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Abstract. In recent decades, several technological applications have depended on 

manipulators like Stewart platform due to its accuracy and precision. Based on 

actuation type, Stewart platforms could be rotary or linearly actuated. Electric linear 

actuators are devices commonly consist of DC or AC motors coupled with lead screw 

or mechanism of gears and spindle which are used to convert rotary motion into linear 

(push or pull) motion. To increase accuracy and precision and achieve the desired linear 

actuator response, controllers should be used. The main aspiration of this work is to 

investigate the feasibility of using PID controllers for position control of Stewart 

platform with linear actuators. The mathematical model has been derived and the model 

transfer function has been obtained. To meet the required response of performance 

characteristics, the PID controller has been designed based on analysis of root-locus. 

Model simulation analysis has been carried out on both MATLAB and Simulink. For 

the electric linear actuator, comparison between the obtained response and the results 

of Ziegler-Nichols tuning method has been discussed on basis of the specifications of 

the time response. The PID controller parameters for the electric linear actuator has 

been tested experimentally and compared with simulation results. 

Keywords: Electric linear actuator, DC motor, PID controller, root-locus, MATLAB, 

Simulink, Ziegler-Nichols, Stewart platform, Bode plot. 

1. Introduction  
Parallel manipulators like Stewart platform shown in figure (1), are widely used in several fields of 

technology. This platform could be either rotary actuated by motors or linearly actuated by linear 

actuators. There are many different styles of linear actuators. The common one is a rod style at which a 

rod shaft moves in and out of the actuator body. Other types include, column actuators and track 

actuators. In electric linear actuators the rotary motion of electric motors is converted into linear motion. 

Electric linear actuators are commonly position controlled. One of most important feedback control 

systems is the proportional, integral and differential closed loop control (PID) [1]. In order to design an 

effective controller to achieve the required response of the electric linear actuators without negatively 

affecting its stability, The mathematical model of the electric linear actuator should be derived properly 

[2]. Based on the mathematical model, the system could be put on the block diagram form and the 

transfer function equation could be generated to facilitate simulation analysis. One of the best methods 

used to design and calculate the tuning parameters of the PID controller is the root-locus method. In 

this method, according to the design specifications and requirements the root locus of the system is 

plotted then controller gains could be calculated [3]. Many tuning methods have discussed 

methodologies to obtain the PID controller parameters. Ziegler-Nichols tuning method was presented 

in 1942 and till now this method is still widely used [4]. In electric linear actuators, the position 

controller is tacking travel displacement signal to drive the actuator till reaching the desired position 

[5]. Sensors must be used to measure the travel displacement as well as to complete the closed loop 

control circuit. This paper studies an electric linear actuator consists of 12V DC motor coupled with 
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lead and screw through a flexible metal joint. The effect of (push or pull) could be achieved through 

using L298 H-Bridge integrated with Arduino micro-controller. An ultrasonic sensor is used to feedback 

the system with measured output signals. The DC motor control parameters were estimated using 

Simulink. The design of the PID controller was done using root-locus method and compared with 

Ziegler-Nichols tuning method. The PID controller parameters has been tested experimentally and the 

results were explained and compared with simulation results. The paper investigates the application of 

PID controllers in the position control of linear actuators and in turn control parallel manipulators. It 

also analyses their performance using simulation taking into consideration noise and disturbance. The 

Bode plot of the system before and after using the controller has been analysed to determine peak gain, 

phase margin and gain margin to study the system stability.  

 
Figure 1. Stewart platform. 

2. Electric Linear Actuator Model 

The model under investigation is an electric linear actuator consists of 12V DC motor and lead screw 

coupled together with flexible metal coupling. The rotary motion of the DC motor is converted into 

linear as the actuator rod has been designed to move only along its axis through groove guides in rod 

casing. When the DC motor rotates clock-wise or counter-clock-wise the, actuator rod is extended or 

retracted. The direction of rotation of the DC motor is controlled by simply reversing polarity through 

the Arduino micro controller and motor driver. Every linear system can be described by a set of 

equations on the form 
𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑧

𝑦 = 𝐶𝑥 + 𝐷𝑢
 (1) 

Where A is state (or system) matrix, x is state vector, B is input matrix, u is Input (or control) vector, E 

is error or (disturbance) matrix, z is error vector, C is output matrix and D is feed-through (or feed-

forward) matrix. The model of the DC motor circuit is shown in figure (2). 

 
Figure 2. DC motor circuit. 
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The developed torque of the motor 𝑇𝑚𝑖
 and back electromotive-force voltage 𝑒𝑎𝑖(𝑡) could be computed 

as follows 
𝑇𝑚𝑖

(𝑡)  = 𝐾𝑚𝑖𝑎𝑖(𝑡)

𝑒𝑎𝑖(𝑡)  = 𝐾𝑏𝜃̇𝑚𝑖(𝑡)
 (2) 

Where 𝐾𝑚 is motor torque constant, 𝑖𝑎𝑖(𝑡) is armature current, 𝐾𝑏 is back electromotive-force voltage 

constant, 𝜃𝑚𝑖(𝑡) is motor angular coordinate and 𝜃𝑚𝑖(𝑡) is motor angular velocity. By applying 

Kirchhoff current law on the circuit shown in figure (2) the following equation could be derived 

𝑣𝑎𝑖(𝑡) = 𝑅𝑎𝑖𝑎𝑖(𝑡) + 𝐿𝑎
𝑑𝑖𝑎𝑖(𝑡)

𝑑𝑡
+ 𝑒𝑎𝑖(𝑡)

𝑣𝑎𝑖(𝑡) = 𝑅𝑎𝑖𝑎𝑖(𝑡) + 𝐿𝑎
𝑑𝑖𝑎𝑖(𝑡)

𝑑𝑡
+ 𝐾𝑏𝜃̇𝑚𝑖(𝑡)

(3) 

Where 𝑣𝑎𝑖(𝑡) is the input voltage applied to the armature, 𝑅𝑎 is armature winding resistance, 𝑖𝑎𝑖(𝑡) is 

armature current and 𝐿𝑎 is armature winding inductance. From equation (3) the rate of change of 

armature current 𝑖𝑎𝑖
′ (𝑡) could be on the following form 

𝑖𝑎𝑖
′ (𝑡) =

−𝑅𝑎

𝐿𝑎
𝑖𝑎(𝑡) −

𝐾𝑏

𝐿𝑎
𝜃̇𝑚𝑖(𝑡) +

1

𝐿𝑎
𝑣𝑎𝑖(𝑡) (4) 

By taking all torques on rotor shaft and substituting from equation (2) with motor developed torque 

equation, then motor torque and armature current are as follows 

𝑇𝑚𝑖(𝑡)  = 𝑇𝐿𝑖(𝑡) + 𝑏𝜃̇𝑚𝑖(𝑡) + 𝐽𝜃̈𝑚𝑖(𝑡)

𝑖𝑎𝑖(𝑡)  =
1

𝐾𝑚
𝑇𝐿𝑖(𝑡) +

𝑏

𝐾𝑚
𝜃̇𝑚𝑖(𝑡) +

𝐽

𝐾𝑚
𝜃̈𝑚𝑖(𝑡)

 (4) 

Where 𝑇𝐿𝑖
 is load torque, 𝜃̈𝑚𝑖(𝑡) is motor angular acceleration, 𝑏 is viscous damping coefficient and 𝐽 

is total effective inertia affecting motor. Then from equation (5) the motor angular acceleration 𝜃̈𝑚𝑖(𝑡) 

could be on the following form 

𝜃̈𝑚𝑖(𝑡) =
𝐾𝑚

𝐽
𝑖𝑎𝑖(𝑡) −

𝑏

𝐽
𝜃̇𝑚𝑖(𝑡) −

1

𝐽
𝑇𝐿𝑖(𝑡) (6) 

By setting the states to be motor angular coordinate, motor angular velocity and armature current the 

DC motor state space model could be on the following form 

[

𝜃̇𝑚𝑖(𝑡)

𝜃̈𝑚𝑖(𝑡)

𝑖𝑎𝑖
′ (𝑡)

] =

[
 
 
 
0 1 0

0
−𝑏

𝐽

𝑘𝑚

𝐽

0
−𝑘𝑏

𝐿𝑎

−𝑅𝑎

𝐿𝑎 ]
 
 
 
[

𝜃𝑚𝑖(𝑡)

𝜃̇𝑚𝑖(𝑡)

𝑖𝑎𝑖(𝑡)

] + [

0
0
1

𝐿𝑎

] [𝑣𝑎𝑖(𝑡)] + [

0
−1

𝐽

0

] [𝑇𝐿𝑖(𝑡)] (7) 

[
𝜃𝑚𝑖(𝑡)

𝜃̇𝑚𝑖(𝑡)
] = [

1 0 0
0 1 0

] [

𝜃𝑚𝑖(𝑡)

𝜃̇𝑚𝑖(𝑡)

𝑖𝑎𝑖(𝑡)

] + [0][𝑣𝑎𝑖(𝑡)] (8) 

The effect of lead screw is represented in converting the rotary motion into linear motion. Figure (3) 

shows the relation between rotary motion and linear motion. 

 
Figure 3. Relation between rotary and linear motion. 

From the figure (3) the angle of lead 𝛽 and the pitch of lead 𝑃 could be calculated as follows 

𝛽 = 𝑡𝑎𝑛−1 (
𝐿

2𝜋
)

𝑃 =
𝐿

2𝜋

 (9) 

Where 𝐿 is the displaced step of the lead screw per one revolution. The electric linear actuator 

displacement 𝐷𝑖(𝑡) and velocity 𝑣𝑖(𝑡) are calculated as follows 
𝐷𝑖(𝑡) = 𝑃𝜃𝑚𝑖(𝑡)

𝑣𝑖(𝑡) = 𝑃𝜃̇𝑚𝑖(𝑡)
 (10) 
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For the holding load torque 

𝑇𝐿𝑖(𝑡) =
𝐹acti (𝑡)×𝐿×𝜂

2𝜋
 (11) 

Where 𝐹acti (𝑡) is the force acting on the linear actuator and 𝜂 is lead screw efficiency. The total effective 

inertia 𝐽 is calculated as follows 

𝐽 = 𝐽𝑎 + 𝐽𝐿 (12) 

By substitution from equations (10), (11) and (12) into the state space model derived in equations (7) 

and (8) the state space mathematical model of the electric linear actuator would be on the following 

form 

[

𝜃̇𝑚𝑖(𝑡)

𝜃̈𝑚𝑖(𝑡)

𝑖𝑎𝑖
′ (𝑡)

] =

[
 
 
 
0 1 0

0
−𝑏

𝐽𝑎+𝐽𝐿

𝑘𝑚

𝐽𝑎+𝐽𝐿

0
−𝑘𝑏

𝐿𝑎

−𝑅𝑎

𝐿𝑎 ]
 
 
 

[

𝜃𝑚𝑖(𝑡)

𝜃̇𝑚𝑖(𝑡)

𝑖𝑎𝑖(𝑡)

] + [

0
0
1

𝐿𝑎

] [𝑣𝑎𝑖(𝑡)] + [

0
−𝐿𝜂

2𝜋(𝐽𝑎+𝐽𝐿)

0

] [𝐹acti (𝑡)] (13) 

[
𝐷𝑖(𝑡)

𝑣𝑖(𝑡)
] = [

𝑃 0 0
0 𝑃 0

] [

𝜃𝑚𝑖(𝑡)

𝜃̇𝑚𝑖(𝑡)

𝑖𝑎𝑖(𝑡)

] + [0][𝑣𝑎𝑖(𝑡)] (14) 

The system has one input (armature voltage) and two outputs (linear travel displacement and linear 

travel speed). The load force is considered as disturbance force and could be neglected in no load case. 

Based on the previous state space model, the following block control diagram shown in figure (4) could 

be concluded for the electric linear actuator. 

 
Figure 4. Control model of electric linear actuator. 

In order to derive the model transfer function which represents the relation between input volt and travel 

displacement, assume no load case for simplification. 
𝐷𝑖

𝑣𝑎𝑖
=

𝑃 𝐾𝑚 𝐽⁄ 𝐿𝑎

𝑠3 + (
𝐽𝑅𝑎 + 𝑏𝐿𝑎

𝐽𝐿𝑎
) 𝑠2 + (

𝑏𝑅𝑎 + 𝐾𝑏𝐾𝑚
𝐽𝐿𝑎

) 𝑠
 (15) 

The direct kinematic equation for a parallel manipulator like Stewart platform can be expressed as 

𝑄 = 𝑓(𝐿𝑖) (16) 

Where Q is the position and orientation of the upper platform, 𝐿𝑖 is the vector of linear actuators lengths. 

The travel displacement of each linear actuator is calculated as  

𝐷𝑖 = 𝛿𝑙𝑖 (17) 

Where 𝑙𝑖 is the ith linear actuator length. To achieve the desired position and orientation of the upper 

platform, the desired travel displacement should be achieved accurately and appropriately. 

3. Controller design and simulation 

To write the equation of the electric linear actuator transfer function, both DC motor parameters and 

lead screw specifications should be specified. Table (1) shows the parameters of the 12V DC motor 

used to drive the electric linear actuator and the lead specifications. 
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Table 1. DC motor parameters and lead screw specifications. 

Parameter Value 

𝑅𝑎 0.9 𝛺 

𝐽𝑎 4.6841 × 10−8 𝐾𝑔 ⋅ 𝑚2 

𝐽𝐿 5.46406 × 10−7 𝐾𝑔 ⋅ 𝑚2 

𝐿 0.008 𝑚 

To determine the remaining parameters of a DC motor that are necessary for its control, it is necessary 

to obtain the relationship between the measured DC motor angular speed (rpm) and voltage (V). 

 
Figure 5. DC motor angular speed (rpm) and voltage (V). 

The values that have been estimated using the parameter estimation tool in Simulink, specifically by 

the nonlinear least squares method, are as shown in table (2) 

Table 2. DC motor estimated parameters. 

Parameter Value 

𝐿𝑎 0.374 𝐻 

𝐾𝑚 8.314 × 10−3 𝑁 ⋅ 𝑚 𝐴⁄  

𝐾𝑏 7.185 × 10−3  𝑉 𝑚𝑠−1⁄  

𝑏 1.71878 × 10−5 𝑁 ⋅ 𝑚𝑠 

The electric linear actuator open loop transfer function 𝐺(𝑠) could be calculated as follows 

𝐺(𝑠) =
𝐷𝑖

𝑣𝑎𝑖
=

604

𝑠3 + 369.3𝑠2 + 4291𝑠
(18) 

3.1. PID controller design and simulation 

Although this controller type is conventional one, but till now it is widely used [6],[7]. Generally, as 

shown in figure (6), the desired position (displacement) is the control system input. The error between 

desired and measured signals is the input for controller. based on error, controller generates the control 

signal to the driver and in turn it generates the output voltage to the actuator to execute the desired 

displacement. The output displacement is measured through the displacement sensor and then feeds the 

control system with the actual measured position. The PID control signal 𝑢(𝑡) comes on the following 

form 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 (19) 

Where 𝐾𝑃 is the proportional tuning gain, 𝐾𝐼 is the integral tuning gain, 𝐾𝐷 is the derivative tuning gain 

and 𝑒(𝑡) is the error signal. The error could be calculated as follows 

𝑒(𝑡) = 𝑅(𝑡) − 𝑦(𝑡) (20) 
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Where 𝑅(𝑡) is desired reference displacement and 𝑦(𝑡) is actual measured displacement. The PID 

controller block diagram could be on the following form as shown in figure (6). 

 
Figure 6. Closed loop PID controller block diagram. 

The design procedure starts with assigning the desired system percent overshot 𝑃. 𝑂 and desired settling 

time 𝑡𝑠. 
𝑃. 𝑂 = 5%

𝑡𝑠 = 0.1 s
 (21) 

The dynamic damping ratio 𝜁 could be calculated as follows 

𝜁 =
−𝑙𝑛 (

𝑃𝑂
100

)

√𝜋2 + 𝑙𝑛2 (
𝑃𝑂
100

)

≈ 0.92417 (22) 

The system is under damped system, so the system will produce two complex conjugate poles. Based 

on the settling time and the dynamic damping ratio the system natural frequency 𝜔𝑛 is calculated from 

the following approximated formula 

𝜔𝑛 =
4

𝜁𝑡𝑠
≈ 43.282 𝑟𝑎𝑑 𝑠⁄  (23) 

The system desired poles 𝑃1,2 are calculated as follows. 

𝑃1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1

𝑃1 = −40 + 16.5327𝑖
𝑃2 = −40 − 16.5327𝑖

(24) 

Based on plotting the root locus of the linear actuator transfer function 𝐺(𝑠) as shown in figure (7), the 

system poles are 𝑃𝑜𝑙𝑒1 = 0, 𝑃𝑜𝑙𝑒2 = −357.3363 and 𝑃𝑜𝑙𝑒3 = −12.008587. After calculating both 

desired and system poles and plotting system root locus, the angles between them are calculated as 

shown in figure (8). 

 

Figure 7. Root locus of linear actuator open 

loop transfer function. 

 

Figure 8. Controller gain calculation using 

Root locus. 
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𝜃2 = 180∘ − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑖𝑚𝑎𝑔 (𝑃1)

|(𝑟𝑒𝑎𝑙 (𝑃1) −  pole 1)|
) ≈ 157.5438∘

𝜃3 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑖𝑚𝑎𝑔 (𝑃1)

|( pole 2 − 𝑟𝑒𝑎𝑙 (𝑃1))|
) ≈ 2.9823∘

𝜃4 = 180∘ − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑖𝑚𝑎𝑔 (𝑃1)

 |(𝑟𝑒𝑎𝑙 (𝑃1) −  pole 3)| 
) ≈ 149.4324∘

 (25) 

Where 𝜃2, 𝜃3 and 𝜃4 are angles between 𝑃𝑜𝑙𝑒1, 𝑃𝑜𝑙𝑒2 and 𝑃𝑜𝑙𝑒3 and 𝑃1 respectively. In order to 

compute the controller constant 𝑎1 which is considered like introducing zero to the system, the constant 

angle 𝜃1 should be calculated first. 

 

∑𝜃𝑍 − ∑𝜃𝑃 = −180∘

𝜃1 = −180∘ + (𝜃2 + 𝜃3 + 𝜃4)

𝜃1 ≈ 129.9585∘

 (26) 

Where ∑𝜃𝑍 is the total summation of all zeroes angles of the system and ∑𝜃𝑃 is the total summation of 

all poles angles of the system. The controller constant will be calculated as follows 

𝑡𝑎𝑛 (𝜃1) =
𝑖𝑚𝑎𝑔 (𝑃1)

|(𝑟𝑒𝑎𝑙 (𝑃1) − 𝑎1)|
𝑎1 ≈ 26.1478

 (27) 

To measure the gain of controller 𝐾1 graphically to meet the required design specifications (𝜁, 𝜔𝑛, 𝑃. 𝑂), 

simply the root locus of modified system transfer function 𝐺1(𝑠) will be plotted as shown in figure (9) 

then the point at which the desired system poles and specifications are met shows that 𝐾1 ≈ 34.3. 

𝐺1(𝑠) = (𝑠 + 𝑎1)𝐺(𝑠) (28) 

 
Figure 9. Root locus of modified system transfer function. 

The other method used to obtain the controller gain 𝐾1 is calculating it directly from the overall con-

troller gain 𝐾overall . To calculate 𝐾overall  poles constants 𝐿2, 𝐿3 and 𝐿4 and zero constant 𝐿1 would be 

calculated first based on Pythagorean theory. 

𝐿1 ≈ 21.5688
𝐿2 ≈ 43.282

𝐿3 ≈ 317.76667
𝐿4 ≈ 32.509

𝐾overall =
𝐿2 × 𝐿3 × 𝐿4

𝐿1
≈ 20729.8179

 (29) 
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So, the controller gain will be 

𝐾1 =
𝐾overall 

604
≈ 34.32094 (30) 

Both the graphically measured value and the calculated value are the same for the controller gain 𝐾1. 

The cascade PID controller is given on the following formula 

𝐺𝑃𝐼𝐷(𝑠) =
𝐾1(𝑠 + 𝑎1)(𝑠 + 𝑏1)

𝑠
 (31) 

Where 𝑏1 is controller zero which is chosen close to the origin on the basis of pole zero cancellation to 

cancel the pole at zero (𝑝𝑜𝑙𝑒  1). 

𝑏1 = 0.05 (32) 

The controller gains ( 𝐾𝑃,𝐾𝐼 and 𝐾𝐷 ) are calculated as follows 

𝐾𝑃 = 𝐾1(𝑎1 + 𝑏1) ≈ 899.1326
𝐾𝐼 = 𝐾1𝑎1𝑏1 ≈ 44.8708

𝐾𝐷 = 𝐾1 ≈ 34.32094
 (33) 

The open loop transfer function 𝐺open  which represents the transfer function of the cascade controller 

and the plant. 

𝐺open = 𝐺𝑃𝐼𝐷(𝑠)𝐺(𝑠) (34) 

The closed loop transfer function with unity feedback 𝐺closed  which represents the overall transfer func-

tion of the system. 

𝐺closed (𝑠) =
𝐺open (𝑠)

1 + 𝐺open (𝑠)
 (35) 

The poles of open loop transfer function are 𝑃𝑜𝑙𝑒2 and 𝑃𝑜𝑙𝑒3, while the poles of the closed loop transfer 

function are the desired poles 𝑃1 and 𝑃2 and a neglected non dominant pole (𝑃neglected = 289.36) as it 

has very tiny effect on the system response. The plotting of both open and closed loops root locus 

explains the previously discussed results clearly as shown in figures (10) and (11). 

Figure 10. Root locus of 𝐺open . 

 

Figure 11. Root locus of 𝐺closed . 
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The actuator model has been structured on Simulink to study and simulate the effect of the PID con-

troller and also to help in studying other different tuning methods as shown in figure (12). 

 
Figure 12. Simulink model of the linear actuator. 

The step response of the closed loop transfer function has been simulated as shown in figure (13) and 

it is characterized by settling in 0.1211 seconds with 9.906% over shoot and 0.0224 seconds rise time. 

The obtained values of overshot and settling time are just above the desired system specifications due 

to the approximated formula (23) used to determine the desired natural frequency of the system. 

 
Figure 13. Simulation results of PID controller step response. 

The evaluation of the pid controller using simulation must be validated with noise and disturbance. The 

designed controller is integrated with limiter as shown in figure (14) to limit the control signal and 

prevent overshooting or oscillations in the system, which can lead to instability. This technique is able 

to reject load disturbances and minimize the impact of noise on the output signal. By analysing the 

simulation results shown in figure (15) the controller showed its ability to maintain the desired output 

despite the presence of disturbances and noise. The step response settles in 1.2046 seconds with 

15.392% over shoot and 0.0956 seconds rise time. 

 
Figure 14. PID controller noise rejection technique block diagram. 
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Figure 15. Simulation results of PID controller step response with noise effect. 

The Bode plot shown in figure (16) shows that 𝐺(𝑠) and 𝐺open (𝑠) phase margin of 89.3 and 68.2 degrees 

respectively which means that both are stable, but they are close to the stability limit. The open loop 

transfer function 𝐺(𝑠) can tolerate a gain increase of gain up to 68.4 dB before becoming unstable at 

65.5 rad/s. A peak gain of 0.806 dB at a frequency of 26.1 rad/s, indicates that 𝐺closed (𝑠) has a resonant 

frequency at this point. Also, the phase angle of 𝐺closed (𝑠) remains below -180 degrees for all 

frequencies up to and including 0 rad/s indicates that designed control system can handle large time 

delays without becoming unstable. 𝐺closed (𝑠) has a delay margin of 0.0492 seconds, indicates that it 

can tolerate small time delays at 48.1 rad/s frequency without becoming unstable. 

 
Figure 16. Bode plot of control system. 

3.2. Ziegler-Nichols closed loop tuning method  

This method is known as continuous cycling method and also may be mentioned as ultimate gain 

method [8],[9]. The continuous cycling method is one of the best-known strategies of closed loop 

systems [10],[11],[12]. The PID tuning parameters are calculated as function of both ultimate (critical) 

proportional gain PU and period TU. The PID tuning parameters are represented in table (3) [13].  

Table 3. PID tuning parameters based on Ziegler-Nichols closed loop tuning method. 

𝐾𝑃 𝐾𝐼 𝐾𝐷 

0.6𝐾𝑈 (6𝐾𝑈)/(5𝑇𝑈) (3/40)𝐾𝑈𝑇𝑈 
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Based on Simulink model the closed loop ultimate (critical) proportional gain at which the system 

reaches its sustained oscillation was evaluated as 𝐾𝑈 = 2624 and the ultimate critical period 𝑇𝑈 was 

graphically measured as shown in figure (17) from the periodic time of five successive peaks 𝑇 =
480.556 ms. The controller parameters are calculated as follows 

 𝑇 = 5𝑇𝑈

𝑇𝑈 = 96.1116 ms
 (36) 

Table 4. Values of PID tuning parameters based on Ziegler-Nichols closed loop tuning method. 

𝐾𝑃 𝐾𝐼 𝐾𝐷 

1574.4 32761.91427 18.91476 

The step response of the closed loop transfer function using Ziegler-Nichols tuning method was 

simulated as shown in figure (18) The response settles in 0.4631 seconds with 76.4360% over shoot 

and 0.0214 seconds rise time. 

Based on previous response results of the PID controller, the design of controller using root locus is 

more superior than using Ziegler-Nichols tuning method. The desired system settling time and 

overshoot has been achieved more accurate by using root locus method. The root locus tuning method 

enables the control system to effectively reject load disturbances while also achieving improved 

performance characteristics. Additionally, the integration of a control signal limiter can further enhance 

the performance of the system. 

4. Experimental implementation 

The PID controller parameters has been tested using Arduino Mega to generate the control signal for 

the driver. The L298 dual H-Bridge driver allows controlling the direction and position of the electric 

linear actuator. The ultrasonic sensor reads the output displacement then feedback the control system 

with the actual measured displacement. Figures (19) and (20) show the electric linear actuator wiring 

and implementation. 

 

Figure 17. Closed loop step response of 

with critical proportional gain. 

 

Figure 18. Closed loop step response using 

Ziegler-Nichols tuning method. 

 

Figure 19. Wiring of electric linear actuator 

position control. 

 

Figure 20. Electric linear actuator 

experimental model. 
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The experimental model response shown in figure (21) has shown vividly accurate results in comparison 

of the simulated PID response of the linear actuator model. When a positive step displacement (𝐷𝑖=1cm) 

is set to the model, it has reached the steady state response in 0.32 seconds with overshoot approximately 

equal to 17%. The designed controller has a stable and consistent response over time. It is able to quickly 

and accurately respond to changes in the input or set point, without delay. 

 
Figure 21. Electric linear actuator experimental step response using PID controller. 

5. Conclusion 

Parallel manipulators are positional controlled systems. Linear actuators are able to make push or pull 

effect. In this paper, the electric linear actuator mathematical model, transfer function and the control 

block diagram were obtained. PID controller could be designed on the basis of root locus method or by 

using tuning method like Ziegler-Nichols. The control parameters of the DC motor have been estimated 

using nonlinear least squares method. The simulation results of the step responses for the linear actuator 

have showed that the response obtained by designing the controller using root locus is more superior 

than using the tuning method. The tuning method reached the settling response in 0.46 seconds with 

76.43% overshoot. By using root locus method, the settling response were reached in 0.12 second with 

9.9% overshoot. With presence of load disturbances, the actuator settles in 1.2046 seconds with 

15.392% over shoot and 0.0956 seconds rise time. The experimental results of the linear actuator have 

showed that the designed PID controller has vividly accurate results as the step response has settled in 

0.32 seconds with 17% overshoot. The analysis of bode diagram has showed that the open loop transfer 

functions are close to the stability limit. There is a peak gain of 0.806 dB at a frequency of 26.1 rad/s 

for the controlled closed loop transfer function. The designed controller is stable and can handle large 

time delays without becoming unstable and can tolerate small time delays at 48.1 rad/s frequency 

without becoming unstable. 

 

References 

[1] Lekkala, K.K. and Mittal, V.K., 2014, July. PID controlled 2D precision robot. In 2014 Interna-

tional Conference on Control, Instrumentation, Communication and Computational Tech-

nologies (ICCICCT) (pp. 1141-1145). IEEE. 

[2] Nayak, B. and Sahu, S., 2019. Parameter estimation of DC motor through whale optimization 

algorithm. International Journal of Power Electronics and Drive Systems, 10(1), p.83. 

[3] Xie, J., Yang, R., Gooi, H.B. and Nguyen, H.D., 2023. PID-based CNN-LSTM for accuracy-

boosted virtual sensor in battery thermal management system. Applied Energy, 331, 

p.120424. 

[4] Rao, P.G.K., Subramanyam, M.V. and Satyaprasad, K., 2014, July. Study on PID controller 

design and performance based on tuning techniques. In 2014 International Conference on 

Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 

1411-1417). IEEE. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.25 0.5 0.75 1

A
m

p
li

tu
d

e

Time (seconds)

Step Response



ASAT-20
Journal of Physics: Conference Series 2616 (2023) 012027

IOP Publishing
doi:10.1088/1742-6596/2616/1/012027

13

[5] Maung, M.M., Latt, M.M. and Nwe, C.M., 2018. DC motor angular position control using PID 

controller with friction compensation. International journal of scientific and research publi-

cations, 8(11), p.149. 

[6] Barman, A., Dutta, S., Tiwari, K., Roy, S. and Pain, S., 2022, February. Genetic Algorithm 

Based Adaptive PID Tuning of Time Delay Process. In International Symposium on Artifi-

cial Intelligence (pp. 64-75). Cham: Springer Nature Switzerland. 

[7] Senthil Kumar, S. and Anitha, G., 2021. A novel self-tuning fuzzy logic-based PID controllers 

for two-axis gimbal stabilization in a missile seeker. International Journal of Aerospace En-

gineering, 2021, pp.1-12. 

[8] Ziegler, J.G. and Nichols, N.B., 1942. Optimum settings for automatic controllers. Transactions 

of the American society of mechanical engineers, 64(8), pp.759-765. 

[9] Hemamalini, B., Lakshmi, P. and Navabharathi, S., 2023. Implementation of AI Techniques for 

Tuning of Controller Parameters in a Nonlinear System. In AI Techniques for Renewable 

Source Integration and Battery Charging Methods in Electric Vehicle Applications (pp. 243-

260). IGI Global. 

[10] Melinda, M., Khatir, R., Ibina, A.R.P., Mufti, A., Syahyadi, R. and Hasanuddin, I., 2023. Imple-

mentation of PID Controller on Hohenheim Tunnel Dryer Using Ziegler-Nichols Approach 

Method. Jurnal Polimesin, 21(1), pp.101-107. 

[11] Murugesan, D., Jagatheesan, K., Kulkarni, A.J. and Shah, P., 2023. A Socio Inspired Technique 

in Nuclear Power Plant for Load Frequency Control by Using Cohort Intelligence Optimiza-

tion-Based PID Controller. In Renewable Energy Optimization, Planning and Control: Pro-

ceedings of ICRTE 2022 (pp. 1-12). Singapore: Springer Nature Singapore. 

[12] Ambroziak, A. and Chojecki, A., 2023. The PID controller optimisation module using Fuzzy 

Self-Tuning PSO for Air Handling Unit in continuous operation. Engineering Applications 

of Artificial Intelligence, 117, p.105485. 

[13] Ray, S.K. and Paul, D., 2010. Performance Comparison of Electronic Printwheel System by PI 

and PID Controller Using Genetic Algorithms. International Journal of Computer Science & 

Emerging Technologies, 1(4). 


