control approach has some disadvantages. Firstly, the amputee 

has to put some equipment on his healthy leg which might not 

be desired. Secondly, the information that is to be echoed is 

delayed, nearly half a step before being applied on the 

prosthesis worn. Thirdly, the amputee will face a problem if he 

desires to make an odd number of steps. Lastly, this scheme 

cannot be applied on bi-lateral amputees. 

 

  
Fig. 3 Gait Intent Recognition System. 

 

Another approach to control powered prostheses is shown in 

Fig. 3; it is called Gait Intent Recognition. 

 

Sensors are put on the prosthesis and on the residual muscles 

of the leg with amputation. Output of these sensors is then 

utilized to recognize the purpose of the user. The result of 

intent guessing was as then used to control the prosthesis. The 

advantages of this approach over the echo control system are 

many. No wiring is needed to be put on the healthy leg. No 

delay resulting from waiting for the step of the healthy leg to 

be performed. No constraints on the number of steps. Finally, 

bi-lateral amputees can benefit from this approach. 
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In [39] the authors presented a survey on the development of 

bioelectronic prostheses and orthoses to demine the user's 

intent of the movements of limbs. 

Huseyin et al. [17] suggested a real-time gait intent recognition 

system for both standing and walking modes and tested it to 

control both of prosthesis ankle and Knee powered. The 

system recognized patterns of the output coming from sensors 

put on the prosthesis (mechanical sensors only). A non-

amputee subject did the experiments on a treadmill using an 

able-bodied adapter designed in [13]. 

Test the performance of the suggested work by asking the 

subject to walk in three walking speeds fast, slow and normal. 

During Standing, he was demanded to randomly shift weight 

of him among limbs, and then turn in place and still stand. 

Principal Component Analysis (PCA) reduced the dimension 

with 100 sample of the frames long gave good results by 

utilizing a GMM classifier. The results of this study were 

encouraging that an amputee was recruited to test it in 2010 

[18]. In this study, sitting mode was added to the experiments. 

The results were also good and satisfying. A further study [19], 

studied a system for walking on a slope with two different 

slope angles (5º and 10º) was experimented. Suggested 

controller gave better results than walking upslope with 

passive prosthesis. 

Au et al., [20], introduced a comparison for predicting user's 

intent through Neural Network and muscle model EMG-

controller approaches. For simplifications, only movements of 

sagittal plane of the ankle joint are addressed for a transtibial 

(below knee) amputee, dorsiflexion, and ankle plantar flexion. 

EMG data from three muscles (Gastrocnemius, Soleus and 

Tibialis Anterior muscles) was measured. The amputee 

participant included in this study watched ankle movements on 

a screen and tried to mimic them. EMG data measured from 

his muscles are using as offline data training. The next step to 

this work is to evolve the algorithms of real-time learning to 

control EMG. 

In [21], mechanical sensors on prosthesis, previously designed 

in [22], control stair descent gaits and the mimic of level-

ground. But the control of prosthesis transition between these 

two gaits was using EMG data as input. The two muscles 

(Gastrocnemius and Tibialis Anterior) were studied to control 

these transitions. EMG is using for the limb residual such as 

control commands that allow the transition control mode is 

quick.  

Chen et al. [35], utilized different leaner regression to 

demonstrate the arm movement and getting a force from EMG 

signals procured from five lower arm muscles. Objects were 

teaching to complete three sorts of calibration errands to 

prepare the demonstration and one deliberately shifting getting 

a handle on drive errand to test the demonstrate execution. The 

getting a handle on constrain applied by each subject was 

constrained to be lower than 50% greatest voluntary 

contraction (MVC) getting a handle on drive. Mean absolute 

difference (MAD) between anticipated and watched getting a 

handle on constrain was utilized to gauge the forecast 

execution. Comes about appeared that arm developments had a 

critical effect on getting a handle on drive expectation 

execution. Inter-condition MADs were more prominent than 

intra-condition MADs. 

Kieliba et al. [36], used EMG signal to measure the effect on 

weights of synergy and inter-subject similarity (ISS) by 

utilizing data of experimental of IS-muscles upon limb. 

Liu et al. [38], considered with mechanical restoration that 

points in helping specialists amid delayed recovery handles. 

They utilized K-nearest neighbours (KNN) calculations to 

anticipate the user’s expecting shifting heading, and the 

intuitively torque eyewitness moreover utilized to alter the 

energetic attitude of the robot exoskeleton to form it mobile 

and lighter. They connected that strategy to the dynamic 

control of recovery and exercises of day by day living (ADL) 

errands. They conducted an arrangement of tests, and the test 

comes about were very engaging. 

Further work hoped to add more modes like ramp climbing 

and stair ascending. Wang et al., [15] proposed a hybrid 

control that uses EMG data from Gastrocnemius muscle with 

intrinsic controller on the prosthesis to (1) Control the gain of 

ankle command torque and (2) Control the transition between 

level-ground walking, stair ascend and descend. An amputee 

of bilateral, was worn a powered ankle prosthesis on a right 

leg and a passive prosthesis on the other (left). Gait patterns 

that were studied: Level-ground walking, stairs ascending and 

descending. Future work suggested more pre-processing of 

EMG input data to lessen motion artefacts. An independent-

phase strategy was proposed in [23]. It tries to identify seven 

locomotion modes. Two Gluteal and nine residual Thigh 

muscles were investigated. Events of Gait were exposed by 

force-sensitive-resistor-based switches foot placed under the 

tested foot and using motion data of light reflective signs 

placed over the toe and heel. Synchronization of these signals 

is done. System was tested on EMG data collected from two 

subjects with transfemoral (above knee) amputations and eight 

non amputees' subjects. The study compared using two 

classifiers: Artificial Neural Network (ANN) &Linear 

Discriminant Analysis (LDA). The difference was not that 

significant. LDA is preferred to be used in further studies 

because it is easy to do without regularization parameter is 

considered. Classification accuracy is approximately 80% - 

95%. The results suggest that the new independent-phase 

strategy could be used for neural-controlled artificial legs. 

Advances of this work were proposed in [24]. EMG Signals 

from two Gluteal muscles on the amputated side and the Thigh 

muscles of the residual limb were monitored. From 7 to 9 

EMG electrodes were located on the outstanding limb based 

on the outstanding limb length. Measurements were also taken 

from ground reaction forces moments sensors. There are 5 of 

transitions mode and 6 locomotion modes were investigated. 

The different locomotion modes were represented in numerous 

actions i.e., level-ground walking, avoiding an obstacle, stair 

up/down, and ramp up/down. Support Vector Machine (SVM) 

gave better results than LDA as in this study longer gait phases 

were studied. Results also showed that it was harder to classify 

swing phase compared to classifying during Stance Phase. 
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This might be a result of little force/moment information 

existing during swing phase. Some data used in this study was 

not practical if used on daily basis for an amputee, for 

example, data from the sound (healthy) leg were measured, 

which would not be the case in real use of prosthesis. 

Therefore, further investigations were put in mind to gain 

information in another way. 

Hargrove et al. studied flexing and extending the knee joint in 

[25]. Two unilateral transfemoral amputees and one bilateral 

amputee, with transfemoral amputation on one leg and 

transtibial on the other, performed the tests. In all situations, 

all matters were considered by a prosthetic knee, previously 

designed in [26], on one limb and an intact knee on the other. 

They were asked to move both their missing knee and the 

intact one like motions displayed on a computer screen. 

Surface EMG from the Hamstring and Quadriceps muscles of 

the residual limb were measured. Quadratic Discriminant 

Analysis (QDA) & LDA were used to classify the intent of the 

subjects to either ex or extend their knee joint. Based on a 

fivefold cross validation of classification accuracy, the QDA 

classification provided higher classification accuracies than 

LDA. 

This study integrated with the approach in [18] studying level 

ground walking, standing and the transmission among stand 

and sit. In the previous study, one degree of freedom (DOF) 

was studied, Hargrove et al. in [27], had two tests, one with 2 

DOF and the other with 4 DOF. Four transfemoral amputee 

participants and four non-amputees were recruited. Surface 

EMG electrodes were placed over nine muscles. Knee and 

ankle joints movement were studied. The motions investigated 

were extending and flexing Knee, dorsiflexion and plantar 

flexy, external, and internal rotation, internal and external 

femoral rotation, and relaxation. Participants replicated what 

they saw on a computer screen. A motion was made in a 

virtual environment, and they had to mimic it: how much time 

would the participant take to complete a motion and motion 

completion percentage (how many times the motion is done 

successfully). Future experiments were supposed to include 

real tests instead of the virtual environment that was used in 

this study. 

The results indicate that there are five thigh residual muscles 

were requested to obtain accurate control. The system of 

pattern recognition was estimated on its classification accuracy 

and satisfying real-time need. Future studies would be to use 

neural information for weight bearing activities. 

In [28] more amputee members were enlisted. Six subjects 

with one-sided transfemoral removals and six non-amputee 

subjects are taken an interest in this think about. The proposed 

control framework depended on data extricated from the 

signals of EMG to hold a lower appendage prosthesis Sagittal 

plane movements of the knee and lower leg could be precisely 

(90%) recognized and controlled in both a virtual environment 

and on an incited prosthesis transfemoral utilizing as it were 

EMG signals measured from nine leftover thigh muscles. The 

comes about appeared that as it were five remaining thigh 

muscles were required to attain precise control. The proposed 

framework was assessed on its classification precision and 

fulfilling real-time require. Future considers would be to 

utilize neural data for weight bearing exercises 

Sensors are put on the prosthesis Reference Section 
  

III. EMG ANALYSIS AND CLASSIFICATION METHODS 

A. Datasets 

The developing of data analysis and machine learning requires 

a large amount EMG signal data. Over the last decade, there 

are a lot of EMG data sets are online and available to 

download. Most available EMG datasets are for upper limbs, 

forearms, and fingers [52-56] 

  For lower limbs, a benchmark for lower limb neuro- 

mechanical signals is represented by Encyclopedia of Able-

bodied Bilateral Lower Limb Locomotors Signals (ENABL3S) 

[57]. The recorded signals are from 10 able-bodied people via 

sensors which wearable among movement that is unassisted. 

In expansion to different movements: sitting and standing, 

points openly transitioned between level ground strolling, 

incline up/down, and stair up/down at their self-selected speed. 

Points were reciprocally instruments with (EMG) surface from 

7 lower appendage muscles, goniometers at the knee, lower leg 

(ankle), and thigh. Extra units of measurement were around the 

waist. Highlights frequently utilized in limbs which are lower 

expectation acknowledgment for controlling prosthesis is 

released from toe off stride occasions and windows close heel 

contact. 

More dataset for EMG lower limb is presented from the 

machine learning repository (UCI) [58]. It incorporates 3 

distinctive works out: sitting, standing and strolling within the 

muscles within the works out. It is recorded for twenty-two 

male subjects, eleven with distinctive knee variations from the 

norm already analyzed by a proficient. There are three 

movements for the behavior analysis related with the knee 

muscle, walk, and leg expansion from a descent position, and 

flexion of the leg ascent. These signals are acquired with 4 

electrodes, namely, Vastus Medialis, biceps femoris, 

semitendinosus, and rectus femoris. Also, the electrodes are 

attached with the goniometer in the knee. However, data log 

gear was utilized MWX8 by Biometrics of eight computerized 

channels and four analog channels, of which four for sampling 

were utilized SEMG and one for goniometry, this information 

was obtained straightforwardly to the computer MWX8 inside 

microSD card capacity and in Real-time Data log computer 

program transmission through Bluetooth connector, 14-bit 

determination and examining recurrence of 1000Hz. The 

overall number of terminals is four, comparing to the time 

arrangement one for each channel (1:4). Each arrangement 

contains arounds five offers or movement redundancies for 

each subject. 

 

B. Pre-processing 

The fundamental stage is pre-processing EMG data for 

successful feature extraction and high accuracy classification 

[29]. Usually, sensed EMG data are amplified to increase the 
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amplitude of the signal, where an amplification factor of 

approximately 1000 is done before sampling. 

Huang et al. in [23], high pass filter is used and cut off 

frequency is 25 to eliminate artefacts motion from raw EMG 

signals. In [24], a pass –band filer is used to filter EMG 

signals, the range of frequency among 20 and 420 Hz and the 

gain is 1000. 

In [30, 31, and 24], the filtered signals were sampled with rate 

between 1-2 kHz. 

Keiliba et al. [36] used variable frequencies and normalization 

methods in filter cut-off to pre-process the EMG signals. 

C, De-noising 

EMG Signals are subject to noise caused by different 

sources. Signal denoising, therefore, is a fundamental step for 

further signal processing steps. Some of the various noise 

sources are:  

1) Electrical noise generated from electrical equipment’s. 

To eliminate this type of noise a trade-off between a suitable 

electrode size and at the same time get good signal quality is 

chosen to get low noise-to-signal ratio. 

2) Electromagnetic noise located on the body surface. 

Continuously, the human body's Publication, Archiving and 

Indexing surface produces electromagnetic radiation.  

The ambient noise is emerged from the source of power 

radiation at 60 hertz that is called power- line interference 

(PLI), which is happened from the varieties in the impedance 

of electrode and lost currents on the object. Signal can be 

cleaned from this by using Laguerre fitter. It has been shown 

to be more operative than other algorithms. 

Fig. 4 shows a block diagram for noise removal proposed by 

Chowdhury et al. [32]. 

 

 
 

  
Fig. 4 General block diagram of PLI cancelling system [32]. 

 

3) Crosstalk noise. EMG signal from a group of muscle out of 

interest are considered as crosstalk noise, when recorded with 

the EMG signal of the muscle of interest. This noise polluted 

the signal and wrong interpretation of the information of the 

signal could be caused  

4) Internal noise can be defined as the increased of the amount 

of fat in the body, which causes increasing in the separation 

among the sites detection and fibers of active muscle, and 

hence reduce the EMG signal quality. This type of noise is 

called the internal noise [32, 33]. 

D. Segmentation 

EMG signal segmentation means to cut the input signals into 

disjoint sub-signals based on temporal or event-based criteria. 

In event-based segmentation, the signal is divided into sub-

signals based on events regarding the objectives of the 

following classification steps. Most probably the acquisition 

system is occupied by special sensors for event detection and 

synchronizing the event with EMG signal such as footswitch. 

Huang et al in [23] is placed a force sensitive resistor under 

the foot tested, to detect events of Toe Off (TO) and Heel 

Contact (HC). The signals of EMG are then segmented to have 

complete gait cycles. The cyclic nature of EMG signals of gait 

EMG signals makes it easier in segmentation over other not 

cyclic EMG signals such as arm movements. This nature 

makes it easy to train locomotion classification systems with 

segments of gait modes between two HCs. 

In temporal-based segmentation, the signal is divided into sub-

signals each of which has a predetermined length or number of 

sample points. In [28], EMG signals were split using sliding 

window where window size is 250 ms which slides 50 ms 

allowing 200 ms to be kept on an overlapping. 

Huang et al in [23] proposed second level of segmentation for 

training their system. They had four 200-ms segments of EMG 

signals: (1) Post-HC, (2) Pre-TO, (3) Post-TO and (4) Pre-HC, 

illustrated in Fig .5 GME, RF, VM, BFL, TA and GASL are 

abbreviations for lower limb muscles: 

Rectus Femoris :RF, 

Tibialis Anterior:TA,  

Gluteus Medius :GME, 

Gastrocnemius Lateral Head :GASL. 

Vastus Medialis:VM, 

Biceps Femoris Long head:BFL 

 

 

Fig. 5 Four defined phase windows aligned with Heel Contact (HC) and Toe-

Off (TO) [23]. 

E. Classification 

User intent recognition systems depend on classification 

techniques to identify the user of the prosthesis intention to 

control the prosthesis to help the user make minimal effort 

with comfort and safety. 

Different research used Linear Discrimination Analysis LDA 

classifier. It is used in [23] to classify between seven modes 

walk on ground, ascend stairs, descend stairs, step over an 

obstacle turn and stand l. Hargrove et al [28] used LDA 
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classifier to classify between non-weight bearing activities. In 

[34], it was mentioned that LDA increases the proportion 

variance class and minimizes the proportion within variance 

class. LDA gives similar performance for classification 

different types, it is very good for real-time control.  

Salim et al., [37] used Autoregressive Moving Average –

ARMA- parameters and the residual variance to distinguish 

between the well signals and myopathy signals of the skeletal 

muscle tissue. Their proposed framework used LDA classifier 

for the EMG signal dynamics to characterize it. Surprising 

enhancements in accuracy, sensitivity, and specificity were 

accomplished, which are higher values than previous records 

in the literature and offered an improved model for myopathy 

analysis. 

Huang et al., [23] suggested a phase independent strategy 

where there are 4 classifiers, one for each sub-phase post-HC, 

pre-TO, post-TO and pre-HC as illustrated in Fig. 6. 

 

 

Fig. 6 Phase Independent Strategy as represented in [23]. 

 

In [23], more complex ANN classifier in addition to LDA 

is investigated. In [24], Support Vector Machine (SVM) gave 

better results than LDA and enabled longer gait phases were 

studied. 

The authors in [38] applied the K-nearest neighbors 

(KNN) algorithm to know the moving direction prepared by 

the user. The extracted information is utilized to modify the 

behavior of an exoskeleton robot that made it move. Table 1 

represents an outline of various techniques to classify EMG 

signal applied for different body parts. It also shows the 

achieved accuracies. 
TABLE I 

reflects some experiments with the classifiers, Random Forest, Principal 

Components Analysis, etc. The table proves that the classifiers gave high 

accuracy values for user intent recognition systems in different parts of the 

body 

AUTHOR CLASSIFIER BODY PART ACCURACY 

LIAO, [59] SVM (SUPPORT 

VECTOR 

MACHINE) 

ARM 94% 

REKHI, [60] MULTI CLASS- 

SVM 

FOREARM 96% 

FUTAMATA, 

[61] 

SVM  HAND 4CHANNEL LSVM: 

94.56% 

4CHANNEL NON-

LSVM: 93.33% 

ZHANG, 

[62] 

PRINCIPAL 

COMPONENTS 

ANALYSIS (PCA) 

HAND 99.0% MOTION 

SUCCESS RATE 

99.8% 

CLASSIFICATION 

SUCCESS 

YU, [63] LDA ARM-FULL 

LIMB 

FULL-LIMB EMG = 

88.8±9.9% 

FOREARM EMG = 

90.3±4.2% 

NEGI, [64] PCA / ULDA 

(UNCORRELATED 

LINEAR 

DISCRIMINANT 

ANALYSIS) 

UPPER LIMB  

 

PCA RANGE FROM 

(88.33430 ± 

4.40186 - 

95.85695 ± 

0.96225)            

ULDA (89.81725 

± 3.40176 -

96.35613 ± 

0.69265) 

CHAMPATY, 

[65] 

RANDOM 

FOREST + 

WAVELET 

TRANSFORM 

SUB-VOCAL 

REGION 

90% WHEN TWO 

FEATURES 

WERE CONSIDERED 

75% WITH FIVE 

FEATURES 

LING-LING, 

[66] 

RANDOM 

FOREST 

GLUTEUS 

MEDIUS MUSCLE 

& 5 MAIN 

MUSCLES OF 

LOWER LIMB 

99.2% IN FIVE 

MOVEMENT 

MODES 

RECOGNITION 

AYDÕN, 

[67] 

KNN (K-

NEAREST 

NEIGHBOURS)  & 

LDA 

PROSTHETIC 

FINGERS 

CONTROL 

81.6% FOR KNN      

98.94% FOR LDA 

WAN, [68] KNN PRE-DEFINED 

HAND GESTURES 

96.05% 

PRAVEEN, 

[69] 

KNN HAND 92-94% 

HUSSEIN, 

[70] 

ANN 

(ARTIFICIAL 

NEURAL 

NETWORK) 

MUSCLE-

DISEASES 

91% 
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OWEIS, [71] ANN HAND 88.4 % 

 

F.  Deep Learning Strategy for Classification and Feature 

Extraction 

The deep learning [43] is a rising class of machine 

learning approaches for classification reason. It could be an 

extraordinary frame of learning, when a network is learned and 

is built characteristic of features from all neurons of hidden 

layer [44]. It decreases the power of the mental thinking for 

feature extraction [45]. The foremost broadly used profound 

learning strategy is the CNNs. It made up of convolution, 

pooling, dropout layers, and completely layers are connected. 

The fully connected layers were the same as the ordinary ANN 

[46]. 

 

 

Fig. 7 CNN Structure as introduced in [44]. 

The authors in [49, 44, 50, 51, and 47] used the CNN in their 

experiments on EMG signals for classification of hand 

movement, Movement of intention decoding, recognition of 

gesture, guidance of robot arm and Neuroprosthesis control, 

respectively. They achieved 66.5, 99.5, 90, 99.7, and 83 % 

accuracy, respectively. The approaches of deep learning 

execute good with diverse and large datasets. 

Discussion and Conclusions 

In Gait Intent Recognition system, the sensors are put on the 

prosthesis. The EMG signal emitted from the sensors is firstly 

smoothed by RMS and normalized using MVC methods. Then 

the noises are eliminated such as: electrical, electromagnetic, 

crosstalk, or internal noises. Next, the EMG signals are 

segmented into dis-joint sub-signals. After that the features are 

extracted for well and quick classification. 

However, the classification process is the most important step 

which determines the user of the prosthesis intention. Different 

classifiers are used for that purpose i.e., LDA, SVM, ANN, 

KNN, PCA, or Random Forest. From the survey, theses 

classifiers gave good results. Alternatively, the trendy feature 

extractor and classifier, deep learning, offered efficient results 

for user intent recognition systems of lower/upper limbs. 

From the survey it is concluded that Gait Intent Recognition 

system gave very good results for neuro-controlled powered 

prosthesis. In case of weight-bearing activities like walking, 

stair ascend. etc, gait intent recognition systems that rely on 

both mechanical and EMG input gave better results than 

depending on only EMG data. However, in case of non-

weight-bearing activities like flexing or extending the knee, 

while sitting, EMG input was really successful and gave 

encouraging results. 
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