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ABSTRACT 

Training of multilayered feed-forward neural networks (MLFFNNs) is considered in 
this work. A procedure to derive high performance learning algorithm for updating 
the network weights is proposed. The proposed algorithm is based on heuristic 
technique that is developed from an analysis of the performance of the basic-
backpropagation training algorithm. A unified formulation of the conventional 
learning algorithms including the basic-backpropagation algorithm, the momentum 
algorithm, and the exponential-smoothing algorithm alongside with the proposed 
learning algorithm is introduced. Recursive relations for updating the weights of 
the network are derived which greatly simplifies the application of these rules. 
Simulation results are presented and comparative studies are carried out to 
demonstrate the effectiveness of the new learning algorithm. The new algorithm 
can converge more than hundred times faster than the conventional algorithms. 
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1. Introduction 

Multilayered feed-forward neural networks (MLFFNNs) offer an exciting alternative 
for modeling complex nonlinear systems, Irwin, et. Al. [1]. A properly trained 
backpropagation network has the capability of approximating a system to any degree 
of arbitrary accuracy, Narendra, et. Al. [2]. Unfortunately, training of MLFFNNs is a 
complicated process because of the many factors and parameters that influence the 
training process, Zurada, J. M. [3]. During training the weights, biases, neurons 
transfer function, the learning rate, the number of hidden layers and the number of 
neurons in each layer are iteratively adjusted to optimize the network performance. 
Several training algorithms have been applied to train FFNNs, Billings and Chen [4]. 
These algorithms are often too slow for practical problems [5 — 8]. In this paper, we 
will introduce a high performance algorithm that can converge more than hundred 
times faster than the conventional algorithms. This faster algorithm is based on 
heuristic technique, which is developed from an analysis of the performance of the 
basic-backpropagation training algorithm. A unified formulation of the conventional 
algorithms including the basic-backpropagation method, the momentum method, the 
exponential-smoothing method and the proposed method is introduced. The 
proposed algorithm is well suited for real-time, on line, computer control systems 
because of its ability in terms of rapid processing of collected plant input—output data. 

2. Background 

2.1 Feed-forward neural networks 

The basic processing element of neural networks is often called a neuron. In this 
paper, the term neuron will refer to an operator, which maps R" —› R. The basic 
model of a neuron is illustrated in Fig.1 and is described by the equation 

y 	+TO 

Where alu, u2 	 u jr  is the input vector, W= [w, w2 	 wjr  is the weight vector 
of the neuron and To  is known as its bias. F(.) is a monotone continuous function 
F: R 	(-1,1), its selection depends on the case under consideration. In this paper, 
the sigmoidal function is used. 

A set of interconnected neurons constitutes a neural network. If the neurons are 
arranged in layers t = 0,1, ...... , L, and a neuron at layer P is allowed to receive its 
inputs only from neurons in the (t-1) layer, then this network is known as feed-
forward neural network, Fig. 2. 
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Fig.1 Basic model of neuron 
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Fig. 2 Multilayer feed-forward neural network. 

The output of the i-th neuron in the 1-th layer is given by 

of = F(E.;0;-.  7;` ) 	i =1,2 	 ne 	 (2) .t=i 

Where wf = [ w f, wf, 	 w f„]r is the weight vector associated with the i-th neuron in 
the t-th layer, and n, is the number of neurons in that layer. It is common practice to 
refer to the t=0 layer as the input layer, to the P=L as the output layer and to all other 
layers as hidden layers. For simplicity, it is assumed that the threshold values T,' are 
adjustable along with the other weights, and no distinction is made between the 
weights and thresholds during learning. The thresholds T,' are learning exactly in the 
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same manner as the remaining weights. This implies that 
wf„,  = 7:` 

and the fixed input is of value 
o4=-1 	= 0,1, .... , L 

Therefore, Equation (1) can be written as 

= F(lw vo, (3) 

To describe the architecture of the MLF FNNs, the notation introduced by Levin and 
Narendra [9] will be adopted. A family of networks with n, neurons at the i-th layer 
will be denoted by 

AIL 
In the following section, the basic-backpropagation method and some other 
modifications of this method are briefly described. 

2.2The backpropagation algorithm 

This algorithm which performs stochastic gradient descent, provides an effective 
method to train a feed-forward neural networks to approximate a given continuous 
function over a compact domain p , Rumelhart et. Al. [10]. Let u c p be a given 
input, the network approximation error for this input is given by 

e(u) = d(u)- o(u) 	 (4) 

Training the neural network to minimize this error is equivalent to minimizing 

E ple(u)ildu 	 (5) 

The learning procedure for the network is carried out as follows. 
The training pattern vectors u should be arranged in pairs with the desired response 
vectors d. Let W denote the weighting matrix of the network. Following each training 
pair, the weights of the network are adjusted according to 

OE   w,(k +1) = w,(k)- n(k) 	 , 
a  wy(0  w=1«(k) (6) 

where rj(k) is a positive constant known as the learning constant, q : R -> (0,1). 
The weight changes as given in this equation are chosen in such a way to minimize 
the output error by an approximation to gradient descent until an acceptable 
minimum error is achieved. 
There is a number of learning rules for updating the weights in the network according 
to Equation (6). The learning procedure can be divided into two steps. In the first 



Proceedings of the 91" ASAT Conference, 8-10 May 2001 Paper CT-06 963 

step, the weights are adjusted in the output layer, then weights adjustment in the 
hidden layers are determined. 
The methods used for weights updating are : 

i- The basic-backpropagation method. 
ii- The momentum method. 
iii- The exponential-smoothing method. 

These methods propose different ways and modification to proceed in the change of 
weights. The modification introduced by these methods aims to speed up the training 
time and to complete the learning process as fast as possible. 
The updating rules for each method are summarized below. 

i- The basic-backorooaciation method  

a) The updating rule for the output layer can be derived as follows. 
Obtain the gradient of E with respect to vr:, as follows 

OEOE  0o,1  Net; 
= Oot &lett ow:. 

=—aE 

 

'net, o -̀' 
Do: 

° OE where 	= - : —/'(net:) ao 
(7) 

then substitute in Equation (6) to determine the weight adjustments as 

w: (k + I) = w:(k)+ 95:o", 	 (8a) 

b) The updating rules for the hidden layers can be derived as follows. 
The gradient of E with respect to v4, is given by 

= aE  aof 	&let," 
ao! a01,-1  

= E 19±f '(nW ) 14'. ao: 	' 
nnet  if-1 )(4218: w: 

where 8: was already defined by Equation (7). Substitute in Equation (6) to 
determine the weight adjustments as 

w"(k +1) = w"(k)+ f'(net j").9:-2  E se we ft (Bb) 
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On the basis of Equations (8a) and (8b), the different learning rules will formulated as 
explained below. 

ii- The momentum method 

In Schalkoff R. J. [11] a momentum term a c (0,1) is suggested to be included in 
Equations (8a) and (8b), so that these equations become. 
a) The output layer 

w,L  (k +1) = w (k)+ nSuLo.f + a Aw,I; (k) 	 (9a) 

where 6w,i;  (k) is the previous weight change. 
b) The hidden layers 

vr,`;'(k +I) = w",;' (k)+ f'(net j") 	+ Aw';(k) 	 (9b) 

iii- Exponential-smoothinq method 

An alternative modification to the backpropagation learning rules was 
introduced by Wassermann, P. D. [12]. This modification is known as exponential-
smoothing as explained below. 

a) The output layer 

(k +1) = w yL  (k)+ (1 - 17) 	+ Awl;  (k) 

b) The hidden layers 

1,V; (k +1) = v.iy(k)+ (1-17) f'(net" )ok 2  I 8: w: 	iSw1;;1 (k) 

3- Error Sensitivity Method ( The New Method ) 

The main drawback of learning MLFFNNs using the above mentioned methods is the 
long time required to perform the training process in terms of number of iterations 
and the number of epochs. 
in this section, we propose a new learning method that overcomes this drawback. 
The weight adjustments of Equation (6) are instead modified according to the 
following rule 

w,(k +1) = wu(k)- (1-0 aE — p 	+ Ow, (k) 
Ow, awl, 

where it is a learning constant .t e (0,1). 
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Using Equation (11), the updating rules for the MLFFNNs can be derived as follows. 
a) The output layer 
The weight adjustments for this layer is given by 

v: (k t 1) = woL(k)+ )45:: + (1- r) 8:d.,-1 	Arv41: (k) 
	

(11a) 

b) The hidden layers 
The weight adjustments for the hidden layers are given by 

wtit l  (k +1) = w ife' (k)+ f (net!, 	(k)+ (1- Of '(neref -1 )49: 2  E 8:w: +Ow (k) 

1= 0,1,..... , 1-1 	 (11b) 

Fig. 3 depicts the block diagram of the new training method and explains both the 
flow of signals and the flow of errors within the network. The shaded portions of the 
diagram refer to feed-forward phase. The blank portion of the diagram refers to the 
training phase of the network. The backpropagation of the error from each output 
using the negative gradient descent technique is illustrated. 

rfir P.M5310. 
apropagahen phase  

Fig. 3 Block diagram of the proposed training method 

4- Simulation Results 

The training is carried out by observing the input-output behavior of the system with 
the neural network which receives the same input as the system and a fixed number 
of delayed inputs and outputs. The system output is the desired output of the 
network. The system and the network outputs are compared to allow the weight 
update in such a way to reduce the error until the required precision is achieved. 
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Fig. 4 illustrates the principle of modeling a nonlinear single-input single-output 
system by learning a neural network. 
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Fig. 4 Multilayer neural network learning scheme 

Several examples that illustrate the performance of the four algorithms have been 
carried out. To illustrate the typical results that are obtained, consider the following 
examples. 

Example 1  

This is a simulated system, 101 pattern of input-output data were generated by 

y(k +1). y(k)y(k -1)y(k - 2)u(k -1)(y(k - 2) - 1) +  u(k) 

u(k) = 0.5 sin(2% + 0.3 sin(27%) + 0.2 sin(2% 

A neural network model with eight neurons in the hidden layer was fitted to the 
identification data set. The learning constants were chosen as 1=0.05 , a=0.05 and 
1.t=0.75. The task was to learn 101 input-output pairs. Each inputs was a pattern of 
the values of the input variables and each associated output was a single scalar. The 
response of this neural network model is illustrated in Fig. 5, where it is seen that the 
neural network response closely matches the system response. Typical behavior of 
the evaluation of learning error with time for the proposed learning algorithm is also 
shown in this figure 

1+ (k -1)+ (k - 2) 
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Fig. 5 Time-domain depiction of the neural network output 
compared with the true nonlinear output (Example 1). 

a) System response. 	b) Learning error. 

Comparison of the family of curves in Fig. 6 indicates that in the case of the 
proposed learning rule a system error of about 0.01 can be reached some where 
after 1152 epochs with 101 patterns being processed in each epoch. Whilst in the 
case of the other learning rules the same system error value of 0.01 is attained 
some where after 4099994 iterations. The decrease in processing times was 
correspondingly larger, the new learning algorithm being faster by factor of 100 or 
more. This example was taken from a realistic system identification task. 

Fig.6 Variation of the learning error with number of 
iterations for the different methods of learning. 
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In Fig. 7 it is possible to observe the response surface of the neural network 
achieved by the proposed learning algorithm. Furthermore, the error surface 
computed as the difference betvveen the network output and the system output is 
shown. Of course the flatter this surface the more the neural network has learned 
and generalized about the problem. 

Fig.7 The response surface of the neural network and the error surface 
(a) Response surface of neural network. 	(b) Error surface.  

Example 2 

This is a simulated system, 101 pattern of input-output data were generated by 

y(k +1)= -0.5u(k)sinir e c  ""'(" ? (` )1.1+ (u(k)- u 3(k)) 

u(k) = 0.5 sin(27th/50) + 0.3 sin(271/y5  ) + 0.2 sin(2172) 

A neural network model with six neurons in the hidden layer was fitted to the 
identification data set. The learning constants were chosen as r1=0.05 , a=0.05 and 
p.=0.8 The task was to learn 101 input-output pairs. Each inputs was a pattern of the 
values of the input variables and each associated output was a single scalar. The 
response of this neural network model is illustrated in Fig. 8, where it is seen that the 
neural network response closely matches the system response. Typical behavior of 
the evaluation of learning error with time for the proposed learning algorithm is also 
shown in this figure. 
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Fig. 9 Variation of the learning error with number of 
iterations for the different methods of learning. 
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Fig. 8 Time-domain depiction of the neural network output 
compared with the true nonlinear output (Example 2). 

a) System response 	b)Learning error. 

Comparison of the family of curves in Fig. 9 indicates that in the case of the 
proposed learning rule a system error of about 0.01 can be reached some where 
after 73 epochs with 101 patterns being processed in each epoch. Whilst in the 
case of the other learning rules the same system error value of 0.01 is attained 
some where after 5501 epochs. The decrease in processing times was 
correspondingly larger, the new learning algorithm being faster by factor of 100 or 
more. This example was taken from a realistic system identification task. 
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In Fig. 10 it is possible to observe the response surface of the neural network 
achieved by the proposed learning algorithm. Furthermore, the error surface 
computed as the difference between the network output and the system output is 
shown. Of course the flatter this surface the more the neural network has learned 
and generalized about the problem, 

Fig.10 The response surface of the neural network and the error surface 
(a) Response surface of neural network. 	(b) Error surface. 

5- Conclusions 

A new version of the error backpropagation learning algorithm has been developed to 
adapt multilayer neural network weights during the learning process. A unified 
formulation of the different rules underlying the different methods of learning has 
been adopted. Recursive relations of the learning algorithms have also been derived. 
Application to some simulated nonlinear time series has been demonstrated. The 
results obtained suggest that, learning MLFFNNs using the proposed algorithm is by 
far most efficient than the conventional learning algorithms, leading to reduced 
training requirements and more reliable training. 
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