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ABSTRACT 

In this paper, we develop and analyze optimum asynchronous detector for M-ary 
Frequency Shift Keying (MFSK) signals traveled over Rayleigh fading channel. 
Developing this detector comprises two steps: (1) deriving a synchronous optimal 
detector based on applying the statistical decision theory to the Rayleigh fading 
MFSK signal, (2) modifying the synchronous structure of the MFSK detector by 
averaging over the unknown signal arrival time. The performance of the 
asynchronous detector is measured in terms of the probability of mis-detection and is 
compared with the performance of the synchronous one. The asynchronous detector 
operates satisfactory under lack of knowledge of the arrival time and its performance 
enhances by increasing the quantization level of epoch. 
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I. Introduction 

The development of communication systems using the radio channel resulted in 
increasing interest in the study of signal detection in the presence of fading. The 
most realistic problem that arises in communication applications is when the receiver 
is not knowledgeable of the time at which the signal arrives. Research documents 
have focused on the detection of signals when immersed in additive white Gaussian 
noise (AWGN) and contain a profusion of decision algorithms. These algorithms may 
be categorized essentially into a structured type that includes those derived from a 
likelihood-ratio formulation [1], [2], and an ad hoc type which uses the autocorrelation 
operator [4],[5]. These documents assume available perfect knowledge of signal 
arrival time or epoch. Indeed the detector is able neither to observe its received input 
at the correct arrival time nor to synchronously sample the matched filters at the 
appropriate time instants. Therefore, attention should be devoted to develop 
asynchronous structure to remedy the situation of unavailable signal arrival time or 
epoch as described in the research documents [3],[6-10]. These documents are 
trying to estimate the epoch parameter based on the principles of maximum 
likelihood estimation. The drawback of this method is that, the performance of the 
detector is depending on the degree of accuracy of estimation. All the above 
mentioned research documents focus only on detection of non-fading signals and 
also none of them was concerned with the asynchronous detection of fading signals. 

In this paper, we develop asynchronous detector of fading MFSK signals. First, a 
synchronous decision rule is derived and then extended to the asynchronous one by 
averaging over the unknown epoch instead of spend an effort in trying to measure it. 
The paper is organized as follows. The problem statement and assumptions are 
presented in section II. Section III describes the mathematical formulation of the 
asynchronous MFSK detector. The derivation of the decision rule is presented in this 
section. In section IV, numerical studies and discussions are presented to 
demonstrate the performance of the asynchronous detection scheme. Finally, the 
summary and conclusions are presented in section V. 

II. Problem Statement Assumptions 

The receiver input y(t) is observed over the interval of time T which contains under 
the hypothesis H, an Mi  FSK signal where i = 0,1,2... Given several choices, the 
receiver must detect which type of modulation format is actually employed. We will 
consider a binary hypotheses testing problem, extension to more hypotheses testing 
is straightforward. The complex envelope of the observations, ji-(t), received through 
fading channel is given by: 

y(t)=A e" z(t)+w(t) 	 (1) 
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where 1(0 is the complex envelope of the received M, FSK signal; i=0,1, ii)(t) is the 
complex envelope of the white Gaussian noise process with two sided height of 
spectral density of N. /2. In addition, A and r are random parameters, due to the 
fading phenomena. These parameters are assumed to be statistically independent of 
each other. The parameter A has a Rayleigh distribution with a power spectral 
density (psd) given by Eli, p. 5291: 

2v „„, 
P4 (v)=- 2 

 ; 	v,b_>_. 0 	 (2) 

The parameter I' has a uniform distribution given by: 

P - 1 	0 _•cr <2n- 
22r' (3) 

The receiver announces H, (or M, FSK) when a threshold is exceeded and H. (or 
M. FSK) otherwise. It is assumed that the hypotheses are equally likely and that 
M 0 (M, with no loss in generality. Generally, the complex envelope of MFSK signal 
is mathematically expressed as [1], [3]: 

.1(1)= -ITEexp{j(2n-fwt +0(4) }x p(t -n7', - eT.,) 	 (4) 

where E is the signal energy, f (")  is a set of independent identically distributed (i.i.d) 
discrete random variables (r.v's), the elements of which are uniformly distribution on 
{43/2, Bab ON is a set of random variables that is uniformly distributed over the 
interval [-ir,r], n is the symbol number, and p(t) is the standard unit pulse of 
duration 7', In addition, the parameter s is the normalized epoch parameter which 
accounts for any timing offset that exists between the transmitter's clock and that of 
the receiver. The parameter E is considered to be continuous r.v. uniformly 
distributed on the interval (0,1). 

Ill. Mathematical Formulation of the Detector 

Consider the received waveform 'WO ; 0 < r 7', which consists of the per-symbol 
complex envelope of the desired signal plus the complex envelope of the additive 
white Gaussian noise (AWGN) as 

( = A eir Y(0+ 	 (5) 
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where 	is the per-symbol complex envelope of the desired signal which is given 
by 

540 = VT'el("f"° ) 	 (6) 

According to Grenander's theorem [8, p. 377], the likelihood function (LF) of y(t) 
with respect to the random parameters 0, r, A, f ,E is given by: 

A[ci(r); 0, r, A, f, e] = exp{—Nio  

 

2 

+ 2Re(Ae" 1)7(t)r(t)dt) 

 

A e" ti(t)dt 
0 

(7) 

  

The relevant part of the LF, given by (7), can be written as 

{ A, [9(t);9,r, A, f , e ] = exp 2I-E  AlY(f ,e)lcos(0 + rj 
No  

(8) 

sT, 

where Y(f,e)= p(t)e-' 2' f` dt is the fourier transform of .37(t) within the symbol 
0 

duration ET, . For N independent and identically distributed (i.i.d) symbols, 
A, bi(t);e,r, A, f , e] can be written as 

N 	 ( r- 2-v 	t A, [At );0,r r, A, f , e] = exp Lin 4,.4..„,[exp 	Alr'')(f, { 
n=1 	 No 	

]) 
e)lcos(9 + r) 

i  

where E 0,2 . A, f.0  denotes the expectation with respect to the random variables 
0,r,A,f,e . Expanding the inner exponential using Taylor's series representation; 
truncated to the third term, taking the expectation with respect to 9 and r and using 
linear approximation of In(1+x), the log-likelihood function (LLF) can be written as 

A2  g(t); A, f , el 
n=1 

Taking the average over the Rayleigh 

-if 
A2 LY(‘);f4"-'-' I  (2  

2  " ZE/,(J1)2 1Y (")(LE)1 

[2,17e2  y(„)(f,e)12 

4 	No  f I 

random variable A we 

r 	12 2t) 
' 	0  

have 

2  

b  
) 

(10)  

(11)  4 	N 

(9) 
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Discretizing the bandwidth B to M values with separation of 
2T  
—1 . , the minimum 

orthogonal spacing, then (0 is a set of i.i.d discrete random variables whose 

2T 
{ elements are orthogonal and uniformly distributed on -± —

1 ,±— 
2T  
2 ,...;± M/

T
2} 

, 	, 	2, 

Averaging with respect to f, the log-likelihood function becomes 

b (2,1E1 

	

N 	M/2 )  2  

	

A2 LY(1);e]=-4m No 
 I„..1 	I "(6  

(12)  

(n+si.071 --)2ar 
Where l',„(')(e)= 5 y(t)e 	2T dt is the Fourier transform of the received 

(n+.)r, 
observation at the m-th frequency location evaluated at the n-th symbol duration. 
Note that the synchronous LLF can be obtained by substituting e =0 in (12) and the 
synchronous decision rule is derived from the resulting equation. It is clear that the 
synchronous structure is transformed to the asynchronous one by averaging it over 
the unknown epoch. This is performed by discretizing the epoch parameter e to K 
equals intervals and taking the expectation over the discrete random variable e . The 
resulting LLF becomes: 

AdY(0]-= 
P4/2 

4  
V" I y.(.)/ek  112  

11 " 
\ 2 

(13)  

  

where 
(x+00.1)7; 

Y,„(")(e,)= 5 37,(0e 2  dt 
	 (14) 

and E
* K = —

k
• k =12
"

... K. Note that the number of levels K, to which the epoch 

uncertainty parameter is quantized, is designer-chosen and is directly proportional to 
the involved complexity load; it will be kept small for practical considerations. The 
binary hypothesis testing [6] states that the optimal detector is the one that compares 
to a threshold, the likelihood function associated with detection of the signal under 
H, to that of the signal under Ho . Then, from (13), the optimal decision rule to 

decide between Mc, FSK and M,FSK is given by 
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( 
2 N K 

if 
where 

A.1,12 

A, E 1Y,” L' '(ek ) 
-m. 

/ 	M,. / 
- 

E E -AT E 
i=1 

2 

„,„") 	= 	• 	r(t)e 	2111  dt; 1=0,1 
(rt-rek )T,, 

T. 	(1=0,1) is the symbol duration of the signal under hypothesis / and Os the 
threshold level. The receiver announces H, (or M, FSK) when the threshold is 
exceeded and Ho  (or M0  FSK) otherwise. It is clear that the statistical decision 
theory provides a simple way of transforming the synchronous structure into 
asynchronous one. The optimal decision rule actually belongs to the reduced 
uncertainty model in which the epoch is taken from the discrete set e k  , k =1,2,...,K . 
It can provide an upper approximation to the truly random case. The accuracy of this 
approximation depends on the quantization level K. 

IV. Numerical Studies and Discussions 

Experimental evaluation of the performance of the detector is performed. The two 
hypotheses that are considered are BFSK (M,FSK) and QFSK (t1.1,FSK). The 
complex envelope of a generated QFSK signal is evaluated and added to the 
complex envelope of a generated white Gaussian noise to form the observation. The 
decision rule is applied to detect the QFSK signal. For comparison purposes, we 
start with evaluation of the performance of the decision rule in the synchronous case 
(when c =0). The performance of the synchronous detector is evaluated for different 
values of the threshold y (7=1n 77). The probability of misdetection versus the signal 
to noise ratio (SNR) evaluated at y= 0, .25, 1 is shown in Fig. 1. This figure shows 
that as the signal to noise ratio increases the probability of misdetection decreases 
for any value of the threshold y . The figure also shows that the case of 7= 0, has 
the best performance i.e. the lowest probability of misdetection that can be achieved 
compared with the probability of misdetection for the other values of y. This is 
because y= 0 corresponds to the minimum probability of error criterion. 

The performance of the asynchronous detector is evaluated for y= 0 (the best 
performance) and for different values of the epoch quantization level K. The 
probability of misdetection versus the signal to noise ratio (SNR) evaluated at K= 2, 
3, 4 and 5 is shown in Fig. 2. This figure shows that as the signal to noise ratio 
increases the probability of misdetection decreases. The figure also shows that the 
probability of misdetection decreased as the epoch quantization level K increased. 
This means that the performance of the asynchronous detector enhances as the 

(e 
	trir7 	(15) 

(16) 
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epoch quantization level increases. The enhancement in performance after K = 4 is 
insignificant, so we can use K = 4 in the asynchronous decision rule to provide 
satisfactory performance. As a comparison between the performance of the 
synchronous and asynchronous decision rules we provide Fig. 3 which collects the 
results of both of them at threshold y= 0. This figure shows that increasing the 
uncertainty quantization level K minimizes the gap in performance between the 
asynchronous and the synchronous detectors. 

V. Summary and Conclusions 

We developed asynchronous optimum detector of MFSK signals received through 
fading channel and contaminated with AWGN. The method is based on the 
principles of the average-likelihood ratio theory. Modifying the synchronous structure 
of the MFSK detector by averaging over the unknown epoch develops the 
asynchronous detector. The detector operates satisfactory under lack of knowledge 
of the arrival time of epoch. The performance of the asynchronous detector depends 
on the epoch quantization level. Increasing this level enhances the detector 
performance and decreasing the gap in performance between the synchronous and 
the asynchronous cases. 
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Fig. 1 : The Probability of misdetection of the QFSK signal versus the signal to noise 
ratio for different values of the threshold 

SNR (dB) 

Fig. 2. The Probability of misdetection of the QFSK signal versus the signal to noise 
ratio for the asynchronous detector and for epoch quantization Levels 2, 3,4, 5. 
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Fig. 3. The Probability of misdetection of the QFSK signal versus the signal to noise 
ratio for synchronous and asynchronous detectors. 
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