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Abstract— The Partial Differential Equations (PDEs) are
very important in dynamics, aerodynamics, elasticity, heat
transfer, waves, electromagnetic theory, transmission
lines, quantum mechanics, weather forecasting, prediction
of disasters, how universe behave ....... Etc., second order
linear PDEs can be classified according to the
characteristic equation into 3 types coinciding 3 basic
conic sections hyperbolic, parabolic and elliptic; Elliptic
equations have none family of (real) characteristic curves.
All the three types of equations can be reduced to its first
canonical form finding the general solution or the second
canonical form similar to 3 basic PDE models; Hyperbolic
equations have two distinct families of (real) characteristic
curves. Hyperbolic type of equations can be reduced to its
first canonical form finding the general solution or the
second canonical form similar to basic PDE models;
Hyperbolic equations reduce to a form coinciding with the
wave equation. Thus, the wave equation serves as basic
canonical models for all second order hyperbolic linear
P.D.E the reduced canonical form can be modeled by
initial and boundary condition with COMSOL
Multiphysics allowing the analysis of physical phenomena
to predict the variance over time for different types of
transmission line ( RG59, CAT5, PIC, EXL-120, ...... ) as
shown in tables of fig (5,7,8,11) used for different electrical
applications data transmission, audio and video
transmission, signal transmission...etc..

Keywords-- hyperbolic PDEs — canonical form -
constant coefficient PDEs — variable coefficients PDEs —
wave equation.

1. Introduction

A PDE is an equation that contains one or more partial
derivatives of an unknown function that depends on at
least two variables. usually, one of these deals with
time t and the remaining with space. PDEs are very
important in dynamics, elasticity, heat transfer,
electromagnetic theory, and quantum mechanics.

The theory of partial differential equations of the
second order is more complicated than the equations
of the first order, and it is much more typical of the
subject as a whole. Within the context, considerably
better results can be achieved for equations of the
second order in two independent variables than for
equations in space of higher dimensions. Linear
equations are the easiest to handle. In general, a second
order linear partial differential equation is of the form

A, Y)trye + B0, YUy + C(x, y)uyy +

D, y)uy + EQy)uy, + FO, y)u = Glx,y) (1)
where A, B, C, D, E, F and G are in general functions
of x and y but they may be constants. The subscripts

. . . . a
are defined as partial derivatives where u, = ﬁ

2. Canonical form
The classification of partial differential equations is
suggested by the classification of the quadratic
equation of conic sections in analytic geometry.
Ax?+Bxy +Cy* +Dx+Ey+f =0

represents hyperbola, parabola, or ellipse accordingly
as B2—4AC is positive, zero, or negative.
Classifications of PDE are:

@ Hyperbolic if B2—4AC >0

(i) Parabolic if B>~4AC=0

(iii) Elliptic if B>-4AC <0

The classification of second-order equations is based
upon the possibility of reducing equation by
coordinate transformation to canonical or standard
form at a point. An equation is said to be hyperbolic,
parabolic, or elliptic at a point (x,, y,) accordingly as;
B?(x9,¥0)~4A(x0,¥0)C(%0,¥0)  (2)
is positive, zero, or negative. If this is true at all points,
then the equation is said to be hyperbolic, parabolic, or
elliptic. In the case of two independent variables, a
transformation can always be found to reduce the
given equation to canonical form in a given domain.
However, in the case of several independent variables,
it is not, in general, possible to find such a
transformation
To transform equation (1) to a canonical form we
make a change of independent variables. Let the new
variables be;
e=e(X,y),n=n(Xy)
Assuming that ¢ and n are twice continuously
differentiable and that the Jacobian;

€y £y
)= |

Nx My
is nonzero in the region under consideration, then x
and y can be determined uniquely. Let x and y be twice
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continuously differentiable functions of € and n Then

we have,
dude  Oudn
Uy =——+——=Us+Uu
x dg 0x  0n ox emx + ‘r]nx
du de du on
Uy =——+——=UsE, +u
Y dedy onoy €y + Uplly

__OuxOde | Suyén _ 2
Uxx = e Ox & ox UgeEx” + Zusnsxnx +

2
UpnTx T Uy + UpNxx
duy 0s ouy 0
— Jtyoe | duyon _ 2
Uyy = de 0y + an ay Ueey + Zufﬂgyny +

UNly? + UgEyy + UMy,
Ouy O du, 0n
Uyy = e oy T on oy = Uge€x€y + UpyTylly +
uaexy + unnxy + u‘E77 (any + Syﬂx)
substituting in (1)
A, Y)pye + B (0, Yty + C(x, 1)y, +
D*(x,y)uy, + E*(x, y)uy + F*(x,y)u =
G"(x,y)  (3)
Where;
A" = Ag,® + Beyey + cg
B* = 24¢g,m, + B(sxny + synx) + 2Ce,m,
= Anxz + Bnyny + Cnyz
D* = Aeyy + Beyy + Ceyy, + Dey + Eéy,
E* = ANy, + Bny, +Cny, + D, + En,,
F*=F , G'=@G
The resulting equation (3) is in the same form as the
original equation (1) under the general transformation.
The nature of the equation remains constant if the
Jacobian does not vanish.
B*? —4A*C* = J2(B2 —4AC) and J%2#0, We
shall assume that the equation under consideration is
of the single type in a given domain. The classification
of equation (1) depends on the coefficients
A (X, y), B (x,y), and C (x, y) at a given point
(X, ¥) so equation (1) rewritten as;
A(X, y)uy, + B(x, Y)uxy +C(x, Y)uyy =
H(x,y,u, Uy, uy) 4)
Where; A, B, C#0
And equation (3) rewritten as;
A*(X' Y)ues + B*(X' Y)us‘r] + C*(X, Y)qu =
H(s, 7,U, U, un)
Where A*, C* =0
Ag,® + Beyey +cgy” = 0
Any® + Bnyny, +Cny2 =0
Since the 2 equations from the same type, we can
rewrite them;
Ag,”® + Begey +cg,* = 0
functions €, 1
Dividing by &,?

where ¢ stands for the 2
A2 +BZ+C=0
Zsy gy
ay _ & ay\" _ pdy =
= A( ) BZ+C=0

dx £y dx
dy  B+yB2-4AC

therefore, two roots are — =
dx 2A

These equations, which are known as the characteristic
equations, are ordinary differential equations for
families of curves in the by-plane along which

€ = constant and n = constant. The integrals of
equation are called the characteristic curves. Since the
equations are first order ordinary differential
equations, the solutions may be written as;
Di(X,y)=c1 Dy (X, y)=c2 with ¢y and ¢, as
constants.

Hence the transformations

e=d (Xv y)’ n= @, (X! y)

will transform equation (4) to a canonical form.

We show that the characteristic of any elliptical PDE
can be transformed as;

*BZ—4AC >0 so, we have 2 real different
characteristic integration yields reduced into first
canonical form u,, = H(&,n,u,us,u,) , B* #0to
find general solution.

let we have new independent variable a, B
where @« = ¢+ 17, =& —nsince € and n are twice
continuously differentiable functions then a, p are the
same.

Juda | duodf
Uy = ——+——=uU, +u
X~ 9o dx | 9B ox oy + UgPx
_ Ouda , 0udp

Uy = 303y %E—uaay+uﬁﬁy
_ Ouxda | duxdf _ 2
Uyx = da Ox a8 ax Uga Oy ™ + Zuaﬁaxﬁx +

uBBsz + U Oyex + uBBxx
_ Ouy da | Ouy dny

Uy = Ba oy T an oy

uBBByZ + Uqyy + ugPyy

Uyy = %Z—g %% = Uy + UgpByBy +

U Ayy + uBBxy + uaB(axBy + (xyBx)

substituting in (1)

A"(x, y)uyy + B*(x, y)uxy + C*(x, y)uyy +

D*(x,y)uy + E*(x,y)u,, + F*(x,y)u =

G'(xy) (3)

Where;

A" = Aay® + Bayay, + cay,?

B* = 240, B, + B(ayBy + o, By ) + 2Ca, B,

C* = AB,” + BB.By + CB,°

D* = Adyy + Bayy, + Cayy + Doy + Ea,

E* = AByx + BBxy + CByy + DB, + EB,,

F*=F , G'=G

The resulting equation (3) is in the same form as the

original equation (1) under the general transformation.

The nature of the equation remains constant if the

Jacobian does not vanish.

B** —4A*C* = J*(B* —4AC) and J2#0, We

shall assume that the equation under consideration is

of the single type in a given domain. The classification

of equation (1) depends on the coefficients

A (X, y), B (x,y), and C (x, y) at a given point

— 2
= Uga @y~ + 2Ugynay By +
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(X, y) so equation (1) rewritten as;

A(X, Y)Uyx + B(X, y)uygy + C(X, y)uyy =
H(x,y,u,uy, uy) 4)

Where; A, B, C+0

And equation (3) rewritten as;

A" (X, Y)Ugq + B (%, Y)uocB +C(x Y)UBB =
H(s, nu, ua,uﬁ) where B*(x, Y)Ugy =0

Uy #0 so B"=0 A =-C

B* = 24gm, + B(sxny + synx) +2Ceym, =0
which is transformed into second canonical form
Ugq — Ugp = H(a, B, u, ug, Ug)

similar to wave equation to be modeled.

3. Hyperbolic equations
As we can see the coefficient form P.D.E mainly
depend on the second canonical form so in order to
model and simulate the P.D.E we need to reduce the
equation to its second canonical form the plugging the
coefficient as shown blow

Scttings v
Cocfficient Form PDE
Label: | Cocfficicnt Form PDE 1 =

Domain Selection
Override and Contribution
~ Equation

Show equation assuming:

Study 1, Time Depcndent -
82y
a2

+dzg—‘t‘+v-(—cVu—au+y)+ﬁ-\/u+su7f

_o
Vﬁﬁx

Diffusion Coefficient
Absorption Coefficient

Source Term

Mass Coefficient

Damping or Mass Coefficient
Conservative Flux Convection Coefficient
Convection Coefficient

Conservative Flux Source

Fig 1. COMSOL interface.

3.1. Fundamental wave equation

Uy — C2Uy,, =0, B2 —4AC =4c?>>0
% = % separation of variables and integrate we get
E=x+ct, n=x—ct

Uyxy = usegxz + Zuengxrlx + unnnxz + UgExx +
ur]nxx

Upe = Uge&e” + 2ugpem; + unnntz T UeEer + UpNee
Then substitute in original P.D.E

—41-¢:2u€,7 =0, c#0

Ugy; = 0 thenintegrate w.r.tn

u, = f(e) thenintegratew.r.te

u= f(e)+gm =fx+ct) +gx—ct)

Using initial and boundary conditions

flx+ct), glx —ct) can be determined

u(x,O) = p(x) ) ut(x'o) = V(x)

3.2. Variable coefficient equation
XUy — y*uyy, — 2yu, =0
BZ—4AC =4x?y*>0 x,y#0

d. +
AP —Bl4+c=0,2==
dx x
v_y dy_ Yy
dx x_' dx X .
separation of variables and integrate we get
Yy
E==, =X
X ! 2y 1 1
— 2 - - —
Ex =~ & T 50 Exy T T2 8y &y =10
Ne=Y, Nex =0, Ny =1, My =x, 1y, =0
_dude  oudn _ue
uy_asay an dy _x+yun

— 2 2
Uy = UegeEx™ + Zusngxnx + UpnTx T Uy + -
e Up Ty
y? 2y? 2 2y
Uyy = x—4u58 - x—zuEn +y Upy + x—3u£
— 2 2
Uyy = Ugey~ + 2Ugn €My + Upp Ny © + UgEy, + -
ot UpNyy
1 2
Uyy = 5 Use + 2ug, + x%uy,
2 2 — 2 2 —
X Uypy — Y Uyy — 2YUy, = 4Y Uy + 2y°u, =0
y#0, ZLLE,,+u,7 =0
The first canonical form is 2u,, +u, =0
w _ o
v - -2

By integration we get v = e + fam
ou = (e_?E + f(n)) an

u,=v, 2v,.+v=0,

n

By integration we get u = e_TEn +gm + f(e)
u= xye% +glxy)+f (%)

Using initial and boundary conditions

f(z) , g(xy) can be determined

X
u(x,O) = p(x) ) ut(X,O) = V(x)
Apply second canonical form where;

a=e+n=%+xy ) ﬁ=e—n=%—xy

_ -y _ 2y _1
ax—x—2+y , (Zxx—x—3 , ay—;+x
1
Ay =0, ap=—-5+1

-y 2y 1
,Bx=x_z_y ’ .Bxx=; ’ By=;_x
1
Byy =0, By=—3-1
Uyx = uaaaxz + Zuaﬁaxﬁx + uﬁﬁﬁxz T Ug Uy +
uﬁﬂxx
1 1

XUy = y2 (xz +5- 2) Ugq — 2Y° (xz - x—z) Uggp.

2 2 1 2y
...... +y (x +;+2>uﬁﬁ +7(ua +uﬁ)

2
Uyy = Ugay® + 2Ugpay By + UppPy” + Uy, +
ugByy
2 _ 2 (.2 1

=Y Uy, = -y (x +x—2+2)um+

2 (1 2 2(,2 4 1 2
=2y (x—z—x )ua,; -y (x ta- Z)uﬁﬁﬁy
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Uy, = Uy + UgpPy

—2yu, = -2y (x + i) Ug — 2Y G - x) Ug

2 2 _ (uﬁ _ua)
XUy — Y Uyy — 2YUy, = Ugq — Ugp —W
Ugq — Upp = — (ug — ) Which is similar to wave

a+p
equation that can be modeled.

3.3. Constant coefficient equation

AUy + Sy, + Uy + U Uy =2
B2—4AC=9>0, 412-51+1=0
@ _ @ _1

’

dx dx 4
separation of variables and integrate we get
E=y—x , n=4y —x
& =—1, 6,=0, 6,=0,¢=1,¢,=0
Ne=—1, N =0, ny=0' ny=4' Uyy=0
y = ude jowon _
X7 dedx  oanox € n

_ude  oudn _
uy_asay anay_u8+4u"

Uy = ussgxz + Zusngxr/x + urmnxz T Uy T
UpNxx

Upy = Uge + 2Ugy + Upy

Uyy = Uge&y” + 2Ugp )Ny + Uyl + UeEyy, +
UnNyy

Uyy = Uge + BUg, + 16u,,

Uyy = UgeExEy + Upylxlly + Uglyy + Uplyy +

Uep (gxny + Synx)

Uyy = —Uge — Uy — 5u€,7

Ay + Slhyy + Uy, + Uy + Uy, = —Ugy + 3u, =2
The first canonical formis u,, = u,, = —% + u3—"
putu, =v

v, = —§+§ the integrating factor of 3¢

ve s = f—ge_Eds , ve 3= §€_§ + £
v=>i+fmes

2 £
Uy =3 +f(m) es
Another ODE can be integrated w.r.t

u=24g(n) €5+ £(¢)

y-x

u=2(4y -2 +gly-x)e3s +fy—x
Using initial and boundary conditions
fly—x), gl4y —x) can be determined
Uy =P(X) U,y = V()

Apply second canonical form where;
a=e+n=5—-2x , Pf=&g—n=-3y
Ay =—2, Ay, =5, Qyy = Qyy =0y =0
ﬁx=.8xx=.8yy=.8xy=0 ’ .By=_3

Uxx = uaaaxz + Zucmaxnx + u‘rmnxz T UGy + o
e Up My

4uy, = 16Uy,

Uyy = Ugay? + 2Ugn@yNy + Uppy? + Ugtyy + -+

ot UpNy,y

Uyy = 25Ugq — 30Uqp + Yugp

Ugy = Uga Uiy + UppMxNy + Ug Ay + UMy + .-

ot Uy (my + ay7y)

Suyy, = =50Uqq + 30uqp

Uy = Ug @y + UgP),

u, = 5u, — 3w

Uy = UgQy + UgPy

u, = —2u,

AUyy + Sy + Uy + Uy + Uy — 2 = Uy — UgpT.
1 2 . . ..

=3 (ug —ug) =5 which is similar to wave

equation that can be modeled.

4. Modelling using COMSOL
1- wave equation u, — c?u,, = 0 putc =1
U — Uy, = 0 a@s shown in fig.2
Initial conditions
Uy o) = sin(4mx) Uty =0
Boundary conditions
u(O,t) = u(l,t) =0 , t> 0

Owpericls and Contribusion

fig 2.b. COMSOL initial condition interface.
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Fig 3.a. COMSOL coefficient interface.

Fig 2.c. COMSOL boundary condition interface.
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Fig 3.b. COMSOL initial condition interface.

=W e Comvmgence Pt 1

Fig 2.d. 2D Real animated plot for u and x.

Fig 3.c. COMSOL boundary condition interface.

2- constant coefficient hyperbolic equation
AUyy + Sy + Uy, + U+ U, —2=0

1 2 . -
Uaq = Ugp =3 (ug —ug) =— 5 as shown in fig.3
Initial conditions
U(ﬁ,o) = sin(4nﬁ)
Boundary conditions
u(O,t) = u(l,t) =0 , t> 0
Leta=t, B=x

» Urggyy =0

\er -
O ol (ROl = ey
* 5 Gt Detevtices - Gquuation
Paamaters
S —— |
Componemt 1 framg: [rove e —
 Ctetons T
FR-s— o a4V Y mak 4 B Vuk e
aeraad 1 Bl dr -
BN form o G ved
Mt -
ottt farm POt = i
K o efbuion Confitient
¥ e imm e
P il W |
(hrapirt Brmutary Lomtm R -
A My
ey - Source T

F ol

N S S
B Rt
e ) = ey Coaficent
U e Ve =
= u 1
# "o MG et 1 = Damping or Mast Copticient
[
oW e o L
= i
[ e— = Cassalive Pl Camitlios Costieient

T

e o it
Coesereatior Pl Sousoe

Cwaptin  Gorrergencs Pl | -m
5 = =
L Rl e e e LR L ) =

T - - - - -
ot
L
L

@z}

a2

Al

Dupancent wariabie i, [h{l)

LY

L

Bk

= LE] e os as 1
Eimy

Fig 3.d. 2D Real animated plot for u and L.

3- variable coefficient hyperbolic equation
XUy, — y2uy, — 2yu, =0

_ (uﬁ‘ua)
Ugaq — Ugp = a+B
Uga — Ugp + ﬁ (uq — ug) = 0 as shown in fig.4

Initial conditions
Ug,0) = sin(4mp)
Boundary conditions

» Uy =0
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u(O,t) =u(l,t) =0 , t> 0
Leta=t, B=x
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N
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Fig 4.a. COMSOL coefficient interface.
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Fig 4.b. COMSOL initial condition interface.
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Fig 4.c. COMSOL boundary condition interface.
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Fig 4.d. 2D Real animated plot for u and .

5. Physical applications
1-Motion of stretched string in musical
instruments such as guitar, piano described by
U — C2Uyy, = 0
where c? =£ T horizontal component of

tension force, u mass per unit length Suppose a such
string placed on x-axis
l. Damping forces are neglected such as air
resistance
Il. Weight of string is also neglected
Il Tension force is tangential to string curve
Initial position function

. MxT
u(x,o) = p(X) = Sin (T)

l is length of string

Initial velocity function

Uty = V(x) =0 (Initially at rest)
Boundaries ug ) =uqgy =0, t>0

D'Addario EXL-120 manufacturer specs

String no. | Thickness [in] (d) Recommended tension [Ibs.] (T) plglem’]

1 000899 131 7.726 (steel alloy)

2 00110 1.0

3 0.0160 147 "

4 0.0241 158 6.533 (nickel-wound steel alloy)
5] 00322 158 !

6 00416 148 "

Fig 5. table of electrical string specs.
Where ¢2 =~ = 42 from the table of different

u  mdep
electrical guitar strings we may form many equations
with the same boundary
Letlengthl =1m , n =4, c¢? = 4 as shown in
fig.6
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Fig 6.d. 2D Real animated plot for u and .

2- longitudinal waves travelling along thin Rod with
Youngs Y modulus and mass density p where the

Y . . . .
constant ¢? = S is phase velocity where c is specific

for each material same as before inserting the
coefficient, initial conditions and boundary condition

Table: Calculated and measured longitudinal wave speeds in thin rods
made up of common metals. Sources: Haynes and Lide 2011c. Wikipedia
comributors 2012

Mesal Y(Nm™) | pkgm ™) | ¥/p@ms™) |o(ms)
Aluminium| 7:0% 10| 2.7 x 10* 5100 5000
Copper 1.2x 10" | 8.9x10° 3600 3800
Lead [16x100] 11x10 1100 [ 1100
Nickel 2.0x 10" | 89x10° 4700 4900
silver 83x 10| 1.1x10* 2800 2700
Tin 50x 107 7.4x10° 2600 2700
Zine L1x10"| 7.1 x10° 3900 3900

Fig 7. table of longitudinal wave specs in thin rods
of different metals.

3-high frequency AC lossless cable (optical fiber,
submarine cable, transmission lines) where;

the cable is made such that resistance R and leakage
of conductance G is also neglected as wL > R ,
wC > G

the general telegraph equation

iy = LCiyy + (RC 4+ GL)i; +RGi ,R=G=0,L
inductance, C capacitance, R resistance

e — = ixy = 0 high freq. AC similar to wave

equation
i(x,t) =f(x+\/%)+g(x—\/%)
V(x, t) :f(x+\/%)+g(x—v%)
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Designation Cabde Tonm Application L3 Lt (] © F]
O%m pk%m  nSkm nFfSnm 0

caTs Twistod pair Duta transmission 176 | 490 <2 49 100
CATSe™ Twisind pair Data eansmission 176 =3 100
Wi anal” Twistied paic Telephany &8 <3
RGS™ Copial Wisie 3% 430 &3 75
(-0
G5 Vises 17 303 54 75
DIDa dhbecarnic)
RSN Caaal Radke frequency | 48 253 <1 101 50
(= al R
Lo bogsl 171 o S requancy | aes | 188 s 50
(Foam dislectric)  transmitter foed
— Tedephony
oiN vEE e816" Y| Star quad - L 38 <1 | 35
{trunk Enas)

Fig 8. table of longitudinal wave specs in thin rods
of different metals.

For example, RG59 coaxial cable in our home for tv
operating at frequency 3GHZ we note that wL =

8105309 222 5 36 2
km km

8105309 >» 36 , wL >» R so, R and G are

neglected let length of cable 1km so L =

430 uH ,C = 69 nF
. 1, . 1 . .
e =70 boe = e T (430+0.069)+10~6 bex = lee + 0

..— 33704 i,, = 0 as shown in fig.9

..::_:n,c;.,,:g+\'-|-.\...a-,u-|~,s Vutsums
val
~ Eusion Coeficent
1
Abaorption (ot
Scurce ferm
= Mg Cosfcer

tamging oo Wit Coettinst
Conservative L Comection Coetiont
Cmecion Corficie
Commrrrtive LT Souce

P o

Fig 9.b. COMSOL initial condition interface.

Crererie and Contribution
tquation
= Ehrichiel Boasdary Condilion

I P w0

Arvemaion 17

Fig 9.c. COMSOL boundary condition interface.

Cormmrgancs Fict | -

gt i u £1)

o [E] a4 [ = v
= rosrsnate (e}

Fig 9.d. 2D Real animated plot for u and x.

For another example, CATS5 twisted pair cable in data
transmission for different network OSI model
(CCNA) operating at frequency 100MHZ we note

that wL = 307876.1 =22 5 176 =
km km
307876.1 » 176 , wL > R
F.HZ 9 S
wC =30.79 —>» 21077 —
km km
30.79 »2%107° , wC > G
so, R and G are neglected let length of cable

1km soL =490 uH ,C =49nF
1 1

e = — gy = fpp — Ly = g +
tt o xx t (490%0.049)+10~6 X* tt

...—41649.33 i, = 0 as shown in fig.10

6" IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5™ — Sep. 81, 2022.



Gate  Cowrtuuenn Fov PO §
Domain Setection
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Thow cTaton momng:
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.,:'tlgt +i Ve St 4 B Vb st
v .7.;17
* Cefugion Cosfloent
© awan 1
Aorption Coeciect
Source form
= M Cosfcient
- e
Damging OF Masd {oetlipnl
Comsryative Pl Corwection Coetloent
Coriton Cotoumt
Conuprsative Pl Sousoe

Cheneridde and Contribufion
= it W

vl v o

T vt b O

20 "

Comargers e Ficd 1 =u
5 - | i 0=
Liran G Dapparabent s artalin s |17

D varlabda u [1]

4 i 4 L
-] o LX) L =B i
Eroorsnade (ke

Fig 10.b. COMSOL initial condition interface.

=1 Sattin =8 Gupicr Convemgence Fot 1

Fig 10.c. COMSOL boundary condition interface.

Fig 10.d. 2D Real animated plot for u and x.

4- The telegrapher's equations are a pair of linear
differential equations which describe the voltage and
current on an electrical transmission line with
distance and time.
the general telegraph equation

iy = LCiyy + (RC+ GL)i, +RGi ,R=G=0,L
inductance, C capacitance, R resistance

1, i (RC+GL) ., RG .
— ey = g +———1 +—1
Lc XX Tttt c tULc
Czixx = itt + a*it + b*i

a*t

Putu=ez2 i
%2

Uy = Uy + (b* - aT) u apply first canonical
form to find general solution where;
e=x4+ct , n=x—ct
u ———u-=

& 16¢2 ]
Apply second canonical form where;

a=e¢+n=2x , [f=e—n=2t

%2
a
AUy — Uy = (b* - )u

_ 4b*—a*?
Ugaq — uﬁﬁ = —1602 u

Representative parameter data for 24-gauge lelephone polyethylens insulsted cable (PIC)at TO *F (284 K)

Frequancy R L i C

He Yo Brooon| Plim Moomn| i | "Hioson | The | Trosen

1Hz 7224 5250 6120 1868 0000 0000 | 5157 | 1672
1hMz 17228 5251 8125 1867 0ar2 0022 | 51.57 | 15.72
10kHE 17270 5264 G009 1859 053 0162 | 51.57 | 15.72
1004z 18163 5541 SBOT 1770 T 1.197 | 51.57 | 1572
1MHZ 462459 14130 5052 1543 21Mm BATI| 5187 | 1572
2MHz  G4314 19503 4862 1482 53205 18217 | 5157 1572
SMHz B8040 MME2 METS 1425 118074 X5988 | 51.57 | 15.72
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Fig 11. table of longitudinal wave specs in thin rods , we S 8 oo i
of different metals. o

Operating maximum frequency 5 MHZ let length of
cable 1Km.

R =999.41Q,L = 467.5uH ,C = 51.57nF

G = 118.074uS

Note that the previous condition is not satisfied

wL > R,wC > G so, we cannot neglect R, G to
reduce to wave equation thus the use of telegraph
equation is a must and more general.

Chvnridy an Corlribudion
taptien
¥ Dirchiel Scurelry Conditicn

[ ee—

1, . (RC+GL) . . RG .
ol Tle ¥ e ]
4146 * 10 i, = i, + 2.14 * 10%i, + -+ :
...+4.8946 x 101 as shown in fig. 12 Fig 12.c. COMSOL boundary condition interface.
[N - - =
I
-+ at |
- ‘: 3.0 |
{ . i |
0.3 ¢ I
E 0.1 & | |

Fig 12.d. 2D Real animated plot for u and x.

Czixx = itt + a*it + b*i
a*t .
Putu=ez i
%2

CPUyy = Upe + (b* - a4 )u
Apply second canonical form where;
' Ugq — Ugp = a'a? u

aa BB — 16¢2

Ugq — Ugp = —6.8786 u as shown in fig. 13

Fig 12.b. COMSOL initial condition interface.
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1T = Mais Coaficert
iF
Damping o W Cionticient
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2
=
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&
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Fig 13.d. 2D Real animated plot for u and .

Fig 13.a. COMSOL coefficient interface.

Fig 13.b. COMSOL initial condition interface.

Commgarce et 1

e e Contrbasicn
Epaton
* Cirkchiel ey Conditin

oty Conton |

] st ke o

5

Fig 13.c. COMSOL boundary condition interface.

6. Conclusion

The second-order linear PDEs can be classified into
three types, which are invariant under changes of
variables. The types are determined by discriminant.
This exactly corresponds to the different cases for the
quadratic equation satisfied by the slope of the
characteristic curves. Hyperbolic equations have two
family of (real) characteristic curves. All the second
order hyperbolic PDE of equations can be reduced to
second canonical form similar to basic wave equation
using initial and boundary conditions for COMSOL
Multiphysics to be simulated and modeled allowing
the analysis of physical phenomena to predict the
variance over time for different types of transmission
line ( RG59, CATS, PIC, EXL-120, ...... ) as shown
in tables of fig (5,7,8,11) used for different electrical
applications data transmission, audio and video
transmission, signal transmission...etc.
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