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ABSTRACT 

Pictures or images play an important role as a mass communication medium. When 
images are coded and transmitted over noisy communication channels, images are 
often corrupted by impulse noise. A method is proposed to eliminate impulsive noise 
with gaussian or uniform distribution in digital images. This noise removing method is 
based on two steps: impulse noise detection and filtered image reconstruction. 
Motivated by the success of neural computing in pattern classification, an 
unsupervised neural network has been employed in detecting the positions of the 
noisy pixels. When the noisy pixels are detected, a number of noise-exclusive 
filtering algorithms are invoked to eliminate the noise. These filters do not affect 
those pixels that are not corrupted. The filtering scheme presented can suppress 
impulse noise effectively as well as avoiding blurring or degrading the digital image 
quality. Experimental results and associated statistics demonstrate that the 
performance of the noise-exclusive filters is superior to many other well-known 
methods. 
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1. INTRODUCTION 

Human vision is one of the most important and complex perception mechanisms. It 
provides information needed for relatively simple tasks like object recognition as well 
as very complex tasks such as planning, decision making and scientific research. 
Digital image processing has exhibited an enormous growth and created an 
important technological impact in several areas, such as in telecommunications, TV 
broadcasting as well as medicine and scientific research [1]. 

Noise refers to a variety of undesirable disturbances owing to errors of all types and 
interference from external sources. Impulse noise usually appears during image and 
TV picture transmissions [2]. It is impulsive noise and its source is either atmospheric 
or man-made. Impulse noise is also called "salt-pepper noise. There are two models 
for impulsive noise (3]. In the first model all noise pixels get one of the two fixed 
values. This kind of impulse noise has been successfully eliminated by a method 
given in [4]. The second model enables the intensity of the impulses to follow random 
distributions. This model can be expressed mathematically as: 

Xi= 

I 	+N p 	r 

I n +Nr  

with probability Pp  

with probability P n  

with probability 1- ( Pp  +Pn  ) 

(1) 

Where: 
X 	denotes the pixel values of the degraded image. 
p n  denote the mean values for positive and negative impulse noise. 

N r 	has a zero-mean and may follow a gaussian (or uniform) 
distribution and standard deviation a . 

E 	denotes the uncorrupted pixels values. 

Image enhancement process is comprised of a collection of techniques that seek to 
improve the visual appearance of an image, or to convert the image to a form more 
suitable to human or machine analysis. Median filters have some very interesting 
properties. They have low-pass characteristics and they remove additive white noise. 
Since the median is a robust estimator of location, it is very suitable for impulse noise 
filtering. The principal function of the median filter is to force points with distinct 
intensities to be more like their neighbors. The median filter not only smoothes noise 
in homogeneous image regions but tends to produce regions of constant or nearly 
constant intensity as well: Thus, it removes very fine details and changes signal 
structure. Moreover, the median filter becomes unreliable only if more than 50% of 
the data are corrupted [5]. To improve the performance of the median filter, many 
generalized median filters such as the center weighted median (CWM) filter [6], the 
maximum/median (max/med) filter and the multistage median filter have been 
proposed [7]. The generalized median filters tend to have better detail preserving 
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characteristics than the median filter but they preserve more details at the expense of 
poor noise suppression. 

In this paper, an approach for effective suppression of impulsive noise following 
model (1) from images while preserving image integrity is proposed. The scheme 
presented is based upon impulsive noise detection. If the impulses can be detected 
and their positions are correctly located in the image, then it is feasible to replace the 
corrupted pixels by the best estimates using only the uncorrupted pixels. 

2. IMPULSE NOISE DETECTION 

2.1 Image Segmentation by an Unsupervised Learning Algorithm 

The automatic segmentation of images is an important component of visual 
information processing. The objective of segmentation is to classify a given image 
into meaningful regions that are homogeneous according to certain properties, such 
as gray level, texture or color [8]. 
The use of neural networks in pattern classification is a very popular issue in the 
study of neural computing. Two basic categories of classification methods exist for 
machine learning: supervised and unsupervised. Comparing with classical 
segmentation techniques, the unsupervised (self-organizing) neural network has the 
following advantage [9]: 

(a) It does not require prior information, not even the number of classes. It 
completes the identification of patterns and classification all by its 
autonomous learning. 

(b) Segmentation by the self-organizing neural network is completed by one pass 
without any preprocessing manipulation. 

The proposed neural network in this paper has a structure similar to that of ART 
(Adaptive Resonance Theory). This net clusters input patterns by using unsupervised 
learning. It has two layers: the input layer and the output layer. Feed-forward paths 
connect these layers. The nodes of the output layer are lateral inhibitive to one 
another. They are designed as a competitive network capable of choosing the 
winning node. Each time a pattern is presented, an appropriate cluster unit is chosen 
and the cluster's weights are adjusted to let the cluster unit learn the pattern. As is 
often the case in clustering nets, the weights on a cluster unit may be considered to 
be a model for the patterns placed on that cluster [10]. 

2.2 Feature Selection 

Noisy pixels can be characterized by their local statistical properties. To extract 
features from local statistics, a window is used to pass through the entire noise 
degraded image. The size of the window WD is arbitrary. However, a 3*3 window is 
good enough in most applications. From the small window, useful local features are 
obtained such as mean, median, variance, range, etc. 
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Assume that features are measured from each input pattern. Each set of these 
features is considered as a vector in the feature space. The problem of classification 
is to assign each possible vector to a proper pattern class.  

Among the previously mentioned local features, two local features are chosen to form 
the input vector Z. One is the pixel value and the other is the median deviation that is 
calculated from the difference between the median of the pixels in the window and 
the pixel value (11]. Although the median deviation is easy to operate and is effective 
when the image is slightly contaminated with impulse noise. However, it can not 
perform well when the noise ratio - which is the ratio between the corrupted pixels 
and the uncorrupted pixels - is high. To further improve the detection accuracy, the 
pixel value is also introduced as an input feature [12][13]. 

Thus: 

Z = ( Yi , Y 2 ) 
	

(2) 

Where: 

v1 = 
X, is the value of the pixel in the center of the window. 

Y 2 = median (X ; _ 9 	X,„Xi+g )—X, 
= W D/2. 

The distribution of the input vectors is shown in Fig. 1. The vertical axis denotes the 
pixel value and the horizontal axis denotes the distribution of the median deviation. 
Positive impulse noise coalesces at the top left of the figure; signals are shown as 
vertical bar in the center; and negative impulse noise is at the right bottom. 

2.3 Unsupervised Learnirg Algorithm 

The essential point of this algorithm is to build up the clusters using the Euclidean 
distance measure between the input Z and the weights U, assuming: 

U = ( U 	U 12 ) 
	

(3) 

The algorithm is summarized as follows [4]1111 

Step 1: 
Initialize the weight vectors with random values (The first sample is simply 
taken as the representative of the first cluster). 

Step 2: 
Presen't a new sample to the input layer of the network, and compute the 
Euclidean distance D, between the sample and all the weight vectors using: 
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(4) 
D 	Z (t)—U (t))2  

Where q is the number of clusters. 

(1=1,...,q) 

Step 3: Select the winning node i with minimum D , . 

D,* =min{D,} 
	

(5) 

If D 5 T1 /* Where Ti is the predefined threshold */ 
	

(6) 

Then 
Assign Z to the 	cluster and update the weight vector U 
according to the following learning rule. 

U, (t+1) = U, (t) + a [ Z (t) — U, (t) ] 	 (7) 
Where : a is the learning rate; 0 < a <1. 

a = {am, ad 
am  is the learning rate for the median deviation. 
a p is the learning rate for the pixel value. 

In order to define the values of am  and a F; is calculated. F;*  is 
the difference in the pixel values between the pixel value of the 
winning node and that of the sample. 

If F 	T2 	1*  Where T 2 is the predefined threshold */ 
	

(8) 

Then 
A very small value is given to the learning rate a p  to 
update the weight vector of the pixel values and a value in 
the range of 0.5 to a m to change the weight vector of the 
median deviations. 

Else 
Both a p and a m  are set to 0.5 in order to update the weight 
vector of both the pixel values and that of the median 
deviations. 

Else 
Form a new cluster starting with Z. 

Step 4: 
Repeat by going back to step 2 until the input vector Z is finished. 

Fig. 2(a) and Fig. 2(b) describe the implementation of the above algorithm. As for 
Fig. 3, it illustrates the architecture of the proposed neural network. 
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The pixel values and the median deviations are then used to identify the noise 
classes. Sorting of Z is first performed in terms of median deviation. A number of 
pixels values corresponding to the maximum and the minimum median deviations are 
selected. The histogram of these values is calculated, and the peak value of each 
group is selected as the noise class. 

3. IMPULSE NOISE REMOVAL 

Since the cluster centers, which represent the impulse noise, have been detected, 
the recovery of image becomes the process of matching pixels with the cluster 
centers. 

Several noise-exclusive filters are introduced: the noise-exclusive arithmetic mean 
(NEAM) filter, the noise-exclusive median (NEM) filter, the noise-exclusive neighbors 
(NEN) filter and the noise-exclusive mean-median (NEMM) hybrid filter. These filters 
are used to restore the impulse corrupted images. The window size of these filters 
WF may vary as does the traditional median-type filters. The noise-exclusive filters 
mean that all the impulses in the window do not participate in the operation of order 
sorting in the median calculation or do not count in the operation of the mean 
calculation. This is fundamentally different from the conventional median and mean 
filtering where all noisy pixels inside the window WF are involved in the calculation. 

As the noisy pixels are detected, the noise-exclusive filters are only invoked to 
eliminate them without affecting those pixels that are not corrupted. The NEAM filter 
and the NEM filter replace the impulses with the mean value and the median of the 
uncorrupted pixels respectively. The NEN filter replaces the noisy pixels with the 
nearest uncorrupted neighbor pixel. The NEMM replaces the impulses with the mean 
value of the uncorrupted pixels in the window WF and then takes the value of the 
median. Since the estimations are based on the uncorrupted pixels, the best possible 
restoration can be achieved [4][11] and [12]. 

4. EXPERIMENTAL RESULTS AND ERROR ANALYSIS 

The performance of the proposed adaptive filters and that of the traditional median 
filter family have been further compared and tested on simulated examples. Error 
measurements are used to fairly compare the performance of each filter. The types 
used are the normalized mean square error (NMSE) and the projection mean square 
error (PMSE). 

The NMSE is used to give a quantitative evaluation on the filtering results. The 
NMSE is calculated from the following formula: 



N/2 	N/2 
E 

NMSE= i=—N/2 j=—N/2  
N/2 N/2 

E 	(S ii )2 
i=—N/2 j=—N/2 

(9) 
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Where S ri  is the original image, Y 4  is the filtered image and N*N is the size 
of the image. 

The PMSE is the mean square error projected along any image axis. The PMSE is 
used to study the characteristic of the error overall the filtered image and is described 
mathematically by: 

N/2 
(Sq — Y0

2 
j  PMSE (i)=  =—N/2  
N/2 N/2 

E 	(S ii )2 
—N i=/2 j=—N/2 

(10') 

In this paper, two examples are illustrated to discuss the performance of the filters. 
Fig. 4(a) shows "Lenna" image 256x256 size. In the first example, "Lenna" image is 
corrupted by 40% positive and negative impulse noise, as shown in Fig. 4(b). In this 
image, N r  follows a uniform distribution with standard deviation a = 20. In the second 
example, "Lenna" image is corrupted by 60% positive and negative impulse noise, as 
shown in Fig. 8. In this image, N r  follows a gaussian distribution with standard 
deviation a = 10. The images processed by the median filter, the CWM filter, the 
max/med filter and the multistage median filter for the image shown in Fig. 4(b) are 
given in figures 5(a), 5(b), 5(c) and 5(d) respectively. While the images processed by 
the above mentioned filters for the image shown in Fig. 8 are given in figures 9(a), 
9(b), 9(c) and 9(d) respectively. Fig. 6(a) and Fig. 10(a) show the distribution of the 
input vector (Y1  , Y2) fed to the neural network for images in Fig. 4(b) and Fig. 8 
respectively. Fig. 6(b) and Fig. 1.0(b) show .the clusters classification done by the 
neural network for images in, Fig. 4(b) and Fig. 8 respectively. In figures 7(a), 7(b), 
7(c) and 7(d), the proposed NEAM, NEM, NEN, and NEMM process the image 
shown in Fig. 4(b) respectively. While the images processed by the above mentioned 
filters for the image shown in Fig. 8 are given in figures 11(a), 11(b), 11(c) and 11(d) 
respectively. 

The NMSE's of the "Lenna" image are calculated for different percentages 'of impulse 
noise. Fig. 12 shows the NMSE's calculated for each filter (F) to "Lenna" image 
corrupted by different percentages of impulse noise (%I) with Lniform.distribution with 
a = 20. Fig. 13 shows the same:result but for impulsehoise with gaussian distribution 
with a = 1 O. 

The PMSE'S are calculated for the filtered image of "Lerma". Fig.' 14,shows the 
PMSE calculated for the NEAM filter, as a sample of the noise-exclusive median 
filters and the median filter, as a sample of the traditional median-type filters, applied 
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on the "Lenna" image corrupted by 40% impulse noise with uniform distribution with 
CS = 20. Similarly, Fig. 15 shows the PMSE calculated for the NEAM filter, as a 
sample of the noise-exclusive median filters and the CWM filter, as a sample of the 
traditional median-type filters, applied on the "Lenna" image corrupted by 60% 
impulse noise with gaussian distribution with 0.  = 10. 

From the figures of the filtered images, the tables and curves of NMSE of different 
percentages of impulse noise following gaussian and uniform distribution some 
conclusions are reached. Comparison of the filtered images clearly indicates that the 
noise-exclusive filters outperform the traditional median ones. The NMSE tables and 
curves demonstrate that the noise-exclusive filters achieve the smallest NMSE in all 
cases. Thus, the adaptive filters are better than the traditional median-type filters 
especially when impulse noise ratios are high (more than 30% impulse noise). From 
the PMSE figures, it is evident that the noise-exclusive filters have a lower PMSE and 
consistent overall the images as well, while the traditional median-type filters have 
higher PMSE all over the image especially at the edges, moreover they have larger 
fluctuations along the image axis. 

5. CONCLUSIONS 

The neural network guided adaptive filters have the ability to remove impulse noise 
in images. This has been done by detecting the positions of the noisy pixels and 
then applying a number of noise-exclusive filters. By utilizing the uncorrupted image 
pixels only, the scheme is capable of effectively eliminating the impulses with 
gaussian or uniform distribution while retaining image integrity. Experimental results 
and associated statistics have indicated that the proposed algorithm provides major 
improvement over many other well-known median-type filters in the aspects of 
noise removal, edge and fine detail preservation, as well as minimal signal 
distortion. 

However, the traditional median-type filters have smaller time calculations than the 
proposed method. Therefore, the proposed filters have been used for better noise 
removal and minimal signal distortion especially at high percentages of impulse 
noise regardless of the processing time. On the other hand, the traditional 
median-type filters with a small processing time can be used especially at low 
percentages of impulse noise at the expense of minimum noise removal and signal 
distortion occurrence. 
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Fig. 1 Typical 2-D distribution of the input vectors 
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U (t+i) = U (t) + orri z - U 	I 

OND) 
Fig. 2(b) Comparison of the pixel values and update the weights subroutine 

Fig. 3 Schematic representation of the used neural network 



Fig. 4(a) Lenna image 

Fig. 5(a) Median filtered 
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Fig. 5(c) Max/Med filtered 

Fig. 4(b) Lenna image corrupted by 
40% impulse noise with uniform 

distribution with a =20 

Fig. 5(b) CWM filtered 

Fig. 5(d) Multistage filtered 

Fig. 5 Traditional filtered images of Lenna image corrupted by 40% impulse 

noise with uniform distribution with a =20 
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Fig. 6(a) Input vectors 
Fig. 6 Noisy Lenna input vectors and output clusters of ANN applied to Lenna 

image corrupted by 40% impulse noise with uniform distribution with a = 20 

Fig. 7(a) NEAM filtered Fig. 7(b) NEM filtered 

W (i,l) 
Median Deviation 

Fig. 6(b) Output clusters 

Fig. 7(c) NEN filtered 	 Fig. 7(d) NEMM filtered 

Fig. 7 Noise-exclusive filtered images of Lenna image corrupted by 40% 

impulse noise with uniform distribution with a-  =20 



Fig. 9(b) CWM filtered 

Fig. 9(d) Multistage filtered 

Fig. 9(a) Median filtered 

Liar.

Fig. 9(c) Max/Med filtered 
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Fig. 8 Lenna image corrupted by 60% impulse noise 

with gaussian distribution with c5 =10 

Fig. 9 Traditional filtered images of Lenna image corrupted by 60% impulse 

noise with gaussian distribution with a =10 



Fig. 11(a) NEAM filtered Fig. 11(b) NEM filtered 
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Fig. 10(a) Input vectors 
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W (i,l) 
Median Deviation 

Fig. 10(b) Output clusters 
Fig. 10 Noisy Lenna input vectors and output clusters of ANN applied to Lenna 

image corrupted by 60% impulse noise with gaussian distribution with CY =10 

Fig. 11(c) NEN filtered 	 Fig. 11(d) NEMM filtered 
Fig. 11 Noise-exclusive filtered images of Lenna image corrupted by 60% 

impulse noise with gaussian distribution with a =10 
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Fig. 12 The performance comparison of filters on Lenna image corrupted by 
different percentages of impulse noise with uniform distribution 

with 6 = 20 
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Fig. 13 The performance comparison of filters on Lenna image corrupted by 
different percentages of impulse noise with gaussian distribution 

with cr = 10 
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Fig. 14 The PMSE calculated for NEAM filter and Median filter applied on Lenna 

image corrupted by 40% impulse noise with uniform distribution 

with a = 20 

Fig. 15 The PMSE calculated for NEAM filter and CWM filter applied on Lenna 

image corrupted by 60% impulse noise with gaussian distribution 

with a = 10 
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