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ABSTRACT 

This paper presents the mathematical analysis of a proposed jamming technique 
used against IAC monopulse radar. The idea of this technique is to repeat the radar 
signal with change in its amplitude and phase (deception jamming signal) to produce 
an angular error in the target tracker. This error changes for different values of 
amplitude ratio and phase difference w.r.t the target signal. In the generated 
deceptive jamming signals, the change in the amplitude ratio makes large effect than 
the change in the phase difference on the real part of the complex measured error 
angle. The real value of the complex measured angle due to jamming with constant 
phase difference and different amplitude ratio has large variation at amplitude ratio 
less than three. This value converges to the value of the angle of the false target for 
higher amplitude ratio. There is no jamming effect at amplitude ratios less than one 
and for some values of phase difference. At these values, the measured angle 
equals to the angle of the real target. At least two jamming signals are required to 
have the complex error jamming angle to overcome the ECCM techniques that might 
be used by the target. 
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I. Introduction 

Monopulse radars are commonly used in target tracking because of their angular 
accuracy. These radars provide a better angular accuracy and less sensitivity to 
fluctuation in the radar cross section (RCS) of the target compared with other types 
of tracking radars (such as sequential lobbing and conical scan). In practice these 
radars use four lobes (two four elevation angle measurements and the others for 
azimuth angle). The echo received by the four lobes are mixed in a hybrid junction to 
provide three signals, namely the summation and two difference (in azimuth and in 
elevation). The target angle with respect to (w.r.t) the radar axis is measured via 
computation of variable named monopulse ratio, which is the ratio of the two 
difference signals ( Dx ,Dy ) and the sum signal S (in the phasor form) [1,2]. 
This paper is organized as follows. Section II represents the mathematical 
formulation of the proposed jammer. The Mathematical Analysis of the Proposed 
Jamming Technique is discussed in section III. Section IV represents the 
Performance of the proposed Jamming technique Under Possible ECCM 
Techniques. In Section V the conclusion of this paper is introduced. 

IL Mathematical Formulation of the Proposed Jammer 

The proposed jamming signal consists of composite CW pulsed signals with 
different amplitudes, phases, and delays; the generated jamming signal has the 
following form 

= 	A. COS[W, + rn )+ q)1, 0 t 	(1) 

where S, is the jammer transmitted signal, An  is the amplitude of the nth CW 

jamming signal, a is the angular carrier frequency, 	is the relative time delay 
(relative to the missile signal), and co„ is the relative phase difference. The effect of 
this composite jamming signal appears as multiple false targets, each false target 
corresponds to one of the CW jamming signals. These false targets lie in the same 
range gate of the missile tracking radar. The total effect of this action is that these 
targets appear as one target different from the real target. The idea of the proposed 
jamming technique is to introduce an angular error in the target measured angle in 
IAC monopulse tracking radar. The mathematical formulation of the measured target 
angle under jamming is expressed as 

1 D 9 	 + 	 
p S 	1+ 	+ 	+ g N e l̀ ' 

(2) 
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where 0, is the new complex measured angle due to jamming. This angle results 
from real target (at angle 00 ) and N false unresolved targets at angles 
01,02 , 	 0 ON  • 

III. Mathematical Analysis of the Proposed Jamming Technique 

We start the analysis of the mathematical results given in (2) by considering n=1, 
then we can write the complex angle (0, ) in the following form 

0 +0 
0.= ° 	 

1+ g,e'#' 
(3) 

recall that 0„ is the angle of the real target and 0, is the angle of a false target. The 
angles 0„ and 0, must lie inside the half power beam width (HPBW) of the missile 
pattern. The considered value of HPBW is equal 1°. For analysis purposes, we 
assume some values for the angles 	and 0, that lie in HPBW. These values are 
0.1°  and 0.5° for 	and 01  respectively. As shown in Fig.1, the graphical 
representation of the measured complex angle (0,) for fixed value of g, and varying 
the phase difference 0, from (0° 	360°) represents a circle in the complex plane. 
Varying the values of g, result in multiple circles. The centers of these circles always 
lie on the real axis. The circles for g,-.<1 lie in the left hand side of the imaginary 
axis (the midpoint of 0„, and 01 ). As g, decreases, we have smaller circles that 
approach to When g, reaches zero the resulting circle becomes a point in the 
real axis, which is 0„. The circles for g, >-1 lie in the right hand side of the 
imaginary axis. As g, increases, we have smaller circles that approach to 01 . When 
g, is a very large value infinity), the resulting circle becomes a point in the real 
axis which is 01 . At g, =1, the complex angle 0, has no real value, it is 
represented by an imaginary line (because the imaginary axis is shifted to the 
midpoint of 0, and 0,) as shown in Fig.1. 
Moreover, if the values of g, is varying from ( 0—> co ), for fixed value of the phase 
difference , we have a group of circles that move along the imaginary axis and 
always pass through the two angles 00  and 01  in the real axis as shown in Fig.2. 
In Fig.3, the measured value of 0, is the intersection of two circles. The first circle 
(bold one) has a constant g, (equal to 1.5) and varying 0 from (0°  —> 360°  ), and 
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the second circle (thin one) has constant 0, (equal to 30°) and varying g, from 
(0-> ce ). Similar results can be obtained by increasing n in (2) as shown in Fig.4. 

This figure shows that for n=2, the value of 0, is the intersection of four circles (two 

bold circles for constant g, and g2  and varying 0, and 02  from (0° ---> 3600 ), and 

two thin circles for constant Oland 02  and varying g, and &from (0-> cc ). 

Generally for n=N, we have 2N circles and the value of 0, is the intersection of all of 
them. 
Fixed amplitude ratio g, and different values of phase difference 0, result in different 
values of the angle 0, (intersection in points a1, b1, c1, dl ) as shown in Fig.5. Fixed 

phase difference 0, and different amplitude ratio g, results in different values for the 
angle 0, (intersection in points a2, b2, c2, d2) as shown in Fig.6. From Figs 5 and 6, 

we can conclude that the variation of 01  at fixed g, provides smaller effect on the 
angle 0, than varying g, at fixed 0, . 
Another way to study (2) is to plot the amplitude ratio g, versus the measured angle 
0, for different phase difference. This plot is shown in Fig.7, a zoom in on this figure 

is shown in Fig.7a. This figure shows that the same 0„ is obtained for 01  and 

(360° - 0, ), so it's enough to change 0, from (0° -> 180° ) to have a change in 0, . 
All curves converge to 0, = 0.5 for high g, (they tend to reach 0.5 for g,>-10) and 

for small value of g, (g, -< 3); we have high change in the angle 9,. 
The relation between the phase differences 0, versus the measured angle e, for 

different values of gi  is shown in Fig.8. This figure shows that, for all phase 

difference from (0°  --> 360° ) at g, = 0 , the angle 0, = 0. 1(equal to 0, ). For 

g, = 1 the jamming angle 0, = 0.3 (midpoint between 00  and 0, ). For very high 

g, the jamming angle 0, = 0.5 (equal to 0, ). From this figure, it's clear that all 

curves are mirror imaged at 0, = 1800  (so that the real of the angle 0, for (01 ) and 

(3600  - 0, ) at constant g, are equal). All curves for gi  >- 1 , the real of the measured 
angles are above 0.3° . For g, -<1, the real of the measured angles are below 0.3°. 
All these curves for reciprocal values of gl  are imaged to each other midpoint 
between 0,, and 0, . 

Now, we study (2) for n 1, let n=2 in then it can be written as follows 
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+0,g,e' 

1+ g,e'" 

The following discussion is made for the following parameters 
00  = 0.1, 0, = 0.3, 02  = 0.5, g1  = 0.5 and 0, = 30°. We plot the amplitude ratio 
g2  versus the measured angle 0j  for different phase difference Ø. This plot is 
shown in Fig.9, a zoom in on this figure is shown in Fig.9a. All curves converge to 
0, = 0.5 for high g, (they tend to reach 0.5 for g,>.- 10) and for small value of 

g2 (g2 -< 3); we have high change in the angle 

The relation between the phase differences 02  versus the measured angle 0, for 
different values of g2  is shown in Fig.10. This figure differs from Fig.8, for all phase 
difference from (0°  --> 360°) at g2  = 0 , the angle 0, = constant (it is not equal to 
00. For very high g2  the jamming angle Of  = 0.5 (equal to 0,). All curves for 

1, the real of the measured angles are above 0.3°. For g, -<1, the real of the 
measured angles are below 0.3°. 

IV. Performance of the Jamming Under Possible ECCM Techniques 

For a single target, the angle measured by the monopulse tracking radar is real. The 
presence of jamming signal changes the real part and produces an imaginary part, 
then the IAC monopulse tracking radar starts to resolve between the real and 
jamming signal. One of the possible ECCM techniques used against the proposed 
jammer is called two pulse solution [3,4]. To illustrate the idea of this techniques we 
consider (n=1) in equation (2). Then the complex angle under jamming 0, is written in 
the form 

0  +0 g 
= " 

1+ gi eln 

The complex angle (0 . ) can be written in the form x + iy. Separating the complex 
angle 0, to a real and imaginary parts as follows, 

x+ fy=
0„+0,g,[cos0,+ j sinO,]  

1+ g, [cos + jsin0,] 

(4) 

(5)  

(6)  



1 + g,2  +2g, cos0, 
.0,g, sin 0, (1+ g, sin 0, +g, cos(,) 

+J 
1+ g1 2  +2g, coS 

(7) 
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00(1+ g, cos0, + g, sin 0, )+ 0,g, cos0,(1+ g, sin 0,) 
j x+ y= 	  

By equating the real and the imaginary parts of equation (7) in the two hand sides, 
we get two equations in four unknowns ( 0° ,0,, g,,0,) and this is only for measuring 
angle in one direction (azimuth or elevation). If we consider the two directions, we 
have four equations in six unknowns (8_, 	, B , 611,„ g, , 0, ). These equations 

can't be solved by only one pulse but requires more than one pulse. Therefore the 
monopulse radar uses two pulses instead of one to solve this problem, which is not 
the base of work of monopulse radar. If two-pulses are used, we assume that 
On, 0,, and g, are the same during the two pulse intervals and there is only a change 

in 0, during the first and the second pulses and these values are 0,1  and 0 2  

(subscript (1,2) for 0, refer to the first and second pulse). The complex measured 

angle (0, ) takes the following two formulas x, ± jy, and x2  + jy2  which represent 
two points in the complex plane, similar to equation (5) we can represents them as, 

0 + 
x, + jy, = 

	

	 (8) 
1 + g,e" 

x, tly = 
0

° 	
+ 0g 

1+ g,e'o„  (9) 

These two points determine a unique solution in the complex plane. Note that the 
center of the circle always lies on the real axis of the complex plane (the three points 
are enough to determine a unique circle in the complex plane), this circle determines 
an infinite number of 0„0, and g,. For the solution to be unique, there is an 
additional consideration as follows, from equations (8) and (9), we have five unknown 
(0, 301 , $1, 01) 012 ) in four equation. To have a unique solution we need one more 
equation, this equation can be obtained from the ratio of the sum channel during the 
first and the second pulse, which is expressed as 

2 	2 1+ g, +2g, cos 0 2  
1+ g, 2  +2g, cos 

Although this described method theoretically gives a solution based on only two 
pulses, some pairs of these pulses will give a good accuracy and others give poor, if 

S2  
S, 

(10) 
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it happens that COSA, = COSA2, the solution is indeterminate. Therefore in practice 
as many pulses as possible should be used to have a good accuracy for this solution. 
In equation (2), if we consider n=2, the complex angle (0,) is written in the following 

form 
0.+0,g,e" +02 g2 e" 

1+ ge" + g2e" 

then as in equation (8), (9) we have two equations in seven unknowns 
(0,0„02 ,g,,g2 ,0,,02 ), if we consider the two directions (azimuth and elevation), 
we 	have 	four 	equations 	in 	ten 	unknowns 
(0,, , 	, ,Beat 2 thI , • 62 • ) The measured complex angle (0,)2 • 

can be written (as previous) in the form of (x, + jy, ), (x2  + jy2 ),(x, + jy,), 
and (x4  + jy,) where the subscript 1,2,3,4 are referred to the four sequence pulses, 
These values represent eight equations in thirteen unknowns 
(0,00,6 012 6 6 6 6 6 024  1,, 2-  1  2, 11 ,  , r 13 r 14 ,  r 21 r 22 Y'23 ,, the additional equations 
required to provide a unique solution are the ratios of the sum channels, as follows 

2 	2 	2 	12 	2 	2 
S, S. S. S, 

S, S, S, S, S, 
For n=3, equation (3) can be written as follows 

0 = 	  0 +0,g 	+02 g2 e" +0,g3 e" °  
1+g,e" +g,e" +g,e''' 

(12) 

if we consider six sequenced pulses, 	we have twenty five unknowns 
(00,3 > gI.3 >011,16 > 021-.26 >031,36 ), and the angle 0, takes six complex values from 
(x,+ jy,) to ( x6  + jy6 ), which makes twelve equations in additional to equations due 
to 	the 	ratio 	in 	sum 	channel 

2 	2 	2 	2 	2 	2 	2 	2 	2 S, S4 	S, S„ S2  , [(—S. 
 to S6  ),(—

S, 
to —

5'5 
),(— to -- ),( 	to — ),( — )1 that's make S5 	S, 	S4 	S, 	S3 	Si 	S2 	Si 	Si  

fifteen additional equations, so we have twenty five unknown in twenty seven 
equations, so it can be solved. 
The conclusion of the above discussion is as follows, for N jamming signals, it's 
required 2N consequence pulses, and these pulses must satisfy that both 
(01 ,02 „0., }and their relative amplitude ratios are constant during these pulses 
duration, which is so difficult to exist in practice because of the motion of the target 
will change these parameter during these pulses duration. Therefore we will consider 
n=2 in the jamming equation. 

S3  
S, 
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V. Conclusion 

In the generated deceptive jamming signals, the change in the amplitude ratio makes 
large effect than the change in the phase difference on the real part of the complex 
measured error angle. The real value of the complex measured angle due to 
jamming with constant phase difference and different amplitude ratio has large 
variation at amplitude ratio less than three. This value converges to the value of the 
angle of the false target for higher amplitude ratio. There is no jamming effect at 
amplitude ratios less than one and for some values of phase difference. At these 
values, the measured angle equals to the angle of the real target. At least two 
jamming signals are required to have the complex error jamming angle to overcome 
the ECCM techniques that might be used by the target. 
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Fig.4. The complex measured angle at 
g, =1.5,g, =2,0, = 30', and 0, = 60° 
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Fig.1. The complex measured angle for 
different amplitude ratio g, 

Fig.3. The complex measured angle at 
g, =1.5,0, = 30° 

Fig.5. The complex measured angle at 
different phase difference 0, and 

constant amplitude ratio (g, = 0.5) 

Fig.2. The complex measured angle for constant 
phase difference 0, 

,:ataka,  

Fig.6. The complex measured angle for different 
amplitude ratio and constant phase difference 

(0, =300) 



	  pby 1.1201 240  

phy 1}. 183.2Qo.  
-- j. 

phy 1. po,aoo 

z. 	 

Fig.7a. zoom in on the complex measured angle versus 
amplitude ratio g, 
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Fig.7. The complex measured angle versus amplitude ratio gi  

Fig 8. The real of the complex measured angle versus the phase difference for 
different amplitude ratio 0, . 
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Fig.9. The real of the complex measured angle versus amplitude ratio g2  at different 
constant phase 02 . 
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Fig.10. The real of the complex measured angle versus the phase difference 02  for 

different g 
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Fig.9a. zoom in on the real of the complex measured angle versus amplitude ratio 
g, at different constant phase 02 . 
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