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Abstract-A gun stabilizer is a device that facilitates 

aiming an artillery piece by compensating for the motion 

of the platform on which it is mounted. We aim to learn 

and try to design and control our own stabilizer. A dual 

axis inertial stabilized platform (ISP) that has 2 degrees 

of freedom (2-DOF) about both Y and Z axis as a turret 

was developed using CAD software then followed by 

designing a model for a tracked vehicle, to make the 

model similar to a real tank. Kinematic modelling and 

dynamic modelling are discussed and explained to make 

sure that the ISP can withstand maximum loading 

conditions and to select needed equipment and devices. 

A simulation is made on the model using Matlab 

Simscape Multibody to see how it reacts to different input 

signals. PID controller is then used to enhance 

performance of the model, in our case to reduce 

overshoots and rise time. 

Keywords- Tank, Stabilizer, Line of Sight, LOS, 

ISP, 2-DOF, PID Controller, Simulation, Simscape 

Multibody. 

I. Introduction 

The LOS or line of sight is an imaginary line 

drawn between an observer and an object (or 

between two objects) [1]. ISPs or Inertial 

stabilized platforms are used to stabilize 

sensors, cameras, weapon systems. Their main 

goal is to hold or control the line of sight of a 

one object relative to another one. ISPs have 

many applications Fig. 1 including surveillance 

cameras, telescopes, drones, missile guidance, 

target tracking, weapon systems and military 

applications (as in our application which is 

gun-turret control system) [1] [2]. 

  Most Tanks in service at the Egyptian army 

have stabilizers which enables Tank gun to be 

fixed on the target, no matter what disturbances 

are subjected to the tank. We aim to design, 

manufacture, and control of our own stabilizer 

to learn more about stabilizers and increase our 

experience in that field. 

 

Fig. 1: ISP Applications 

II. 3D-CAD Model 

The 3D-CAD model design of a 2-DOF ISP 

used to stabilize the LOS of a tank turret about 

two perpendicular axes, (elevation and 

azimuth) about the Y and Z axes, respectively. 

It was conducted using Inventor software 

aiming to simulate the shape of a real tank 

turret Fig. 2 and Fig. 3, taking in account some 

considerations such as easy assembly and 

disassembly, total mass and size, symmetrical 

mass distribution of the rotating masses about 

the rotation axes to decrease their principal 

moments of inertia. 
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Fig. 2:3D-CAD model (turret only) 

 

Fig. 3: 3D-CAD model (whole vehicle) 

2.1 Construction: 

The elevating parts are a barrel assembly 

(made of two parts), a counter weight, and an 

IMU MPU-9250 which are all driven by a 

Servo Motor Towerpro (360) 2.2 kg.cm Metal 

Gears "MG90S". 

The rotating parts consists of a two-part plate 

which carries the elevating parts, 9V-battery, 

an Arduino MEGA, and covered with a turret 

like cover which are all driven by a High 

Torque Servo Motor (15 kg.cm - Metal Gear). 

2.2 Design Constraints: 

The design limitations for the rotational 

motion is 360 degrees, and -5 to 20 degrees in 

elevation (as in real tank turrets). 

2.3 Stress Analysis: 

a stress analysis was conducted using 

Autodesk Inventor software. It was conducted 

for both the turret and vehicle chassis to check 

stresses and deflection as indicated in Fig. 

4,Fig. 5,Fig. 6, and Fig. 7. 

 

Fig. 4:Turret stress analysis against deflection 

 

Fig. 5: Turret stress analysis against stresses 

 

Fig. 6: Vehicle base stress analysis against 

deflection 

 

Fig. 7: Vehicle base stress analysis against 

stresses 

As shown in the previous stress analysis it was 

shown that the model is safe and can withstand 
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maximum possible loading conditions (torques 

and forces). 

III. Mathematical Modelling 

For the designed Turret Rotation system, four 

reference frames as shown in Fig. 8, they must 

be considered namely:  

1. A fixed reference frame with respect to the 

earth OF.  

2. The carrier or platform reference frame OP. 

3. The outer gimbal (rotating parts) reference 

frame OO. 

4. The inner gimbal (elevating parts) reference 

frames that carrying Barrel OI.  

The relation between any two frames is 

expressed by the sum of a rotation and 

translation matrices. Our interest is only on the 

angles, angular velocities and angular 

accelerations, the translation matrix has no 

influence on how the angular velocity of one 

coordinate frame relates to another frame and 

it can be neglected from the calculations [3]. 

We will discuss relations between different 

frames to be able to study the model 

kinematics and dynamics later, this is achieved 

by using Euler coordinate system (Euler 

matrices). 

 

Fig. 8: Model coordinate frames 

IV. Kinematic modelling 

4.1 Euler Matrices: 

 

Fig. 9: Rotation about z-axis [3] 

Fig. 9 represents a coordinate system X1-Y1-

Z1, having a Point P1 of the position vector 

[x1 y1 0]T and making an angle α with the X1-

axis. If the coordinate system rotates about the 

Z-axis in a clockwise direction (from Y to X) 

with an angle Ɵ, the new coordinate system 

will be X2-Y2-Z1, and the point P1 will turn 

to be P2 with the new position vector [x2 y2 

0]T  and angle (α- Ɵ) with the X1-axis. The 

equations describe this system are: 

cos α =
x1

r
 

sin α =
y1

r
 

cos(α − Ɵ) =
x2

r
 

sin(α − Ɵ) =
y2

r
 

cos(α − Ɵ) = cosα cosƟ + sinα sinƟ 

x2

r
=

x1

r
cosƟ +  

y1

r
 sinƟ  

x2 = x1 cosƟ +  y1 sinƟ 

sin(α − Ɵ) = sinα cosƟ − cosα sinƟ 

y2

r
=

y1

r
cosƟ −  

x1

r
 sinƟ  

y2 = y1 cosƟ −  x1 sinƟ 

z2 =  z1 
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In matrix form: 

[

x2

y2

z2

] = [
CƟ SƟ 0

−SƟ CƟ 0
0 0 1

] [

x1

y1

z1

] 

Ez =[
CƟ SƟ 0

−SƟ CƟ 0
0 0 1

] 

4.2 Angular velocities of different frames: 

      The inertia reference frame OF, has a fixed 

position on the earth with respect to the fixed 

stars. So, its angular rate ωF is: 

ωF = [
0
0
0

] 

During the motion, the carrier platform 

coordinate frame OP, rotates about XF, YF, and 

ZF of the fixed inertia frame with angular rates 

of P, Q, and R respectively. So, the relative 

angular velocity of the platform frame about the 

inertia reference frame is ωPF: 

ωPF = [
P
Q
R

] 

the angular velocity of the carrier platform ωP 

as observed from the platform reference frame 

OP, is: 

ωP = E. ωF + ωPF = [
P
Q
R

] 

Then, the outer frame rotates about its Z-axis 

with an angle Ɵ, results in relative angular rate 

between the outer and the platform frames ωOP: 

[
0
0
Ɵ̇

]OP = ω 

from eqns 1,4 the angular velocity of the outer 

gimbal platform ωO as observed from its 

reference frame OO, is: 

[
CƟ SƟ 0

−SƟ CƟ 0
0 0 1

] [
P
Q
R

] + [
0
0
Ɵ̇

] = =OP ωP + . ωz= EO ω

[
PCƟ + QSƟ

−PSƟ + QCƟ

R + Ɵ̇

] 

Finally, the Inner frame rotates about the Y-axis 

with an  angle ɸ and angular rate ɸ̇. Results in 

relative angular rate between the inner and the 

outer frames ωIO: 

[
0
ɸ̇
0

]IO = ω 

from eqns 2,4,5The angular velocity of the 

inner gimbal ωI as observed from its reference 

frame OI, is: 

ωI = Ey. ωO + ωIO 

=[

(PCƟ + QSƟ)Cɸ + (R + Ɵ̇)Sɸ

−PSƟ + QCƟ + ɸ̇

−(PCƟ + QSƟ)Sɸ + (R + Ɵ̇)Cɸ

] 

4.3 Angular accelerations of different 

frames: 

      The angular acceleration of the platform, 

outer, and Inner gimbals (αP, αO, αI) are 

calculated by differentiating the angular 

velocities ωP, ωO, and ωI: 

αP= ωṖ = [
Ṗ
Q̇

Ṙ

] 

αO= ωȮ=EzωṖ+EżωP+ωOṖ  

Eż=[
−SƟ CƟ 0
−CƟ −SƟ 0

0 0 0
] Ɵ̇ 

ωOṖ = Ɵ̈ = [
0
0
Ɵ̈

] 

ωȮ == Oα

[

(Q̇ − PƟ̇)SƟ + (Ṗ + QƟ̇)CƟ

−(Ṗ + QƟ̇)SƟ + (Q̇ − PƟ̇)CƟ

Ṙ + Ɵ̈

] 

αI= ωİ =EyωȮ+EẏωO+ωIȮ  
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Eẏ=[
−Sɸ 0 Cɸ

0 0 0
−Cɸ 0 −Sɸ

] ɸ̇ 

 

ωIȮ = ɸ̈ = [
0
ɸ̈
0

] 

=ωİ=Iα 

[

−ɸ̇Sɸ(PCƟ + QSƟ) + Cɸ(ṖCƟ + QƟ̇CƟ + Q̇SƟ − PƟ̇SƟ) + ɸ̇Cɸ(R + Ɵ̇) − Sɸ(Ṙ + Ɵ̈)

−PSƟ − QƟ̇SƟ + Q̇CƟ − PƟ̇CƟ + ɸ̈

−ɸ̇Cɸ(PCƟ + QSƟ) + Sɸ(−ṖCƟ + PƟ̇SƟ − Q̇SƟ − QƟ̇CƟ) − ɸ̇Sɸ(R + Ɵ̇) + Cɸ(Ṙ + Ɵ̈)

] 

It is clear from the above equations that the 

angular velocity of the outer gimbal can’t be 

analysed explicitly without considering the 

effect of the relative motion between the outer 

frame and the platform frame. Also, the relative 

rotation between the outer and inner frames 

must be considered when dealing with the inner 

gimbal rotation.  

V. Dynamic Model Derivations 

        From the rigid body dynamics 

considering a fixed reference frame X Y Z 

with basis unit vectors i, j, and k, and another 

rotating reference frame Xr Yr Zr with basis 

unit vectors ir, jr, and kr. If the rotation is with 

angular velocity ω about the Z-axis of the 

fixed frame, the new position of the rotating 

frame is: 

[

xr

yr

zr

] = [
Cωt Sωt 0

−Sωt Cωt 0
0 0 1

] [
x
y
z

]=[
xCωt + ySωt

−xSωt + yCωt
z

] 

Where: 

ir =( Cωt, Sωt, 0)    ,   jr =(−Sωt, Cωt, 0)    ,    

kr =( 0, 0,1) 

d

dt
 ir =ω(−Sωt, Cωt, 0) = ω jr 

d

dt
 jr =ω(−Cωt, −Sωt, 0) = −ω ir 

Since: k x i = j               ,        k x j = i     ,      

ω̂ = [0 0 ω] = ωk    

ω jr = ω kr x ir = ω̂ x ir = 
d

dt
 ir 

−ω ir = ω kr x jr = ω̂ x jr = 
d

dt
 jr 

Using the concept of conservation of the 

angular momentum, where I the mass moment 

of inertia: L=Iω     ,      L=lxi+lyj+lzk 

         
d

dt
 L=

dlx

dt
 i+ 

di

dt
 lx+ 

dly

dt
 j+ 

dj

dt
 ly+ 

dlz

dt
 k+ 

dk

dt
 lz 

         
d

dt
 L=

dlx

dt
 i+ 

dly

dt
 j+ 

dlz

dt
 k+ [ωx(lxi+lyj+lzk)] 

         
d

dt
 L= (

dL

dt
)

r
+  ω x L 

where (dL/dt)r, the rate of change of the 

angular momentum L as observed in the 

rotating coordinate system. Hence, the 

derivative of the angular momentum L in a 

rotating reference frame has two components, 

one from the explicit time dependence due to 

motion of the rotating frame itself, and another 

from the frame’s carrier rotation. During the 

rotation of the outer gimbal, a torque is applied 

to rotate the Z-axis of the gimbal. Since the 

inner gimbal is also rotating about its Y-axis, 

the outer gimbal will affect the inner by a 

torque around Z and Y-axes of the inner 

gimbal. Applying the above relations to the 

relative rotation between the outer and inner 

gimbals frames, the moments M exerted on the 

inner gimbal frame by the outer frame can be 

calculated from the rate of change of the 

angular momentum L of the outer frame as 

observed from the inner frame. Since L and ω 

are changing with time during the rotation, M 

can’t be solved with them. So, we change to a 

coordinate frame fixed with the rotating body 

using Lr and ω. 

M=L̇ = Lr +̇ ω x Lr=Iω̇ + ωx Iω 

 

ωx Iω = [

ωx

ωy

ωz

] x [

Ixωx

Iyωy

Izωz

]

= |

i j k
ωx ωy ωz

Ixωx Iyωy Izωz

| 
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ωx Iω =(Izωyωz − Iyωyωz)i −(Izωxωz −

Ixωxωz)j + (Iyωxωy − Ixωxωy)k 

Mx  =Ixωẋ +(Iz − Iy) ωyωz 

My  =Iyωẏ +(Ix − Iz) ωxωz 

Mz  =Izωż +(Iy − Ix) ωxωy 

where Mx, My, and Mz are the moments 

applied on the inner frame due to the effect of 

both the rotation of the inner frame itself, and 

the coupling between the inner and outer 

frames. All these equations are assuming that 

the rotating body has its axes parallel to the 

body’s principle axes of inertia. Generally, the 

dynamics of rotating 3-axes gimbals are given 

by Euler’s equations: 

1- For nonsymmetrical, inhomogeneous 

mass: 

Tx = αxIx +ωyωz(Iz − Iy) – (ωy
2 − ωz

2) Iyz -

(ωxωy + ωz )̇ Ixz+(ωxωz − ωy )̇ Ixy 

Ty = αyIy +ωxωz(Ix − Iz) – (ωz
2 − ωx

2) Ixz -

(ωzωy + ωx )̇ Ixy+(ωxωy − ωz )̇ Iyz 

Tz = αzIz +ωxωy(Iy − Ix) – (ωx
2 − ωy

2) Ixy -

(ωxωz + ωy )̇ Iyz+(ωxωz − ωx )̇ Ixz 

2- If the rotating object’s coordinate frame 

is aligned with its center of mass, it is 

called principle axes of inertia. Then, 

Ixx, Iyy, and Izz are called principle 

moments of inertia. Where, Ixy = Iyx = 

Ixz = Izx = Iyz = Izy = 0 

Tx = αxIx +ωyωz(Iz − Iy) 

Ty = αyIy +ωxωz(Ix − Iz) 

Tz = αzIz +ωxωy(Iy − Ix) 

3- if the rotating part is symmetric about: 

X-axis : Tx = αxIx  where Iy = Iz 

Y-axis : Ty = αyIy  where Ix = Iz 

Z-axis : Tz = αzIz   where Iy = Ix 

In our model it is the second case where the 

center of rotation is at the assembly center of 

gravity Ixy = Iyx = Ixz = Izx = Iyz = Izy = 0 (for 

both elevating and rotating parts) so we will be 

using the following equations in our dynamic 

modeling and torque calculations: 

                                                   Tx = αxIx 

+ωyωz(Iz − Iy) 

(7) Ty = αyIy +ωxωz(Ix − Iz) 

(8) Tz = αzIz +ωxωy(Iy − Ix) 

VI. Torque Calculations of the 

Inner Gimbal 

the moments (MI) applied on the inner gimbal 

frame due to the effect of rotation are given 

by: 

MI=IIω̇I + ωIx IIωI 

The sum of the torques about the inner gimbal 

(TI)is: 

TI = TE - MI – Tg – Tf 

TE ……. Motor elevation torque about the Y-

axis 

Tg ……Gravity torques about each axis of the 

inner gimbal 

Tf ……. Friction and cable restraint torques 

expressed as: 

TIfy =kIf ɸ̇+ TIfn + kIc ɸ+ TIcn 

kIf ……..Viscous friction coefficient 

TIfn……..Nonlinear friction torques 

kIc……...Cable restraint coefficient 

TIcn….....Nonlinear cable restraint torques. 

TI =[
0
TE

0
] − [

MIx

MIy

MIz

] − [

TIgx

TIgy

TIgz

] − [
0

Tfy

0

] 
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TIy = TE - IIyωIẏ - (IIx − IIz) ωIxωIz – TIgy – 

TIfy 

Since the inner gimbal motor only controls the 

rotation about the Y-axis, so, to stabilize the 

LOS in the elevation direction, it is required to 

null the torques about the Y-axis: 

∑ TIy = 0 

TE = IIyωIẏ +(IIx − IIz) ωIxωIz + TIgy + TIfy 

the last two terms (TIgy + TIfy) are too small 

compared to the first two, for simplicity they 

will be neglected and their effect can be dealt 

with as disturbances’ noise that can be 

diminished by the feedback servo control 

system. [3] Hence: 

TE = IIyωIẏ +(IIx − IIz) ωIxωIz 

Assuming the carrier base frame is fixed then 

P=Q=R=Ṗ = Q̇ = Ṙ=0 

Ɵ = 0: 360° 

ɸ =  −5: 20° 

ωOż = Ɵ̈ = 15°/s2 

ωIẏ = ɸ̈ = 15°/s2 

ωIx= -Ɵ̇Sɸ 

ωIz= Ɵ̇Cɸ 

Ɵ̇2 = Ɵ̇o
2

+ 2Ɵ̈Ɵ =  2Ɵ̈Ɵ 

ωIxωIz = -Ɵ̇2SɸCɸ= -0.5Ɵ̇2S2ɸ= -Ɵ̈Ɵ S2ɸ 

Ɵ̇o = 0 initial angular rotation velocity 

2ɸS IIz − IIx) Ɵ̈Ɵ+(IIyɸ̈=  ET 

By substituting in the above equation at 

different elevation and rotation angles we get 

the following curves: 

 

Fig. 10: Required motor elevation torque at 

different elevation angles against rotation angle 

 

Fig. 11: Required motor elevation torque at 

different rotation angles against elevation angle 

From Fig. 10 and Fig. 11 we choose the motor 

that will drive the inner gimbal (elevating 

parts) to be Servo Motor Micro (180) 2.2 

kg.cm Metal Gears (FS90MG) which has a 

maximum torque of 0.21582 N.m 

Torque Calculations for The Outer Gimbal 

         Due to the rotation of the inner gimbal 

with respect to the outer one about the Y-axis, 

the inner gimbal moments MI induce a torque 

(MI)O from the inner gimbal on the outer one. 

To transform the torque done by the inner 

gimbal from the inner gimbal reference 

coordinate frame to the outer gimbal reference 

coordinate frame, we use the Euler’s angular 

transformation about the Y-axis. [3] 

MI = Ey(MI)O 

(MI)O =Ey−1 MI 

(MI)O The inner gimbals’ torque as observed 

from the outer gimbals’ reference frame. 
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Since Ey is an orthogonal matrix:  EyT=Ey−1 

(MI)O =EyT MI 

=[
Cɸ 0 Sɸ
0 1 0

−Sɸ 0 Cɸ
] [

MIx

MIy

MIz

]=[

MIxCɸ + MIzSɸ
MIy

−MIxSɸ+MIzCɸ
] 

(MI)Oz = -(IIxωIẋ +(IIz − IIy) ωIyωIz) Sɸ 

+(IIzωIż +(IIy − IIx) ωIxωIy) Cɸ 

The same as the inner gimbal: 

MOz =IOzωOż +(IOy − IOx) ωOxωOy + (MI)Oz 

where Mo: moments applied on the outer gimbal 

frame due to the effect of rotation. The sum of 

the torques about the outer gimbal TO and the 

motor rotation torque TR are: 

TO =[
0
0

T𝑅

] − [

MOx

MOy

MOz

] − [

TOgx

TOgy

TOgz

] − [
0
0

Tfz

] 

 

Since the outer gimbal motor only controls the 

rotation about the Z-axis, the only used 

equation will be: 

TOz = TR - IOzωOż - (IOy − IOx) ωOxωOy – 

(MI)Oz - TOgz – Tfz 

For eliminating the torques about the Z-axis of 

the LOS: 

∑ TOz = 0 

TR = IOzωOż +(IOy − IOx) ωOxωOy -

(IIxωIẋ +(IIz − IIy) ωIyωIz) Sɸ +(IIzωIż +(IIy −

IIx) ωIxωIy) Cɸ+ TOgz + Tfz 

As for the inner gimbal, the last two terms of 

this equation will be neglected. [3] To 

determine the required torque for the outer 

gimbal, we assume again the carrier base frame 

is fixed then P=Q=R=Ṗ = Q̇ = Ṙ=0 

Ɵ = 0: 360° 

ɸ =  −5: 20° 

ωOż = Ɵ̈ = 15°/s2 

ωIy = ɸ̇ 

ɸ̇2 = ɸ̇o
2

+ 2ɸ̈ɸ 

ωIy = ɸ̇ = √2ɸ̈ɸ 

ωIx = −Ɵ̇𝑆ɸ 

Ɵ̇2 = Ɵ̇o
2

+ 2Ɵ̈Ɵ 

Ɵ̇o = 0 

ωIx = −Ɵ̇𝑆ɸ = √2Ɵ̈Ɵ 𝑆ɸ 

ωIz = Ɵ̇𝐶ɸ = √2Ɵ̈Ɵ 𝐶ɸ 

ωIẋ = −Ɵ̇ɸ̇𝐶ɸ − Ɵ̈𝑆ɸ

= −√2ɸ̈ɸ√2Ɵ̈Ɵ 𝐶ɸ − Ɵ̈𝑆ɸ 

ωIż = −Ɵ̇ɸ̇𝑆ɸ + Ɵ̈𝐶ɸ

= −√2ɸ̈ɸ√2Ɵ̈Ɵ𝑆ɸ + Ɵ̈𝐶ɸ 

TR = 15IOz -((−30𝐶ɸ√Ɵɸ−15𝑆ɸ)IIx+(IIz −

IIy) 30𝐶ɸ√Ɵɸ) Sɸ 

+(IIz(−30𝑆ɸ√Ɵɸ+15𝐶ɸ) -(IIy −

IIx) 30𝑆ɸ√Ɵɸ) Cɸ 

-IIx(2ɸ√Ɵɸ+15S215IOz=  RT

2IIz)+15(IIx𝑆2ɸ + IIz𝐶2ɸ) 

By substituting in the above equation at 

different elevation and rotation angles we get 

the following curves: 
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Fig. 12: Required motor rotation torque at 

different elevation angles against rotation angle 

 

Fig. 13: Required motor rotation torque at 

different rotation angles against elevation angle 

From Fig. 12 and Fig. 13 we choose the motor 

that will drive the outer gimbal (rotating parts) 

to be Servo Motor Continuous (360) 14 kg.cm 

Metal Gears (FS5113R) which has a maximum 

torque of 1.3734 N.m 

Control System Design 

Using SimscapeMultibody the CAD model was 

linked to Matlab to see how the model reacts 

with inputs of rotation and elevation angles and 

how much error the model will produce. 

We try different configurations to control our 

model according to relations between input and 

output and different control methods used. 

8.1 Closed-Loop Control System: 

 

Fig. 14: Closed-loop control system 

 

Fig. 15: Closed-loop control system output vs 

input 

Fig. 15 shows there is a considerable error 

(difference between the reference input and 

output) which must be reduced, which can be 

done using different control methods. 

8.2 Closed-Loop PID Control System: 

 

Fig. 16: Closed-loop PID control system 

 

Fig. 17: Closed-loop PID control system output 

vs input 
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Fig. 17 shows that PID controller will not get 

the best result instantly instead it should be 

tuned (the values of proportional, integral, and 

derivative constants must be changed 

according to the desired response of the 

application to obtain the best results).  

By using Matlab auto-tuner, we adjust 

response time and transient behavior sliders, 

then Matlab changes proportional, integral, 

and derivative constants automatically to 

obtain the required results as shown in Fig. 18 

and Fig. 19. 

 

Fig. 18: Results before using PID auto-tuner 

 

Fig. 19: Results after using PID auto-tuner 

 

Fig. 20: Control system results after using PID 

auto-tuner 

VII. Conclusion 

In this study, a 2-DOF model is designed. The 

mathematical model is presented with its 

kinematics and dynamics equations. A detailed 

analysis is performed to show the relationship 

between the dynamics of inner and outer 

gimbals in addition to a detailed stress 

analysis. We ended up using a servo motors of 

torques 0.21582 and 1.3734 N.m for moving 

the elevating and rotating parts respectively. 

Then after applying different control methods 

we concluded that the best proposed control 

method is to use PID controller and adjust its 

values via Matlab PID auto-tuner as it showed 

in Fig. 20 that the steady state error is greatly 

reduced (small value that can be neglected), 

and the response is enhanced heavily. Finally, 

this study will be further used and developed 

in real-time implementation of our model. 
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