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Abstract

The Topp-Leone Ailamujia (TL-A) distribution is constructed
as a new two-parameter lifetime model. The proposed model's hazard
rate function can be a bathtub or a reversed J-shaped. A variety of
statistical qualities and reliability features of the TL-A distribution
have been investigated, including the moments, the moment
generating function, incomplete moments, mean deviation, and the
curves of Bonferroni and Lorenz. The functions of mean residual life
and mean inactive time are also taken into account. The maximum
likelihood procedure is highlighted for estimating the model
parameters. To check the behaviour of the estimates, Monte Carlo
simulations are being performed. Last, the novel model's efficiency is
tested with a set of real data.

Keywords: Burr—Hatke distribution; Hazard Rate Function;
Moments; Residual Analysis; Maximum Likelihood Estimation;
Monte Carlo Simulation.

1. Introduction

Lifetime distributions are widely applied in biology,
engineering, and management. The hazard rate of classical models
such as exponential, gamma, and Weibull distributions exhibit
monotonically increasing, monotonically decreasing, or constant
hazard rates, this is a significant issue because many longevity
systems utilize bathtub forms for their hazard rates. Many recent
efforts have been undertaken to develop more flexible statistical
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distributions in modelling life data. Lv and Chen, (2002) presented
the Ailamujia distribution (AD) as a one-parameter lifetime model.
This model is flexible and diverse in terms of modelling repair or
delays time of a system. The function of cumulative distribution (cdf)
for AD is expressed in the form:

H(y;1)=1-(1+1y)exp(-Ay); y 20, 1>0,

thus, the relevant probability density function (pdf) is deduced as
follows:

h(y;A)=A*yexp(-1y); y 20, 2>0.

Ailamujia distribution has profited greatly from the efforts of
several authors. Pan et al. (2009) investigated small-sample interval
estimation and hypothesis testing. Bing, (2015) has been using Type
I censoring and three independent priors based on incomplete data to
implement the Bayesian estimation of the AD. Li (2016) utilized the
three-loss functions to evaluate the minimax estimate of the
parameter of AD under a non-informative prior. Jan et al. (2017)
proposed and investigated the weighted analogue of the AD. Rather
and Subramanian (2022) established a new size-biased AD with
applications in engineering and medicine. Jamel et al. (2021)
established and exhibited the power version of AD. established and
exhibited the power version of AD. Recently, Rather et al. (2018)
studied the exponentiated version of AD in detail, utilizing statistical
inference and biomedical data applications.

The necessity to assemble new generators for univariate
lifetime distributions by introducing one or more shape parameters to
the baseline model has lately increased. This parameter induction is
useful in detecting tail features as well as optimizing the goodness-of-
fit of the proposed generating distribution. These structures were
created by adding one or more parameters to the baseline model's cdf
to create a fresh family of distributions that are more analytically and
accommodative. As a result, various classes of continuous
distributions have been evolved in the literature including Eugene et
al. (2002) produced the beta-G, Zografos and Balakrishnan (2009)
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who proposed the gamma-G. Cordeiro and de Castro (2011) built the
Kumaraswamy-G, Alexander et al. (2012) created the McDonald-G,
the Weibull-G has been introduced by Bourguignon et al. (2014), and
several other new families of distributions has been devolved.

Topp and Leone (1955) suggested the Topp-Leone (TL)
distribution as an alternative to the Beta distribution. The TL model
received far less attention before Nadarajaha and Kotoz (2003)
investigated it. Al-Shomrani et al. (2016) recently defined the Topp-
Leone-G family of distributions, using the TL distribution as a
generator to create this class. The TL-G family's cdf is formulated as:

G(y:6.8)=[H(y:O) ] [2-H ()T
:[1—{I—T(y;§)}2T, yeR; 5>0, (3

where H(y;&)=1-H(y;¢) is a survival function of the baseline
model that is affected by a parameter vector £. The related pdf is
obtained as:

g(y:6,£)=25h(y;O)A(Y:O[HY:O] [2-H ;O]

=25h(y;O)AO[1-{AO) | a0,

where, h(y:¢) and H(y;¢)=1-H (y;¢) respectively, are the pdf
and survival function of the baseline model.

Some of the TL-distributions have been investigated and
analyzed, including the TL-exponential reported by Al-Shomrani et
al. (2016), the TL-generalized inverted exponential derived by Al-
Saiary and Bakoban (2020), and the TI-Gompertz evaluated by Nzei
et al. (2020). In this work, we propose and investigate the Topp
Leone-Ailamujia (TL-A) distribution, as a new extension of the
Ailamujia distribution. The rate of failure for the TL-A distribution
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demonstrates a bathtub and a unimodal pattern, which is the primary
motivation for adopting this model.

The remainder of the paper is structured as follows. The
Topp-Leone Ailamujia distribution is introduced in Section 2.
Section 3 examine a variety of mathematical aspects of the TL-A
distribution including: the r'™ moment, moment generating function,
the sth incomplete moment, conditional moments, mean deviation,
mean residual life, mean inactivity times and the entropy. Section 4
goes on estimation and simulation; maximum likelihood method has
been used to estimate the distribution parameters. The numerical
simulations for maximum likelihood estimates are utilized to study
the behavior of the estimate. Section 5 uses a real-life data set to
demonstrate the TL-A model's utility. Finally, Section 6 discusses
some findings.

2. The Topp Leone-Ailamujia Distribution

In this section, we will define the Topp Leone-Ailamujia (TL-
A) distribution by taking H(y;{) to be the cdf of Ailamujia

distribution with the parameter A. The recommended model's cdf
and pdf respectively, are generated using Egs. (1&2) in Egs. (3&4) as
indicated below:

G(y;é,/l)=[1—(1+/1y)2e-“yT, y>0 6,450, (5

and
g(y;8,A)=2542y (1+Ay)e?” [1—(1+/1y)2e-“y T_l . (6)

Applying the generalized binomial theorem, for any real number &
that is a positive integer, we have:

(1+w) = i(kgj o, for |w|>0. (7)

k=0
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The cdf and pdf of TL-A(5,4) distribution can be reformulated
using Eq.(7) as:

G(y:6,A)= Y A y‘e™; (8)
i k=0
i o\ 2
where, A, =(-1) lk(_j( Ij :
' (AN
and
g(y'5’l): z Hi'k yk+1 e—z(i+1)/1y : (9)
i k=0
(5-1)(2i +1
where, TI;, =281 (-1) ( _ j( Ik+ j :
' i
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Figure (1) The TL-A density function plots

The representations of the TL-A density function for various model
attribute values are shown in Figure (1) The suggested model's pdf is
slanted to right, monotonically decreasing, and unimodal.

The hazard rate (hr) function is used to illustrate the population's
current failure rate. It is also significant in reliability assessment and
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socioeconomics, as well as in developing a model when dealing with
longevity data. The hr of the TL-A( &, 1) distribution is:

5 1y-_9(y:6,4)
"6 (y6.2)

o-1
2522y (1+2y) e [1-(1+ 2y e 2 | (10)
1-[1-(1eayye® |
The patterns of the hazard rate function are shown in Figure (2) for a

variety of distribution parameter values. The TL-A distribution’s hr is
shaped like a bathtub or upside-down bathtub shaped (unimodal).

(a) (b)
y . . r 20y r T
151 — 6-005,A=01 — 6-005,A=0.1
i - 6=01,A=05 -e 6=01,A=05
; - 62034208 1 5=03,4=08
:i w 6=05,A=12 e 6=05,A=12
= = v
L ST e
= 10'3 ......................... 2w
=1 S e 5 o
w e L T kit
I I F ] S
g #" ................... g g o
2 el e ” 2 H -
g [ @ S
£ Vil pmmmmmmmmemnemTITTITT T i -t
A N o e
\ 5 i ;_..-—-""
P ~F7
““““ L
¢ i
|
»
ol L L . L ol L N . L
0.0 0.5 1.0 15 20 0.0 05 1.0 148 20
y ¥

Figure (2) The plots of hazard rate function for the TL-A distribution

3. Statistical Properties

The basic statistical properties of the TL-A model, such as the
r' moment, moment generating function, the sth incomplete moment,
conditional moments, mean deviation, mean residual life, mean
inactivity times and the entropy, are deduced in this section.
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3.1. The r' moment

Central tendency and dispersion measurements are the most
common methods for describing the characteristics of a probability
distribution. Mainly two measurements are expected value and
variance. Skewness and kurtosis are two further features that can be
highlighted. A moment is a mathematical quantity that includes all of
these measures.

For the random variable Y with a TL-A distribution, the r™ moment
about the origin is determined as follows:

w(y)=E[Y r]=Tyr9(y)d_\/
0

By substituting Eq. (9) into the previous equation, we get:

0

’u; (y): z Hi'k Iy r+k +1 e—2(i +1)/1ydy
0

ik=0

0

i [2y (i +1)/1]r+k+2_1 iy _
= E 1. d|2 DA
. l,kj [Z(I +1)i]r+k+l € [ y(|+ ) ]

0

- z I; % r=1,23,..
i k=0 [2( +D)A]

where, T'(v) = I:u *Lexp[-u]du is the gamma function. as a special

case of the above equation, the mean of TL-A distribution is given
by:

L3 r(k +3)
== iy —————
o i,kz:() 26 +1A]

The TL-A random variable’s central moments are specified by:

th=E [0y _“)n}:i(: ]ur’(y)(—u)“‘r

r=0
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where, «; , , = i I; (n j(—y)n'r.

ik=0 r

The variance (Var) of the TL-A distribution is given from Eq. (13)
for n =2. Utilizing Eqg. (11), the skewness (Ske) and kurtosis (Kur)
metrics can be computed by the following relationships:

r_ o \3
SkE(y)='u3 31L11/Lt§2+2(#1) ,
Varz(y)

and

Kur(y) = u£—4u£u3'+6§t£ ()" =3(u)*
Vars(y)
Table (1) presents the values of these measures for some selected
values of the distribution parameters. As the value of parameter &
increases while the value of parameter A decreases. The mean and
variance of the TL-A distribution rise, but skewness and kurtosis
decrease.

Table (1) The mean, variance, skewness and kurtosis for

the TL-A distribution

sT a4 uy)T  Var(y)T  ske(y)y  Kur(y)d

0.5 5 0.170112 0.023650 1.601120 6.52357
1 3.5 0.357143 0.056122 1.260870 5.33058
1.5 2 0.753518 0.178726 1.141790 5.01119
3 1 1.965050 0.724575 1.030940 477877
6 0.5 4.858080 2.832560 0.991012 4.73435
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3.2. The moment generating function

The moment-generating function should be considered as an
alternative method for expressing a random variable’s probability
distribution. This alternate formulation is quite valuable since it provides
somewhat superior analytic controllability than density or cumulative
distribution functions. Likewise, Eq. (9) can be used to construct the
moment generating function of Y as follow:

M) =E]e je”g (y) dy

_ H. ) ka+1 e—[2(i +)A-ty] dy
0

i k=0

- r'k+2 .
- Xonl,k 0 +(1)/:_:]k+2 ct<2(i +DA.

3.3. The s™ incomplete moment

The Lorenz I(p) and Bonferroni b(p) curves can be obtained using
the first incomplete moment. These economic inequality measures can
assist other disciplines such as reliability, biology, and insurance. The sth
lower incomplete moment for TL-A distribution is calculated as:

o, O)=E[Y IV <t]=[y g(y)dy

. y[s +k +2,2A(3 +1)t]
= , [Z(I +1)i]s+k+2

where ;/(m,t):J.;u”“1 exp[-u] du denotes the lower incomplete

gamma function.
Setting s =1 in Eq. (15), the first order of lower incomplete monent
is:

°° k 3, 24 1
o(t) = Z [+ 1)2|]kt3)t]
P rrrey
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Using Egs. (12 & 16), the Lorenz and Bonferroni curves have been

calcautleted from these relations:  I(p) =iI: y g(y)dy and
H
1
b(p):ﬁj‘;y g(y)dy, where p=G(y) and
1

q=G7(p)=inf{y:G(y)=p}.

3.4. The conditional moments

The conditional moments of the first order is most commonly
used to calculate the mean deviation about the mean (or the median)
and the mean residual life function. For the TL-A distribution, the
conditional moments are as follows:

E[Y s|Y >t]=gi((:)),

and,

o (t)=[y*g(y)dy

[[s+k +2, 2A(i +1) t]
A 26 AT

(17)

where 1“(m,t):J.:ou”“1 exp[-u] du gives the upper incomplete

gamma function. From the above equation with s =1, the first upper
incompete moment is given by:

I[k +3,24( +1) t]
[2(i +12]"

o)= 11,

3.5. The mean deviation

The overall amount of variations from the mean and median
refers to the amount of scattering in a population to some level. The
mean deviation about the mean is given by:
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D(u)=E [y —ul]=T\y —u|g (y)dy
~[Lu-y1a )y +{Iy — g (v)cly

D (1) =24G (1) ~2p+2[y 9(y)dy =246 (u)~2p+20,(x)

Substituting Egs. (8 &16) into Eq. (19), yields:

£ ~ e T[k +3, 24 (i +1) y]
D(u)=2" A, p¥te ™™ —2u+2 10, .
() i,kZ_o e h g i,kZ_o 26 +0A]

Now, the mean deviation about the median is defined by:
D(m)=E[|y -m[]=[|y —m|g(y)dy

0
=—u+2[y g(y)dy =—p+20,(m)

I'[k +3,24(i +1) m]

k +3

:—,u+22

) [2(i +1)2]

3.6. The mean residual life

Major applications of the mean residual life (MRL) exist in
the fields of biology, insurance, service quality control and social
science. A product or device's MRL is the expected length of time it

will last after achieving age t. The MRL of TL-A distribution is

derived as:

MR(t)—— y g(y)dy -
G() ¢

Inserting Eq. (18) into Eq. (22), yields:

VU T R
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1 & Ik +3,24( +1) t]
MR (t) = _ o
©) 1-(3(t)i,kz_on"k [2(i +1)2]" t

3.7. The mean inactivity times

A well-known reliability measure with applications in
forensics and reliability theory is the mean inactivity time (MIT)
function. In terms of the TL-A distribution, the MIT of a random
variable Y is calculated as follows:

IO __a0)
MT (t) =t X0 !yg(y)dy =t 60 t>0

Using Eq. (16) into Eq. (24), we have:

MT (t):t—i i . y[k +3, 21(|k+;l)t]
Gt)ise =[2G +DA]

Table (2) presents the numeric values of the MRL and MIT for the
proposed model at point t =1 and a fixed value of the parameter
A =2, with various parameter selections («, ). As the parameters «
and B increase, the MRL decreases while the MIT increases. Figure
(3) depicts the activity of the MRL and the MIT for various values of
distribution parameters. The MRL (left side) is decreasing, whereas
the MIT (right side) is rising.

Table (2) The MRL and MIT function for the TL-A distribution

s A t=2 MR T MT 4
0.5 7 0.076349 1.878490
1 5 0.109504 1.750000
2.5 3.5 0.161834 1.473550
4 1.5 0.439874 0.737483
5.5 1 0.833005 0.411506
6.5 0.5 2.9850800 0.217965
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Figure (3) The Plots of MRL and MIT functions for the TL-A
distribution
3.8. Entropy

A measure of the variation in uncertainty is the entropy. The
more uncertainty in the data is indicated by a high value for entropy.
An explanation of the Rényi entropy (Rényi & others, 1961) for TL-
A distribution is derived as:

1 i _
R, :Elogigy(y)dy ;y>0,7#1

=11|og[(25/12)7j y7(1+/’ty )7e-zmy [1_(1‘*'/1)/ )ze_zﬂy ]7(6—1) dy}
-y )

Applying the generalized binomial theorem which is given by Eq. (7),
yields:

1 & T -
R =—_ |Og Hy y k +y e—2y/1(|+1)y dy
Tol-y Lkzo H '([
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__Iog{i Tk +y+1) } |

= 2y A+

where, TT_ = (25 ) A% (-1 ((5'—1)7/](21: 7} |

4. Estimation and Simulation

Out all the several techniques for estimating the parameters
that have been reported in the literature, the maximum likelihood
approach (MLES) is the technique that is most frequently used. The
MLEs have attributional properties and can be used to create
confidence intervals and test statistics. The unknown parameters of
the TL-A distribution are estimated in this section using the MLEs
technique. Also, we will use Monte Carlo simulation to demonstrate
the behavior of estimates.

4.1. Maximum likelihood estimation

Suppose y,,y,,..,y, be a random sample of size n drawn

from the TL-A distribution with pdf (6). Thus, the log-likelihood
function of the suggested model indicates:

I =n Log[2512]+iLog[yi]+iLog[(1+&yi )]—ZAilyi

+(5—1)ZL09[1—((1+ Ay )e )2} .
i=1

By differentiating Eq. (26) with respect to parameters &andA,
respectively, one can construct the likelihood equations for the
purposed model as:

ad n < 22y,
$:g+;Log[1—e“y' (1+iyi)2J :
and
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ol nov (4 .+1ze—2/1yi —(22 _2+2 . e‘”yi
RPN e M The) @22y} +2y,)
oA 1-(Ly; +1)° e

i=1

v Vi oy 20
+zlyi+1 2>y, + I

i=1 i=1

By equating the system of nonlinear equations (27-28) to zero and
solving them concurrently, the MLEs of parameters § and A can be
acquired. Because these equations are nonlinear, we should solve
them using analytical techniques such as Newton-Raphson.

4.2. Mont Carlo simulation

The effectiveness of the MLEs of the parameters of TL-A
distribution is investigated using Monte-Carlo simulation. MLE
accuracy is discussed using bias term and mean square error (MSE).
Using Eq (5), different samples of size 25, 50, 75, and 100 are
generated, this simulation study is being evaluated using 1000
replicates, we consider the following cases:

Case I: The true values of the distribution parameters § and 2 are:
6=05and 2 =2,
Case I1: The values of § and A are: § =3 and A =0.75.

The average MSEs and biases of the simulated estimates 9, =(5, 1)
are calculated using the following relationships:

MSE () =~ 31", ~n)° and Bias() ="l ~1).

Tables (3-4) show the average values of MSE and the bias term for
the simulated parameters. These tables clearly show that as sample
size increases, MSEs and biases decrease. Furthermore, for large
samples, the estimated value of parameter is close to the parametric
values.
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Table (3) The simulation results for the Case I

n S MSE () Bias(6) 2 MSE (1) Bias(A4)
30 0.54808 0.021901 0.048077 2.13964 0.229899 0.139639
40 0.53555 0.014170 0.035545 2.10099 0.15308 0.100987
50 0.52748 0.010595 0.027475 2.07729 0.121251 0.077292
75 0.51558 0.006237 0.01558 2.04823 0.076914 0.048226
100 0.51240 0.004369 0.012403 2.03701 0.058677 0.037014
150 0.50847 0.002812 0.008465 2.02662 0.036508 0.026617
175 0.50715 0.002399 0.007150 2.02133 0.031071 0.021327
200 0.50624 0.002113 0.006238 2.01885 0.027346 0.018850

Table (4) The simulation results for the Case |

n S MSE (6) Bias(6) 2 MSE (1) Bias(4)
30 3.53651 2.35888 0.536515 0.78146 0.014358 0.031456
40 3.38133 146840 0.381335 0.77210 0.010040 0.022101
50 3.32773 1.08446 0.327735 0.76914 0.008399 0.019142
75 3.17431 0.573069 0.174314 0.76086 0.005339 0.010857
100 3.13061 0.363478 0.130611 0.75872 0.003588 0.008715
150 3.11464 0.274776 0.114642 0.75764 0.002680 0.007642
175 3.09989 0.214687 0.099887 0.75728 0.002237 0.007277
200 3.08706 0.179063 0.087061 0.75625 0.001841 0.006249

5. Applications

In this section, we investigate a real data set to show how the TL-A
distribution can be used. Nassar and Nada (Nassar & Nada, 2011)
examined a data set containing the actual tax information, from
January 2006 to November 2010, the data represents Egypt's monthly
actual tax income (in 1000 million Egyptian pounds). The data are as
follows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5,
21.6,18.5,5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5,
8,9.2,26.2,21.9,16.7,21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7,
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18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2,
6.8, 8.9, 7.1, 10.8.

To demonstrate the TL-A distribution’s flexibility; the goodness of fit
criterion for the proposed model is compared to the fit of the
following lifetime distributions: gamma (GM), generalized Rayleigh
(GR) by Kundu and Ragab (2005), Weibull (W) by Weibull (1951),
power Ailamujia (PA) and Ailamujia (A).

The MLE technique is used to estimate the distribution parameters
for all fitted models [Table (5)]. The following information criterion
(IC) metrics are employed for each model: Akaike's IC (AIC),
Bayesian IC (BIC) and Hannan-Quinn IC (HQIC). Also, the
Anderson-Darling (AD), Cramér-Von Mises (CV), and the
Kolmogorov Smirnov (KS) statistics and their p-values. In particular,
the best model for fitting the data is the one with smaller value for
these metrics and a higher p-value for the K-S statistic. The estimated
density and estimated survival are also depicted.

Table (5) The MLE of the estimated parameters for the tax data

Model Parameters Estimate
TL-A(5,4) 5 =1.96497 2 =0.125684
(0.45099) (0.0145518)
GM(e, B) & =3.67824 B =3.667
(0.64885) (0.693112)
GR(o,7) & =0.0644648 7 =1.03096
(0.00569) (0.184452)
W(n,v) i = 0.0653337 v =1.84037
(0.00491428) (0.171157)
PA(z,4) 7 =1.30231 2 =0.0636523
(0.118822) (0.0222917)
A1) - 2 =0.148278

- (0.0136501)

Tables (6-7) compares the fit of the TL-A distribution to other
models. Figure (4) depicts the estimated density and estimated
survival plots for the proposed model. According to these tables and
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figure, the proposed model outperforms all other distributions in
terms of fit. As a result, the TL-A distribution could be regarded as
the best data fitting model.
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Figure (4): (a) The estimated pdf and (b) The estimated sf for tax data

Table (6) The AIC, BIC, HQC of each model for tax data

Model AIC BIC HQC

TL-A(0,4) 389.369 393.524 390.991
GM(a, B) 390.164 394.319 391.786
GR(ao,y) 399.393 403.548 401.015
W(n,v) 398.581 402.736 400.203
PA(7,A) 393.109 397.264 394.731
A(A) 398.193 400.270 399.004
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Table (7) The values of AD, CV, K-S and their p-value of each
model for tax data

Model AD cVv K-S P-value

TL-A(5,2) 12357  0.206047  0.131677  0.257948
GM(a, B) 124717  0.204723  0.133632  0.242722

GR(ao,y) 2.31655 0.400026 0.176353  0.0509594
W(n,v) 1.86497 0.282737 0.143165 0.177978
PA(r,A) 1.4109 0.218055 0.134641 0.235132
A(A) 2.33705 0.346263 0.167479 0.073043

6. Conclusions

In this article, we suggest and explore the Topp Leone-
Ailamujia (TL-A) distribution, as a new extension of the Ailamujia
distribution. The proposed model is more adaptable than the
Ailamujia distribution because it includes bathtub and reversed J-
shaped failure rates. The TL-A distribution's mathematical quantities,
such as the rth moment, moment generating function, sth incomplete
moment, conditional moments, mean deviation, mean residual life,
mean inactivity times, and entropy, are clearly explained. The
maximum likelihood method is used to estimate the TL-A
parameters, Also, the simulation study is done to investigate the
behavior of the estimate. The TL-A distribution fits a set of real data
better than some well-known competing models.
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The Topp-Leone Ailamujia Distribution:
Properties & Applications
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