
Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper CT-03 939 

Military Technical College, 
Kobry El-Kobbah, 

Cairo, Egypt 
ASAT 
SPO 

9th  International Conference 
On Aerospace Sciences & 

Aviation Technology 

Dynamic Modification of Software Systems 
(Design a Syntax Directed editing) 

Mohy El Deen Horani* 

ABSTRACT 

The distributed computing systems are characterized by their ability to service 
applications of distributed origin. Due to the rapid development of digital technology 
and especially in the field of microprocessors it becomes viable to place a 
microcomputer in the same place of the planet or device needs to be controlled. In 
this respect we can say that the microcomputer has replaced the traditional electronic 
circuits. 
So, to control a number of machines or devices or plants it is possible to rely upon a 
number of (micro)computers distributed according to the requirements of the 
application on to the points needed to be controlled. This organization depends on a 
communication network that provides -in addition to communication- the inter-tasking 
activities between computers. It is necessary for a computer system designed to 
service such organization to take a grate benefit of the features and abilities of the 
hardware of these distributed systems. 
This paper introduces a study of a software system for distributed computer system 
for industrial applications. 
This study suggests a change to the Module Structure (considering the Module as 
the main programming block of the system) and also introduce a new design for a 
Syntax Directed Editing activity which is very effective on the mechanism of carrying 
out the modification. 
What is meant by modification here is the expected modification for the functional 
activities as well as the topology during the system use. This stems from the 
consideration that in the case of expensive industrial systems we have to accept the 
possibility of the future modification of the system structure and the routines of its 
components . 

1. INTRODUCTION 

As a result of advanced developments in digital technology we have got the 
microprocessors that replaced the traditional electronics in, almost, all fields. 
Continuation of developments in this fields in addition to dropping prices were the 
motives for replacing industrial electronic control systems by microcomputers. 
It became feasible for the computer to carry out the control task in the real time 
domain, which used to be the role of electronic control systems. 

* Assistant Prof., Assad Academy for Military Engineering, Aleppo, Syria 



Proceedings of the 9. ASAT Conference, 8-10 May 2001 Paper CT-03 940 

On the other hand the computer provided the possibility of information handling and 
exchanging with other computers within the system. So, it becomes natural to have a 
number of microcomputers that may cooperate in controlling an industrial 
establishment according to the real time requirements. Each computer may have its 
own task which will be part of the whole task. Network communication is essential for 
such organization. 
Any way this study is directed towards only the software side of the application. 
Due to the importance of the flexibility of for such systems, this contribution aims at 
providing a study for system structure that fulfil the possibility of increasing the 
flexibility of industrial applications. A previous paper [7] introduced the dynamic 
modification concept and its effect on the system and its execution. 
The ultimate aim of this work is to support implementing high degree of dynamic 
modification which is indirectly proportional to the modified program component . To 
get such system realized certain changes to the mechanism of program 
developments should be carried out in addition to some activities that support this 
new scheme of program developments. 
A new view of the Module structure is introduced in this paper, even its 
implementation issues are not within the scope of this paper, so that it is divided into 
two parts, the Interface and the architecture. While the interface part represents the 
interaction between this module and other modules, the architecture part involves the 
rest of the module. Of course, implementing such structure and the accompanied 
mechanism require some special activities for program development. 
In this respect the syntax directed editing is considered an essential concept that 
provide a suitable environments for interactive incremental compilation which is 
necessary for the implementation of dynamic modification. So this contribution is 
essentially dedicated for the task of syntax directed editing and the most elaborated 
part is introducing an implementation for the syntax analyzer as an automaton 
represented in state table. 

The second section discusses the importance of the flexibility in programming 
systems. The third section, on the other hand, discusses the subject of the 
application from the point of view of the system structure and the language. 
Fifth section covers the study of analysis. Finally the section six gives the conclusion 
of this study. 

I APPLICATION ENVIRONMENT 

2 Computer systems and flexibility 

It is expected for the Industrial establishments and consequently the computer 
systems that services this establishments to exist for long period. However, these 
systems, for many reasons, will not stay without any modification, it should accept 
and evolve the changes of the application environments which come as a result of 
new technology. 
Actually the presence of the computer in this field is viewed as a motive for changes 
in the application environments and at the end for the services the system can give. 
In addition to the changes in the area of application environments these systems 
should accept or service the processing changes. 



Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper CT-03 941 

So, system components should be physically located as a response either to 
changes of the human beings or the establishments. Generally, with respect to 
distributed computer systems It should accept the modification. 
That is the system should be flexible enough to be adaptable with the improvement 
changes as well as the processing changes. 

3 System specifications 

The system being thought of here is classified as an Integrated system where the 
system is build to handle the user program from as early as program editing to last 
stage , the execution., i.e the system should include all the necessary activities for 
program developments and processing. So, the system specifications should include: 

- The necessary programming language specification for such application. 
- The hierarchical structure of the system. 

It should be emphasized here that the language and its syntax and consequently the 
program components to be consistent with the system i.e the program should reflect 
the structure of problem being dealt with. 

3-1 The programming language specifications 

The language is studied according to the following two points of view: 

1. The compilation view 

One of the main issues that is considered in language selection is whether it is a 
compiled or an interpretive one. The main differences between these two are such 
as: 
Each of the simple statements in the interpretive languages expresses a separate 
action, i.e it does not depend on other statements. 
This kind of structure fulfills the possibility of interpreting (executing) each statement 
separately and independent on other statements. BASIC and LISP are well known 
interpretive languages. 
This structure issue supports using these languages in system applications that are 
specialized in receiving and processing commands. 
On the other hand, the statements in the compiled languages are more structured 
and has much wide syntax scope, so that languages are classified as structured 
languages. So, there are dependencies and links among the statements of the 
program, so that it is not as easy and direct as the interpretive languages to interpret 
the statements without knowing the relation with other statements and components 
of the program. 
This structure imposed a basic mechanism to deal with such languages called 
"Compilation", where the source program is translated to get the object program 
which is then executed. Certainly the compiled program will be faster than the 
interpreted one during execution. 



Proceedings of the 964  A SAT Conference, 8-10 May 2001 Paper CT-03 942 

2. The view of real time requirements 

As the real- time is the area of the application it is necessary to mention the relation 
between the language and the application area. The characteristics of Real-time 
languages was studied previously in[5] which are given here in brief: 

- Security. 
- Readability. 
- Flexibility. 
- Simplicity. 
- Portability. 
- Efficiency. 

Implementation of these characteristics needs the program to be checked thoroughly 
before the run-time. This means the necessity of using the compilation rather than 
interpretation. 
Additional requirements should be realized according to the following points: 
a) Syntactically 
The language should provide some ways to divide the program into smaller parts 
(MODULES), each of which involves some of the program concepts. The Module 
should have some programming structures such as, Functions, Monitors, Classes 
or processes. Also it should have the ability for building the variety of concept types 
that provide more control on system complexity. 
b) Semantically 

- It is necessary for the S.W structure to view the system as a group of nodes 
interconnected by some kind of Network connection. 

- It should be possible to build the code within the node (i.e within the target 
computer that form the node) as a group of concurrent processes that are 
interconnected with each other through some communication mechanism 
(within the node). 

- The necessity of providing some inter-communication mechanism between 
nodes. 

2. Related developments 

There are a variety of Real-time applications each of which was designed according 
to different view. Also there are a number of distributed systems applications. In this 
respect we mention Nil [13] and MOD[12], and the ADA programming language 
which provided the means for a number of distributed system applications. 
On the other hand Dynamic modification was supported by a number of programming 
languages, even not all of these languages are Real-time languages. 

- PASCAL language applied the concept of Heap to enable the possibility of 
dynamic modification for certain type of data structure (Pointers), which is 
considered as dynamic data type. 
In C language in spite of that the Heap concept is not available, it is 
possible for the programmer to create what is look like dynamic data type. 

- Visual Basic supports the concept of dynamic array that enables the user 
with the possibility of changing the dimensions of the arrays in the period of 
run-time. 



Proceedings of the 9°  ASAT Conference, 8-10 May 2001 Paper CT-03 943 

- On the other hand the CONIC system (developed at Imperial College [1], 
[2]) - which aimed at supporting the development of distributed dynamic re-
locatable control system- provided a system configuration language where 
the program is composed of a number of Modules. That is possible to add 
a whole Module to the system. The CONIC Language depends on its 
structure on PASCAL (a modified version). 

3-2 The system structure 

The system configuration was discussed in a previous paper [7], where it was 
argued the necessity of the system to be composed of two parts : 

- The Host computer. 
- Target computer(s), which should be located close to controlled plants. (Fig 1). 

Target 
Computer 

1 

  

 

HOST 

Computer 

  

Target 
Computer 

n 

 

  

F g.1 The system configuration 

According to this configuration the program development ( Editing, Compilation, and 
producing the object code) should be carried out on the Host computer. 
The object code is down loaded into the Target computer (s) that are located closely 
to the plants. 
So, taking into consideration the proposed system configuration as well as the 
characteristics of the Real time languages we will find that a Language such as ADA 
or CONIC (which is derived from PASCAL) would be suitable for this kind of 
application. Conic language can be considered as an example of the languages that 
may be adopted for this kind of applications. 
We aim in this paper at studying the main issues 	to service the dynamic 
modification for a distributed computer system, through introducing the syntax 
analyzer as a Finite State machine and exploiting that in the design of syntax 
directed editing, we do not specify any specific language as the language of the 
intended application. Instead we depend on general language items, which is just 
used for clarifications. 

4. The modifications study 

It was given in a previous study [3] that it is not easy or direct to carry out the 
dynamic modifications for any of the program components. However, the CONIC 



Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper CT-03 944 

system provided an application for the dynamic modification in a way to modify the 
Module as a whole (add or delete). 
In this paper we argue that it should be possible to implement the dynamic 
modification for components of the module. We put the following proposals : 

- A structure change of the Module so that the it consists of two parts. The first 
is the code block of the program which is called "Module Architecture". The 
other part is the "interface" that defines the information exchange between 
this Module and other Modules. The following Fig.2 clarifies this sugessted 
structure. 

The proposed Module structure 
Each Module is located on one target computer 
And No more than one Module on one computer 

Module Architecture 

 

Fig.2 A proposed structure for the Module 

This newly suggested Module structure is a try for each of the two components to 
have a (relatively) separate identity so that modifications of either the Module 
architecture or the Interface can be carried out in the same sense as the CONIC 
system. So by adopting this new structure the part that can be modified will be 
smaller than the whole Module. 

The other additional approach for modifying components of the Module is to 
specify some of the Simple statements which may have least possible 
relations with the rest of the program. Adding a simple statement that might 
be of least side effect. All these, of course, within the architecture part. 

NumberOfKeys:=NumberOfKeys+m; 

For I = 1 To NumberOfKeys 
Begin 
............ ..... ....... 

End; 

The execution of this LOOP with this modification will be changed from the point of 
view of number of times according to the new value of the variable NumberOfKeys. 

As it seems, the implementation of dynamic modification of the program at this level 
will increase the flexibility degree due to the possibility of modifying smaller 
components than the Whole Module as in CONIC [3]. 

additional statement 

Old statement 



Proceedings of the 91̀7  ASAT Conference, 8-10 May 2001 Paper CT-03 945 

The CONIC system used to carry out the dynamic modification on the level of 
Module, i.e to replace a Module with another Module. This includes all the links of 
information exchange with other Modules (each of which is located on separate 
computer). 
However, with respect to the requirements and mechanism of the suggested dynamic 
modification it is out of concern this paper. The rest of this paper will concentrate on 
the design issues of the first stage of program building. What can be said now is that 
a concept of reserved program memory and reserved data memory would support 
the implementation of HEAP and STACK which could be used in the process of 
dynamic modifications. That is the modified program part will be carried out on the 
form of connecting of memory parts currently not in use (which will hold the object 
code of the modified part) to the original program memory. 

II PROGRAM BUILDING STUDY 

5. Program Development Mechanism 

The process of program development passes through a number of stages starts by 
the Editing and ends at execution. However, this process gets more importance in 
the system that is supposed to accept modification for its data structures and I or for 
smaller programming components dynamically. 
The diagram in Fig.3 introduce the proposed structure view of the early stages of the 
system. According to this diagram the program file is prepared by a Syntax Directed 
Editor which should give a syntax error free program. 

The,  modified part 	Object code that goes to 
The target computer 

. Syntax 
Directed 
Editor 

Fig.3 Structure of program developed process 

This kind of editors is characterized by its ability to build a file for one language only, 
i.e it is not a general editor. So, it is possible for this editor to be built according to the 
syntax of the adopted language. In addition this Editor should be syntax directed 
because it is necessary for the program parts that will be sent to the compiler to 
syntactically error free so that the compiler can give the object code. That is we are 
in need for a certain mechanism that may interact directly with the user. This scheme 



Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper CT-03 946 

of organization supports debugging the program errors as well as responding to their 
existence. 
The developed program file is moved to the Compiler to get the object code which is 
then down loaded to the Target computer. However the importance of this scheme of 
organization increases in the case of modification (which is the ultimate aim of our 
study). In this case the compilation could be carried out for only some part of the 
code (which was modified). 
For this reason the compilation should be designed to be incremental. So the 
modified part of the code which is going to be compiled is sent to the compiler in a 
form that specify its location within the program structure (that is in addition that this 
program should be syntactically error free). So, the modified part of the program has 
to arrive to the compiler distinctively in order not to re-compile the whole program 
once more. 
For this task to be carried out the two copies of the program (the old one and the new 
one) are compared 	by FileCOMPARE utility to get the modified parts of the 
program. To get benefit of this comparison it is necessary for the compared copies to 
be syntactically error free. So it is highly important to study the design of a 
mechanism to support building a syntax directed editor. 

5-1 Syntax analysis 

In a previous paper [14 j we introduced a design of Lexical analyzer according to the 
theory of Automata. The automaton get the input characters and through its state 
transitions builds the lexical items which them selves are the components of the 
program statements. 
Here we adopt the same idea in the design study of the syntax analysis mechanism 
that will be the main part of the syntax directed editor. 
The syntax analyzer which is the subject of this study is characterized by: 

- Its immediate response for the received tokens. 
- Its ability to correct the code. 
- So it has to be built to handle the tokens while they are coming. 

The syntax analyzer depends for its task on the lexical analyzer. The Lexical 
analyzer has to be called repeatedly by the syntax analyzer, and in each time it gets 
a new item which is Lexically error free from the item's grammar points of view. This 
item is handed to the syntax analyzer in addition to a special value for the item 
(Lexval) which can be used as an alternative of the token itself. So by specifying a 
set of values for the lexical items (as a proposition) we can continue the discussion 
of this design method. 
Table.1 gives some examples about the Lexval of some items which the syntax 
analyzer obtains from the Lexical analyzer. These values will be used in the place of 
the item it self in our discussion. 
A statement is processed by firstly calling the Lexical analyzer for the input 
character. The Lexical token produced by the lexical analyzer is checked by the 
syntax analyzer from the point of the grammar rules and according the result of this 
checking it may be used in building the statement. 
Table.3 is a state table for an automaton represents the mechanism of the syntax 
analyzer for the part or the program block (statements). As the grammar is built 
according to the golden rule One symbol look ahead and No back tracking", this 



Proceedings of the 9°  ASAT Conference, 8-10 May 2001 Paper CT-03 947 

Tab e.1 The tokens and Lexval 
For 1 To 12 : - 23 
If 2 Value 13 = 24 
Begin 3 Enter 14 ) 25 
Module 4 Procedure 15 ( 26 
And 5 Use 16 /* 27 
While 6 var 17 Number 28 
Then 7  Type i8 String 29 
Identifier 8 Constant 19 Array 30 
Architecture 9 . 20 else 31 
End 10 Do 21 Record 32 
Space 11 22 Function 33 

state table should implement this rule bearing in mind that the symbol here is the 
whole token. 
The input to this table is the lexical items of the lexical analyzer such as: For, And, 
To, := „ . Begin End 	etc. In this table the lexval replaced the item itself . 
On the other hand the State of the table indicates the stages of receiving statements 
of the program. Due to the huge size of the real table of the syntax analyzer we will 
give just part of it as a sample to serve the clarification of this study. 
The programming representation of this table is done as a huge two dimensional 
array. Each of the entrances (cells) of this array is itself a record of two items, as 
follows: 

Struct Rec { 

Int stateNo:// Next state's number 
Char ind[2];// status indicator for receiving the lexical token and a code of 

// action that should be carried out. 
} 
struct Rec syntaxary[n,m]; // the Automaton is represented as a state table 

The first row of the table represents input symbols which are the tokens came as 
output of the Lexical analyzer . These tokens (items) are replaced here in this table 
by a coded value (Lexval), as it was mentioned before. The left most column is the 
index of the state number. The information within each entrance (cell of the array) 
represents a guide line for the next step processing. Two components are coded in 
each cell as shown in the declaration of " Struct Rec " above. The first , which is an 
integer value, tells about the next state the automaton should go to next in the 
process of receiving this current statement. On the other hand the second 
component , which is a string, indicates the additional necessary processing at this 
stage (actually this string activates certain function). Table.2 gives descriptive 
information for the values this string may take. 
Any way the most illustrative tool for this discussion is the state diagram of receiving 
the items of the statement. 



Proceedings of the 9th ASAT Conference, 8-10 May 2001 Paper CT-03 948 

The following diagram of Fig.4 is a part of whole state diagram. It is the part of the 
FOR-statement. It should be noted here that the program is written on a statement 
per line bases. 
This state diagram explains the steps of receiving and recognizing of the FOR-
statement. This process starts as early as the recognition of the FOR item in state (1) 
and passes to state (2) if the coming token was the item FOR, with the code of action 
"0" which is a sign of a proper process of reception . In this case this token will be 
added to the statement line structure , and the Lexical analyzer is requested to get a 
new token. This token should be ( for this specific example) space (also its possible 
to have n-space with the effect of one space only as expressed through a local state-
transition at state (2)). 
In state (3) where the required token is Identifier it is necessary to check the validity 
of this identifier which is carried out through accessing the symbol table. The code 
of action is given in the diagram as "00". After the execution of the proper task a 
state transition is carried out to the sate specified within the cell. 
The presence of other tokens which are not specified in the diagram would be 
considered as wrong inputs. The code of action in this case will be an error code F's. 
This is given in the table.3 where we can see the cells that contains the code for 
F1,F0 or F3 (as indication of error). 

Fig. 4 State diagram of the starting of FOR —statement 

This operation will continue to receive the other items of the For-statement . This 
goes through the states (2,3,4,5,6,7,8,9,10 )and ends at the recognition of ENTER 
item which actually is (Cr+Lf). As we see this ends at the state number (10). 
The reception ends (for this example) with the value (02) for the code of action, 
which indicates that the state of reception is the start of compound statement. 



Proceedings of the 9m  ASAT Conference, 8-10 May 2001 Paper CT-03 949 

At the ends of successful reception of each statement we will get certain code of 
action to guide the next operation. 
The same mechanism of processing will be included within the state table of Table.4 
which in turn an Automaton expressing the activities of syntax analyzer but for the 
part of declaration of the data items. 
Handling of the reception of declarations will be carried out in the same way as the 
reception of statements, of course the actions that might be executed will be 
different. This table involves a number of examples ( Constant, variables ....). 
Symbol table should be updated with each newly introduced data item, and for this to 
be carried out after checking if the coming data item has not been declared before. 
As each of the tables 3 and 4 support the task of checking and connecting the tokens 
of the statements the designed task of editing is surly supported too. 
The program stored copy will be similar to the source copy, in addition to a special 
field at the beginning of each statement line which will indicate the state number of 
this statement line. 

Table.2 The code of action with each state transition 
Code The explanation 
0 Continuation of the process of receiving and all this is going OK. 

00 The token itself is true, according to the position in the statement, and 
still it is necessary to check the validity from the point of view of 
symbol table. The symbol table should be updated by the line number 
of this token . 

10 Starting the program, end of program heading. So, the function 
declaration decl() will be Called. 

01 The received line is OK, the case of receiving declaration line. Update 
the Symbol table with the new identifier, add the line to program body. 

11 The line is received OK, a line of the program body. This line is to 
added to the program. 

02 End of starting a program block such as FOR, WHIG, IF...etc. So call 
for a new reception function, i.e recursively . 

03 End of the program. Check matching the Begin-end pairs. 

FO Unwanted lip do not store it. 

Fl Wrong Input (Token), so remove it and get a new one at the same 
state. 

F3 Wrong input (Token) , remove it and get back to previous state. 

B1 It is the case of receiving of the Begin Key word. This induce a call for 
the reception function recursively. 

El The end of a block, adjust the levels of nesting. 

N.B The f ow charts at the end of this study give clarification of the mechanism that 
represents the analysis. 



Proceedings of the 9th  ASA T Conference, 8-10 May 2001 Paper CT-03 950 

5-2 The Editing Mechanism 

The syntax directed editing is characterized by a fact that the program viewed as a 
collection (according to syntax rules) of syntactically true statements. 
So, it is one of the editor tasks is to build the lines of the program and connect them 
in some kind of structure that will express the view of a program. 
This kind of editor should be composed of the activities of building the program as 
well as the activities of checking and correcting and modifying the tokens of the 
program. So, the syntax analyzer should be a component of the editor (here), at the 
same time it has the lexical analyzer as a subtask. 

Table.3 State table of the program block (statements) 

El or If beginident To \n Do := Num = then proc 
+ 0 13/0 

4/00 1/F3 
Dial 
1/F3 
1/F3 
1/F3 

Eli 

5311/F3 
= 
MI  
2311/F3 

Egial/F3  
r ^mm r 

1/F3 1/F3 
1 

. 

IW 	 
1F3 5/0 	 lin ► 

► 1/F3 6/0 1/F3 
► 

1/F3 NM 	 
:■ II 12e. 

1/F3 
1/F3 

ME1/F3 
/0 

► e. 1/r3 1/F3 10/0 1/F3 
 j®11 /0 1/F3 1/F3 12/0 WS- ► • 

1/F3 1/02 1/ 	 ► 
1/F3 14/0 1/F3 	 • 

1/F3 15/0
0 IP. ■  

1/F3 

 

1/F3 18/0 
1/i-3 17/u 

0 
in-3 

/F3 /F 18/0 1/ 
1/F3 -i• 

1/F3 1/02 1/F3- 
■19/0 

Table 4. State Table of receiving declaration 

Use ar type onst; [ ] Rec arry 1n ' // dent integ 
r 

real char num 
b /0 /0 /0 2/0 1/F1 1/F1 1/F1 1/F1 1/F1 1/F1 1/F1 1/FO 1/F1 1/9 4/20 1/F1 1/F1 1/F1 1/F1 

OM 
it 

MIME 0/F3 
-•--  mINI■iill 0/ 1/con 0/ 

I 	0/F3 4/0 4/0 0/F.a. --• 
8/0 thumaillamill 0/F3 36/0 18/0 0/F3 -0. 8/0 11/0 15/0 maw,  

Ea= Id git-

El 

0/F3 

10/0 
► 1/22 0/F3 

-0. 
 111. 

/F3 Cl/F3  
0/F3 1/22 0/F3 11. 

The program itself is composed of a group of statements that is in addition to the 
data entities. 



Proceedings of the ASAT Conference, 8-10 May 2001 Paper CT-03 951 

The process of handling these component to build the program depends on a point 
that each statement, declaration of some data or the program heading is arranged in 
a separate line. These lines are connected with each other to form the program. The 
dynamic data structure, The POINTER, is used to implement the proposed way of 
connection. So the Line structure will be as given in the following diagram. 

Fig.5 Structure of the statement and its link with the line 

Building a line is an distinctive process. When the line that is being received is 
proved to be error free and the end of line character is also received, it will be 
connected with the other lines that form the program. 
The statement it self is defined in the program according to the view of Fig.6 and has 
got a structure as: 

Struct Theline { 
Int stateno; 
String thetoken; 
Struct Theline *currentline; 

} 

Editing activities should be carried out on an interactive basis, so that suitable actions 
could be taken in the proper time. 
Error handling should be carried out on more than one level. With respect to the 
lexical token the lexical analyzer it self will do the necessary handling on on-line 
basis. 

State No. State No. Stag No. Mao No State No. State No. State No. 

For 

j 
to 100 Do 

pointer politer poidee 	pouter pointer poider 

phi
/  

Na 

SW! NO 

The Item 

poiedea 

Fig.6 Structure of the statement itself 

The file, as we indicated before, is a collection of lines. So, the linking of these lines 
is defined according to the following programming structure of the program lines 
which is given in Fig.5: 



Proceedings of the 91" ASAT Conference, 8-10 May 2001 Paper CT-03 952 

Struct lines { 
Int lineno; 
Struct Theline *thisline; 
Struct lines *Next; 
Int stateno;// 

} 

7- Conclusion 

In view of the importance of dynamic modification this paper has introduced: 

- A proposition for dividing the Module into two parts, 	Interface and 
Architecture, as a way to increase the level of dynamic modifications. 

- Suggested a scheme for program development (syntax directed editing) that 
can take into account handling the modified code from the point of view of 
editing as well as the syntax analysis up to the full compilation. 

Syntax analysis was introduced as an integrated part of the whole task of program 
development. In this respect this study supports the design of syntax analyzer to be 
an automaton which can be implemented as state table represents the grammar of 
the adopted language. 

- One of the main features of this scheme of analysis is the large amount of 
data that should be available. 
The other point to be mentioned here is that the maintainability of the 
designed system is highly supported due to the possibility of modifying or even 
changing the utilities that are activated with each state transition 
independently on the state table. 
This scheme minimizes the amount of code that might be written other wise. 

- It is possible to adopt this scheme of syntax analysis in a more general way 
so as to be used for more that one language. 

Even so the proposed editing utilities have not been designed, yet the introduced 
scheme of analysis as well as the data structures go with all of such utilities. These 
utilities are going to be the subject of the continuation of this study. 



Proceedings of the 9m  ASAT Conference, 8-10 May 2001 Paper CT-03 953 

References 

[1]. J.Kramer.,J. Magee., M. Soloman., and A. Lister CONIC: An Integrated 
Approach to Distributed Control System -.Research Report., Imperial College, 
London. 
[2]. J. Magee., J. Kramer' Dynamic System Configuration for Distributed Real-Time 
Systems. Research Report., Imperial College, London. 
[3]. M.E.D. Horani" Towards Dynamic Modification Of a Distributed Computer 
Systems". A PhD Thesis , University of Kent at Canterbury, England. 
[4]. James G. Mitchell, The Design and Construction of Flexible and Efficient 
Interactive Programming Systems, Garland Publishers, Inc. 1970. 
[5]. S.J. Yong, Real-Time Languages Design and Development, Ellis Horwood, 1982 
[6]. P.J. Brown, Writing Interactive Compiler and Interpreters, John Wiley 1997 
[7]. M.E.D.Horani " Objectives of Dynamic Modifications" , First Arab Symposium 
on Electronic Engineering, Allepol SA. 

[8]. David Gries. Compiler Construction for Digital Computers.  
[9]. Richard Bornat. Understanding and Writing Compilers 
[10]. Alexander & Hanna. Theory of Automata an Engineering Approach 
[11]. John Dedourek & Uday G. Gujar. Scanner Design 
[12]. Robert P.COOK, MOD A Language for Distributed Programming 
[13].Robert E Strom,Shaula Yemini , NIL: An Integrated Language and System for 
Distributed Programming. 
[14]. M. E. D. Horani " Design of a Lexical Analyzer", 38th  Science week, 1998. 



Initialize all the variables; 
Loading the Syntaxary 

Proceedings of the 9th ASAT Conference, 8-10 May 2001 Paper CT-03 954 

APPENDIX 

The Syntax Analysis 

start 

• 
Initialization 

V 
ReceiveProg0 

Initialization 

Variables Declarations:  Svntaxary:  array holds the syntax analyzer automaton. 
Rec : record of this array cells. { Fields of Rec are state: as integer, and Status as String;) 
I inestruct:  A dynamic list of lines struct. Nodes. 
ThcLine: A linked list that holds the line it self. 
Li integers variables As array indexes. Mine: A Boolean Variable indicates the 

occurrence of new line. C: variable holds The new Char . 
Lexitem, Lexxvalue : the out put of the LEXANALYZER 



Constuct A node in the LineStruct linked List 
Which include a pointer to the linked list of the line 
it self. 	Mine= False; 

Rec=Syntaxary(Ij); 

Status=Rec.ind; get the status information 
about the just received Lexical item. 

1= Rec.stateNo; get the next state number to 
ao to in the next round. 

"fly  

Proceedings of the 9. ASAT Conference, 8-10 May 2001 Paper CT-03 955 

RecieveProg 

Start 

LexAnalyze(); 

Case status of 

0 	00 01 	10 00 02 el 03 bl FO Fl F3 



Check the type validity 
(by accessing symbol table) 

Yes 
Update the occurrences of the checked 
item in the symbol table. 

Removetheitem 0 
Add the item to the line 	1 

V  
Return 

Add item to the line 

Create symbol table 

CReturn 

• 
Addline 

Mine = True 

Eretum Th 

Proceedings of the sm ASAT Conference, 8-10 May 2001 Paper CT-03 956 



Receive( ) 

Blocknest = blocknest +1 

Add the item to the line 

Blocknest = blocknest -1 

• 
Addline0 

Yes 

Proceedings of the 9'h  ASAT Conference, 8-10 May 2001 Paper CT-03 957 

02  

Add line to line structure 

Error Handing° 
Return to previous 
token's state 



Proceedings of the 9m  ASAT Conference, 8-10 May 2001 Paper CT-03 958 

        

  

 

Remove token 

 

        

        

 

Repeat I/P form this current 
state 

        

        

   

Return 

  

               

               

               

V 
Remove token 

        

        

        

  

V 

           

               

Repeat UP from previous 
state 

         

               

  

V 

           

               

CReturn 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

