
 

 

–  

 

45 
 

Prediction for Inverted Topp-Leone Distribution 
Based on Constant Stress-Partially Accelerated Life 

Testing 
 

Behairy, S. M. and AL-Sayed, N. T 
Department of Statistics, Faculty of Commerce, AL-Azhar University (Girls’ Branch), 

Cairo, Egypt 
 

Abstract 

Prediction of future observations on the basis of the past and present 
information is a fundamental problem of statistics, arising in many 
contexts and producing varied solutions. The predictor can be either a 
point or an interval predictor. This paper focuses on predicting the future 
observations from the inverted Topp-Leone distribution for constant 
stress-partially accelerated life test based on Type II censored samples. 
The two-sample prediction is applied to obtain the conditional maximum 
likelihood, Bayesian and E-Bayesian prediction (point and interval) for 
future order statistics. The Bayes and E-Bayes predictors are considered 
under two different loss functions, the balanced squared error loss 
function; as a symmetric loss function and balanced linear exponential 
loss function; as an asymmetric loss function. The predictors are obtained 
based on gamma prior and uniform hyperprior distributions. A numerical 
example is provided to illustrate the theoretical results and an application 
using real data sets are used to demonstrate how the results can be used in 
practice. 

Keywords: Inverted Topp-Leone distribution; balanced loss functions; 
two-sample prediction; maximum likelihood, Bayesian and E-Bayesian 
prediction. 

1. Introduction 

Rapid developments, improvements of the high technology, 
consumer’s demands for highly reliable products and competitive 
markets have placed pressure on manufacturers to deliver products with 
high quality and reliability. In life testing, it is very difficult to estimate 



 

 

–  

 

46 
 

the time of failure for modern high reliability products such as 
electronics, power cables, metal fatigue, insulating materials, laser, 
airplane parts, aerospace vehicles, etc.. Therefore, these types of products 
are not likely to fail under usual operating conditions in the relatively 
short time available for test. For this reason, accelerated life testing 
(ALT) or partially accelerated life testing (PALT) are preferred to be 
used in manufacturing industries to obtain enough failure data in a short 
period of time and necessary to study its relationship with external stress 
variables. Such testing could save much time, man power, material 
sources and money. The stress can be applied in different ways like 
constant stress, step stress and progressive stress among others [see 
Nelson (1990)].  
For more details about ALT [see Bai and Chung (1989), Balakrishnan 
and Han (2008), AL-Dayian et al. (2014), Basak and Balakrishnan (2018) 
and Kumar et al. (2021)] among others. 

In ALT the main assumption is that a life-stress relationship is known 
or can be assumed so that the data obtained from accelerated conditions 
can be extrapolated to usual conditions. In some cases, such relationship 
cannot be known or assumed so PALT are often used in such cases.  

In a constant stress-PALT (CS-PALT) each test item is run at a 
constant stress under either usual use condition or accelerated condition 
only until the test is terminated and the analysis of PALT has been 
extensively studied in recent years [see Bai et al. (1993), Hyun and Lee 
(2015), EL-Sagheer (2018) and AL-Dayian et al. (2021)].  

Han (2007) introduced the expected Bayesian (E-Bayesian) 
estimation method which is very simple and it is a special Bayesian 
method used in the area related for the life testing of products with high 
reliability, with small sample size or censored data. It is more popular 
now. Many researchers applied the E-Bayesian method to many 
distributions, such as, Yin and Liu (2010), Jaheen and Okasha (2011),  
Azimi et al. (2013), Reyad and Ahmed (2015), EL-Sagheer (2017),  
Han (2020) and Rabie and Li (2020). Also, few studies have considered  
E-Bayesian method assuming PALT such as Rabie (2021). 
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The general problem of prediction may be described as that of 
inferring the values of unknown observables (future observations; known 
as future sample) or functions of such variables, from current available 
observations; known as informative sample. Prediction has been applied 
in a variety of disciplines such as medicine (medical prognosis, antibiotic 
assays and pre-operative medical diagnosis), engineering (mechanical 
tool replacements, quality control and maximization of the yield of an 
industrial process), business (determining the difference in future mean 
performance of a specified number of systems), economic and other areas 
as well.  

Prediction for order statistics of future observables from certain 
distributions has been studied by several authors, such as, 
 Valiollahi et al. (2017) who obtained the maximum likelihood (ML) and 
Bayesian prediction (point and interval) of a future observation based on 
Type I, Type II and hybrid censored samples when the lifetime 
distribution of the experimental units is assumed to be a generalized 
exponential random variable. The one-sample, two-sample prediction and 
intervals of the future samples under Bayesian paradigm of a weighted 
exponential distribution under Type II progressive censoring were 
introduced by  
Dey et al. (2018). Also, Faizan and Sana (2018) considered prediction 
intervals for future observations of the two unknown parameters of Chen 
distribution based on upper record value. The one-sample Bayesian 
prediction and intervals of the generalized half-normal distribution under 
progressive Type II censoring were studied by Abd El-Raheem (2019). 
Arshad and Jamal (2019) predicted future record values using Bayesian 
approach of the Topp-Leone family of distributions. Okasha et al. (2020) 
derived the Bayesian and E-Bayesian prediction (point and interval) 
based on observed order statistics with two samples from two parameter 
Burr XII model based on Type II censored data. Moreover, they obtained 
the predictors under symmetric and asymmetric loss functions assuming 
gamma informative prior density. AL-Dayian et al. (2021) applied the 
two-sample prediction method to obtain the conditional ML, Bayesian 
and E-Bayesian prediction (point and interval) for future order statistics 
of the modified Topp Leone-Chen distribution based on progressive  
Type II censored samples.  
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Few studies have considered prediction assuming PALT such as 
Abushal and AL-Zaydi (2017), Prakash and Singh (2018),  
Behariy et al. (2019), AL-Dayian et al. (2021) and Lone et al. (2022). 

This paper focuses on predicting the future observations from the 
inverted Topp-Leone (ITL) distribution for CS-PALT based on Type II 
censored samples.  In Section 2, the ITL distribution, basic assumptions, 
model description and balanced loss function (BLF) are presented. In 
Section 3, the conditional ML, Bayesian and E-Bayesian prediction 
(point and interval) for a future observation of the ITL distribution for 
CS-PALT based on two-sample prediction are obtained. In Section 4, a 
numerical example is given to illustrate the theoretical results and an 
application using real data sets are used to demonstrate how the results 
can be used in practice. Finally, general conclusion is presented in 
Section 5. 

2. Inverted Topp-Leone Distribution, Basic Assumptions, 

Model Description and Balanced Loss Function 
2.1 Inverted Topp-Leone distribution 

The inverted distributions have a great importance due to their 
applicability in many areas such as biological sciences, life test problems, 
medical, etc. Hassan et al. (2020) introduced the ITL distribution and 
obtained some statistical properties of the proposed distribution such as 
quantile function, mode, moments, probability weighted moments, 
incomplete moments, stress-strength model, moments of residual life 
function and Rényi entropy. They derived the ML estimator based on 
complete, Type I and Type II censored samples for the distribution 
parameter.  

The probability density function (pdf) and cumulative distribution 
function (cdf) of the ITL distribution are, respectively, given by 

              (1) 

and 
                                                   (2) 
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where  is a shape parameter. 

The reliability function (rf) and hazard rate function (hrf) of the ITL 
distribution are, respectively, given by 

                                                             (3) 

and 

                                (4) 
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         Figure 1. Different shapes for the pdf                  Figure 2. Different shapes for the hrf  

One can see that the plots of the hrf of the ITL distribution are 
positive skewed, so the ITL distribution is a flexible reliability model and 
it is suitable for studying PALT model. 

2.2 Basic assumptions and model description  

Total items are divided randomly into two samples of size 
 and , respectively, where  is the sample proportion. The 
first sample is allocated to usual conditions and the other is assigned to 
accelerated conditions. Each test item of every sample is run without 
changing the test condition until reaching the censoring number. 
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 Assumptions 
 

1. The lifetimes ,  = 1, …,  of items allocated to usual 
conditions are independent and identically distributed 
(i.i.d) random variables.  

2. The lifetimes  of items allocated to accelerated 

conditions are i.i.d random variables. 
3. The lifetimes  and  are mutually statistically independent.  

 In this study, the lifetimes of test items are assumed to have the ITL 
distribution. The pdf of an item at usual conditions is given by (1). 

The pdf and cdf for an item tested at accelerated conditions are given by: 

 
                                                                             (5)   

and 

                                    

                                                                              (6) 

where   is the acceleration factor which is the ratio of the 
mean life at usual condition to that at accelerated condition and                                                                                        

The rf and hrf for an item tested at accelerated conditions are as follows: 

                                          (7) 

and 

        (8) 

2.3 Balanced loss function 

Bayes estimator is an estimator that minimizes the posterior expected 
value of a loss function (i.e., the posterior expected loss). Equivalently, it 
maximizes the posterior expectation of a utility function. Loss function 
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separated into two groups symmetric and asymmetric loss function. 
There are many types of symmetric and asymmetric loss function. 

Ahmadi et al. (2009) suggested the use of the BLF which was 
originated by Zellner (1994), to be of the form 

                                          (9)                                                               

where  is an arbitrary loss function,  is a chosen target 
estimator of  and the weight . The BLF specializes to various 
choices of loss functions such as the absolute error loss, entropy, linear 
exponential (LINEX) and squared error loss (SEL) functions. The 
estimator of a function using BLF is a mixture of the ML estimator, least 
squares estimators or any other estimator and the Bayes estimator using 
any loss function.  

The Bayes estimator of , using the balanced SEL (BSEL) function is 
given by   

                                                           (10)                                                                                        

where  is the ML estimator of  and  is its Bayes estimator using 
SEL function. Also, the Bayes estimator using the balanced LINEX loss 
(BLL) function of  is obtained as follows:                                                                         

,             (11) 

where is the shape parameter of BLL function. 

3. Prediction for Inverted Topp-Leone Distribution  

In this section, the conditional ML, Bayesian and E-Bayesian 
prediction (point and interval) for a future observation  of the ITL 

distribution for CS-PALT based on Type II censored data under two-
sample prediction method are derived. 
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Considering the failure times consist of  smallest lifetimes 
  out of a random sample of  lifetimes 

   under usual conditions 

and out of a random sample of  

lifetimes at accelerated conditions, respectively. 

The likelihood function (LF) for { : } at usual 

conditions is given by 

                                 (12) 

where   are given by 

(1) and (3), respectively.     

The LF for { : } at accelerated conditions is given by 

                                     (13)                                                              

where ,  and  are 

given by (5) and (7), respectively.  

Let and be the number of censored items at usual and accelerated 
conditions, respectively, where  

and .                                     (14)         

Substituting (1) and (3) into (12) and substituting (5) and (7) into 
(13), hence the LF according to CS-PALT for 

 can be written as: 
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                                                            (15) 

The natural logarithm of LF in (15) is given by  

  

      

      

                                                                          (16)            

The ML estimators of the parameters , can be obtained 
by differentiating (16) with respect to  and then setting to zero. Hence 

               

      

                                       (17)          

and 

  

                                                                             (18) 

The ML estimators are obtained by equating the derivatives (17) and 
(18) to zeros. The system of non-linear equations can be solved 
numerically using Newton-Raphson method to obtain the ML estimates 
of the parameters   

Considering the prior knowledge of the vector of parameters  
, is adequately represented by informative prior which is 

gamma distribution with parameters  and  and pdf as follows: 
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    (19)    

where and and  are the hyper-parameters of the 

prior distribution. 

Assuming that the parameters,  are unknown and 
independent. Then the joint prior distribution of the unknown parameters 
has a joint pdf given by 

  

                                                                    (20) 

Combining the LF in (15) and the joint prior distribution given by 
(20), then the joint posterior distribution of the parameters,  
can be obtained as follows: 

  

                   

                   

             (21) 

 
The joint posterior distribution given by (21) can be written as follows: 

  

                   

                            

                                                                                                               (22)           
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where  

                   

                  

                                                                             (23)       

and 
and .                                                              (24)                               

Considering that  are the first  ordered life 

times in a random sample of  components (Type II censoring) whose 
failure times are i.i.d as random variables  having the pdf for an item 
tested at accelerated conditions is given by (5) which is an informative 
sample and that  is a future independent random sample 

(of size ) from the same distribution. Our aim is to predict a statistic in 
the future sample based on the informative sample.  

For the future sample of size , let  denotes the  order 

statistic, . The conditional density function of , given the 

vector of the parameters , is given by 

        

                                                                                                 (25)  

where  is the order statistic of the predicted future observation in the 
future sample,   

    and  	(26) 

Using the binomial expansion theorem for , yields 
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       (27)                           

Substituting (5) and (6) into (27), then one can obtain the pdf of  order 
statistic for an item tested at accelerated conditions: 

               

                                  (28)    

where  
                                       (29)      

3.1 Conditional maximum likelihood prediction  

In this subsection, the conditional ML prediction (point and interval) 
for a future observation  of the ITL distribution for CS-PALT based 
on two-sample prediction are derived. 

Assuming that the parameters  are unknown and independent, then 
the conditional ML prediction density (MLPD) of   given 

  can be obtained using the conditional pdf of the  order 

statistic which is given by (28) after replacing the vector of parameters  

by their conditional ML estimators  as follows: 

                

                                                  

                                                                           (30)   

where  and  are given by (26) and (29), respectively. 
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3.1.1 Point prediction 

The conditional ML predictor (MLP) for the future observation  
based on Type II censoring can be derived using (30) as follows: 

   

              

               

              .                                                 (31)  

3.1.2 Interval prediction  

A 100(1- )% conditional ML predictive bounds (MLPB) for the 

future observation , such that  

are  

,                (32)            

and                  
                       (33) 

Substituting (30) in (32) and (33), then the conditional MLPB are 
obtained as follows: 

  

                                     

                                                                                                 (34) 

and 
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                                                                                                        (35)       

where s = 1, 2, 3, …, .  
3.2 Bayesian prediction  

In this subsection, Bayesian prediction (point and interval) for a 
future observation  of the ITL distribution for CS-PALT based on 
two-sample prediction are considered. 

Assuming that the parameters,  are unknown and 
independent, then the Bayesian predictive density (BPD) of  given  

 based on the informative prior can be obtained as follows: 

,                                      (36)                                            

where  is given by (22),  are given by (24) 

and  is defined in (28).  

Substituting (22) and (28) into (36), then the BPD of   given  is 

given by 

  

                          

                            

                         

                              (37)                         

where  is defined in (23),  are given by (24) and                                                           
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                       (38)    

 
3.2.1 Point prediction  

Based on Type II censoring, the Bayesian prediction is considered 
under two types of loss functions, the BSEL function; as a symmetric loss 
function and BLL function; as an asymmetric loss function. 

I. Balanced squared error loss function 

The Bayes predictor (BP) for the future observation under BSEL 

function can be derived using (10) and (37) as given below  
  

                 

                

                      

              

                                                         (39)      

where  is the conditional ML prediction for the future observation 

of   is given by (26),  is defined in (38),  

 and .                                          (40) 

II. Balanced linear exponential loss function  
 

The BP for the future observation under BLL function can be 
derived using (11) and (37) as follows: 
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                                            (41)                                         

 where  is the conditional ML prediction for the future observation 

of   is given by (26),  is defined in (38),  

and   are given by (40).                                                                                                 

3.2.2 Interval prediction  

A 100(1- )% Bayesian prediction bounds (BPB) for the future 
observation , such that  

 can be obtained from 

(37) as given below 

,                                                     (42)             

and                  

                                                                   (43)   

Then the BPB for  can be derived as follows: 

 
                                      (44) 

 
Using (37) and substituting  in (44) by  and  then 

solving two nonlinear equations one obtains 
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                                                 (45)                          

where  

3.3 E-Bayesian prediction 

In this subsection, the E-Bayesian prediction (point and interval) for a 
future observation of the ITL distribution for CS-PALT based on 
two-sample prediction are obtained. 

According to Han (2007), the hyper-parameters  and  should be 

selected to guarantee that  given in (19), can be decreasing 

functions of  ( ).  

The derivative of  with respect to  is given below 

  (46)        

for  which means that 

 can be decreasing functions of . 

The E-Bayes estimators of the parameters are obtained based on three 
different distributions of the hyper-parameters  and . These 

distributions are used to investigate the effect of different prior 
distributions on the E-Bayesian estimation of . 
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Assuming that the hyper-parameters  and  are independent with 
bivariate density functions 

                 (47) 

Then, the bivariate uniform hyperprior distributions are: 

             (48) 

            (49) 

          (50) 

The E-Bayes estimators of  (expectation of the Bayes estimators of 

) can be derived as follows: 

          

                                                                          (51) 
                                                
where  stands for the expectation of the bivariate 

hyperprior distributions,  is the domain of the function  and 

 are the Bayes estimators of the parameters  based on BSEL 

and BLL functions.                                                

3.3.1 Point prediction  

Based on Type II censoring, the E-Bayesian prediction is considered 
under two types of loss functions, the BSEL function; as a symmetric loss 
function and BLL function; as an asymmetric loss function. 

I. Balanced squared error loss function 

The three E-Bayes predictors (EBPs) for the future observation  

under BSEL function can be obtained by substituting (39) and (48)-(50) 
in (51) as given below 



 

 

–  

 

63 
 

         (52) 

II. Balanced linear exponential loss function  

The EBPs for the future observation under BLL function can be 

derived by substituting (41) and (48)-(50) in (51) as follows: 

      (53) 

3.3.2 Interval prediction 

A 100(1- )% E-Bayesian prediction bounds (EBPB) for the future 
observation , such that 

  can be obtained by 

substituting (45) and (48)-(50) in (51).  

Remark: 

 If , in (31), (39), (41), (52) and (53), one can predict the 
minimum observable, , which represents the first failure time in a 

future sample of size  
 If , in (31), (39), (41), (52) and (53), one can predict the 

maximum observable, , which represents the largest failure time 

in a future sample of size  

 If , in (31), (39), (41), (52) and (53), one can predict the 

median observable if  is odd, , which represents the median 

failure time in a future sample of size  
4. Numerical Illustration 

This section aims to investigate the precision of the theoretical results 
of prediction on the basis of simulated and real data sets. 
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4.1 Simulation algorithm 

In this subsection, the conditional ML, Bayes and E-Bayes predictors 
(point and interval) for a future observation from the ITL distribution for 
CS-PALT distribution based on Type II censored data are computed. All 
simulation studies are performed using Mathematica 9 and R 
programming language. 

4.1.1 Maximum likelihood prediction 

The steps of the simulation procedure based on Type II censored data are 
as follows: 

Step 1: For given values of , random samples of size  are generated 
from the ITL  distribution. 

 The transformation between the uniform distribution and ITL  

distribution is obtained from Hassan et al. (2020) as follows: 

. 

Step 2: For each sample size  , are sorted such that 
.  

Step 3:  For each sample size  , are sorted such that 
. 

 The number of failures  are chosen to be less than  and .  

Step 4: The ML estimates for the parameters  and  are computed based 
on Type II censored scheme. 

Step 5: Substituting the conditional ML estimates of the parameters in 
the equation of  and for given values for , the conditional MLP 

for the future observation  can be computed under Type II censored 

sample.  
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Step 6: Using the ML estimates for the parameters and a certain value of 
, the conditional MLPB for the future observation , can be computed 

under Type II censored sample.  

Step 7: Repeat all the previous steps N=2000 times. 

4.1.2 Bayesian and E-Bayesian prediction 

Step 1: Generate from the bivariate uniform hyperprior 

distributions;  given in (48)-(50). 

Step 2: For given values of , generate  from the gamma 

prior distributions. 

Step 3: Applying the previous generation steps, Type II censored sample 
can be generated from the ITL distribution.  

Step 4: Calculate the joint posterior distribution for the parameters based 
on Type II censored sample from the ITL distribution. 

Step 5: The BPD of the future observation  can be obtained. 

Step 6: The BP is calculated based on BSEL and BLL functions. Also, 
the BPB is evaluated.  

Step 7: Using the BP, the EBPs for a future observation from the ITL 
distribution based on BSEL and BLL functions are calculated. Similarly, 
using the BPB, the EBPB are evaluated.  

Step 8: Repeat all the previous steps N=10000 times.  

The conditional ML two-sample predictors are presented in Table 1. 
Also, the Bayes and E-Bayes two-sample predictors are presented in 
Tables 3 and 4 based on BSEL and BLL functions. 

4.2 Some applications 

  The main aim of this subsection is to demonstrate how the proposed 
methods can be used in practice. Two real lifetime data sets are used for 
this purpose. The ITL distribution is fitted to the two real data using 
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Kolmogorov-Smirnov goodness of fit test through R programming 
language.  

Application 1 

The first data introduced by Liu et al. (2021). The data refer to the 
survival times of patients suffering from the COVID-19 epidemic in 
China. The considered data set representing the survival times of patients 
from the time admitted to the hospital until death. Among them, a group 
of fifty-three (53) COVID-19 patients were found in critical condition in 
hospital from January to February 2020. The data set can be retrieved 
from https://www.worldometers.info/coronavirus/ and is given by: 0.054, 
0.064, 0.704, 0.816, 0.235, 0.976, 0.865, 0.364, 0.479, 0.568, 0.352, 
0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458, 0.087, 0.437, 0.421, 
1.978, 1.756, 2.089, 2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 
3.348, 4.093, 4.092, 4.190, 4.237, 5.028, 5.083, 6.174, 6.743, 7.274, 
7.058, 8.273, 9.324, 10.827, 11.282, 13.324, 14.278, 15.287, 16.978, 
17.209, 19.092 and 20.083. 
 
Application 2 

 
The second data represents a COVID-19 mortality rates data belongs 

to Italy of 59 days, that is recorded from 27 February to 27 April 2020, 
used by Almongy et al. (2021). The data are as follows: 4.571, 7.201, 
3.606, 8.479, 11.410, 8.961, 10.919, 10.908, 6.503, 18.474, 11.010, 
17.337, 16.561, 13.226, 15.137, 8.697, 15.787, 13.333, 11.822, 14.242, 
11.273, 14.330, 16.046, 11.950, 10.282, 11.775, 10.138, 9.037, 12.396, 
10.644, 8.646, 8.905, 8.906, 7.407, 7.445, 7.214, 6.194, 4.640, 5.452, 
5.073, 4.416, 4.859, 4.408, 4.639, 3.148, 4.040, 4.253, 4.011, 3.564, 
3.827, 3.134, 2.780, 2.881, 3.341, 2.686, 2.814, 2.508, 2.450 and 1.518. 
[See https://covid19.who.int/].  

The Kolmogorov–Smirnov goodness of fit test is applied to check the 
validity of the fitted model. The p values are given, respectively, 0.7444 
and 0.2582. The p value given in each case showed that the model fits the 
data very well.  
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Table 2 presents the conditional ML two-sample predictors of the real 
data sets. Also, Tables 5 and 6 display the Bayes and E-Bayes two-
sample predictors of the real data sets based on BSEL and BLL functions. 

4.3 Concluding remarks 

 The results in Tables 1-6 indicate that the length of the interval of the 
first future order statistic is smaller than the length of the interval of 
the last future order statistic. 

 The conditional ML, Bayes and E-Bayes intervals include the 
predictive values [between the lower limit (LL) and upper limit 
(UL)].  

 The lengths of the intervals of the E-Bayes predictors are less than the 
lengths of the intervals of the Bayes predictors, so the E-Bayesian 
prediction method is better than the Bayesian prediction method. 

 In most cases, the lengths of the intervals of the Bayes and E-Bayes 
predictors under BLL function are less than the lengths of the 
intervals of the Bayes and E-Bayes predictors under BSEL function. 

 The lengths of the intervals of the conditional ML, Bayes and E-
Bayes predictors increase when  increases. 

5. General Conclusion 

For products having a high reliability, the test of product life under 
usual conditions often requires a long period of time. So, ALT or PALT 
is used to facilitate estimating the reliability of the unit in a short period 
of time.  In ALT test items are run only at accelerated conditions, in some 
cases, such relationship cannot be known or assumed. So, PALT are 
often used in such cases, in PALT they are run at both usual and 
accelerated conditions. In this research, the two-sample prediction 
method is applied to obtain the conditional ML, Bayesian and E-Bayesian 
prediction (point and interval) for future order statistics of the ITL 
distribution for CS-PALT based on Type II censored samples. The 
predictors are considered under two different loss functions, the BSEL 
function; as a symmetric loss function and BLL function; as an 
asymmetric loss function. The predictors are obtained based on gamma 
prior and uniform hyperprior distributions. A numerical example is given 
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to illustrate the theoretical results and two applications using real data 
sets are used to demonstrate how the results can be used in practice. In 
general, numerical computations showed that the length of the interval of 
the first future order statistic is smaller than the length of the interval of 
the last future order statistic. The conditional ML, Bayes and E-Bayes 
intervals include the predictive values  Also, the lengths of the interval of 
the E-Bayes predictors are less than the lengths of the interval of the 
Bayes predictors, so the E-Bayes prediction technique is better than the 
Bayes prediction technique. The Bayesian and E-Bayesian prediction 
(point and interval) for future order statistics of the ITL distribution for 
CS-PALT under different type of loss functions such as general entropy 
and precautionary loss functions would be useful as a basis for further 
researches in distribution theory. 
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Appendix 
 

Table 1: ML predictors and bounds of the future observation based on 
Type II censoring under two-sample prediction 

 (N=2000, 30,  

               
s 

 
LL UL length s 

 
LL UL length 

1 
15 
25 

 
 
 

1.1293E-08 
0.0100 
0.0100 

0.1035 
 

1.8620 

 
 

1.8520 

1 
15 
25 

 
 
 

0.0000 
0.0010 
0.0010 

0.1042 
 

2.2681 

0.1042 
 

2.2671 

 
Table 2: ML predictors and bounds of the future observation for real data 
sets based on Type II censoring under two-sample prediction ( ) 

Application I Application II 
s 

 
LL UL length s 

 
LL UL length 

1 
25 
45 

 
 
 

1.8783 E-
08 

0.1000 
0.0001 

 
 

10.055 

 
 

10.0549 

1 
30 
50 

 
1.4982 
5.5625 

 
0.1000 
0.1000 

 
4.3629 
7.3192 

 
     

4.2629 
7.2192 

 
Table 3: Bayes and E-Bayes predictors and bounds of the future 

observation under BSEL function based on CS-PALT under two-sample 
prediction (N=10000,    

 
 Bayesian E-Bayesian 

   LL UL Length  LL UL Length 
  

1 
 

 
0.0782 

 
0.0733 

 
0.0819 

 

 
0.0085 

0.0739 
0.0760 
0.0735 

 

0.0713 
0.0736 
0.0703 

0.0764 
0.0775 
0.0753 

0.0051 
0.0039 
0.0050 

 
0.30 

 

 

 
15 
 

 
25 

 
0.0799 

 

 
0.0940 

 
0.0748 

 

 
0.0860 

 
0.08381 

 

 
0.0996 

 
0.0090 

 

 
0.0136 

0.0770 
0.0789 
0.0752 

0.0833 
0.0828 
0.0905 

0.0728 
0.0749 
0.0702 

0.0793 
0.0793 
0.0870 

0.0809 
0.0819 
0.0781 

0.0888 
0.0875 
0.0953 

0.0082 
0.0071 
0.0079 

0.0095 
0.0082 
0.0082 
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Table 3 (continued) 

 

 

 
0.60 

 
1 
 

 
15 
 

 
25 

 
0.0821 

 

 
0.0875 

 

 
0.1015 

 
0.0769 

 

 
0.0799 

 

 
0.0932 

 
0.0856 

 

 
0.0935 

 

 
0.1114 

 
0.0087 

 

 
0.0136 

 

 
0.0182 

0.0777 
0.0763 
0.0742 

 
0.0819 
0.0789 
0.0752 

 
0.0954 
0.0871 
0.0919 

0.0730 
0.0735 
0.0712 

 
0.0764 
0.0749 
0.0702 

 
0.0886 
0.0777 
0.0862 

0.0801 
0.0781 
0.0767 

 
0.0896 
0.0819 
0.0781 

 
0.1013 
0.0918 
0.0973 

0.0071 
0.0045 
0.0055 

 
0.0133 
0.0071 
0.0079 

 
0.0126 
0.0140 
0.0111 

 
Table 4: Bayes and E-Bayes predictors and bounds of the future 

observation under BLL function based on CS-PALT under two-sample 
prediction (N=10000,    

 Bayesian E-Bayesian 

   LL UL Length  LL UL Length 
  

1 
 

0.0786 
 

0.0739 
 

0.0805 
 

0.0066 
0.0766 
0.0741 
0.0762 

0.0736 
0.0720 
0.0733 

0.0782 
0.0760 
0.0779 

0.0047 
0.0040 
0.0046 

 

0.30 

 

15 
 

 

25 

 

0.0849 
 

 

0.0929 

 

0.0783 
 

 

0.0871 

 

0.0875 
 

 

0.0968 

 

0.0091 
 

 

0.0097 

 
0.0794 
0.0844 
0.0831 

 
0.0914 
0.0852 
0.0844 

 
0.0769 
0.0811 
0.0797 

 
0.0879 
0.0815 
0.0803 

 
0.0819 
0.0873 
0.0859 

 
0.0937 
0.0890 
0.0890 

 
0.0050 
0.0062 
0.0062 

 
0.0058 
0.0075 
0.0087 

 
0.0799 

 

 
0.0930 

 
0.0751 

 

 
0.0854 

 
0.0830 

 

 
0.0990 

 
0.0079 

 

 
0.0136 

0.0780 
0.0784 
0.0772 

 
0.0925 
0.0927 
0.0846 

0.0743 
0.0760 
0.0744 

 
0.0866 
0.0890 
0.0759 

0.0813 
0.0802 
0.0798 

 
0.0968 
0.0973 
0.0920 

0.0070 
0.0042 
0.0055 

 
0.0102 
0.0083 
0.0160 

 

 

 
0.60 

 
1 
 

 
15 
 
 
 
25 

 
 

0.1030 

 
 

0.0941 

 
 

0.1110 

 
 

0.0168 

 
0.0990 
0.0933 
0.1011 

 
0.0927 
0.0829 
0.0903 

 
0.1062 
0.0967 
0.1055 

 
0.0135 
0.0137 
0.0152 
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Table 5: Bayes and E-Bayes predictors and bounds for real data sets of 
the future observation under BSEL function based on CS-PALT under 

two-sample prediction ( ) 

 Bayesian E-Bayesian 

   LL UL Length  LL UL Length 
  

1 
 

 
0.0438 

 
0.0398 

 
0.0466 

 
0.0068 

0.0421 
0.0389 
0.0412 

0.0405 
0.0359 
0.0388 

0.0445 
0.0409 
0.0431 

0.0040 
0.0049 
0.0043 

A
pplication I 

 

25 
 
 
 
45 
 

 
 

0.8899 
 

 
1.2552 

 
 

0.8848 
 

 
1.2486 

 

0.8938 

 
 
1.2613 

 
 

0.0085 
 

 
0.0127 

 
0.8878 
0.8898 
0.8880 

 
1.2432 
1.2488 
1.2550 

 
0.8853 
0.8866 
0.8849 

 
1.2396 
1.2449 
1.2492 

 
0.8897 
0.8920 
0.8906 

 
1.2448 
1.2522 
1.2617 

 
0.0043 
0.0054 
0.0057 

 
0.0051 
0.0073 
0.0126 

 
1.5504 

 

 
2.5541 

 
1.5471 

 

 
2.5494 

 
1.5525 

 

 
2.5584 

 
0.0054 

 

 
0.0090 

1.5470 
1.5499 
1.5499 

 
2.5536 
2.5528 
2.5539 

1.5457 
1.5479 
1.5482 
 
2.5522 
2.5508 
2.5515 

 

1.5477 
1.5513 
1.5509 
 
2.5549 
2.5544 
2.5554 

0.0020 
0.0034 
0.0027 

 
0.0027 
0.0036 
0.0039 

               A
pplication II 

 
1 
 

 
30 
 
 

 
50 
 

 
3.5484 

 
3.5386 

 
3.5529 

 
0.0143 

3.5423 
3.5418 
3.5422 

3.5390 
3.5382 
3.5374 

3.5445 
3.5439 
3.5470 

0.0055 
0.0058 
0.0096 
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Table 6: Bayes and E-Bayes predictors and bounds for real data sets of 
the future observation under BLL function based on CS-PALT under 

two-sample prediction (  

 Bayesian E-Bayesian 

   LL UL Length  LL UL Length 
  

1 
 

0.0417 
 

0.0390 
 

0.0445 
 

0.0056 
0.0399 
0.0393 
0.0406 

0.0388 
0.0376 
0.0387 

0.0407 
0.0406 
0.0417 

0.0019 
0.0029 
0.0029 

A
pplication I 

  
 

25 
 
 
 

45 
 

 
 

0.8932 
 
 
 

1.2522 
 

 
 

0.8884 
 
 
 

1.2438 
 

 
 

0.8961 
 
 
 

1.2594 
 

 
 

0.0077 
 
 
 

0.0156 
 

 
0.8877 
0.8875 
0.8845 

 
1.2454 
1.2492 
1.2447 

 
0.8851 
0.8839 
0.8806 

 
1.2423 
1.2451 
1.2416 

 
0.8890 
0.8904 
0.8856 

 
1.2476 
1.2521 
1.2469 

 
0.0039 
0.0065 
0.0051 

 
0.0053 
0.0070 
0.0053 

A
pplication II

  

 
1 
 
 
 

30 
 
 
 

50 

 
1.5526 

 
 
 

2.5556 
 
 
 

3.5549 

 
1.5500 

 
 
 

2.5499 
 
 
 

3.5468 

 
1.5543 

 
 
 

2.5591 
 
 
 

3.5654 

 
0.0042 

 
 
 

0.0092 
 
 
 

0.0187 

1.5495 
1.5489 
1.5487 

 
2.5462 
2.5511 
2.5532 

 
3.5498 
3.5543 
3.5521 

1.5483 
1.5480 
1.5476 

 
2.5443 
2.5497 
2.5504 

 
3.5449 
3.5488 
3.5466 

1.5508 
1.5498 
1.5493 

 
2.5481 
2.5521 
2.5555 

 
3.5542 
3.5578 
3.5554 

0.0025 
0.0018 
0.0017 

 
0.0038 
0.0024 
0.0051 

 
0.0093 
0.0090 
0.0088 

  


