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ABSTRACT 
Numerical simulation of acoustic-shock waves interaction in quasi-one dimensional 
convergent-divergent nozzles is performed. The time dependent nature of flow field 
is initiated by using very small amplitude acoustic wave that incident on the inlet of 
the nozzle. Computations are performed using 3-point fourth-order compact implicit 
McCormick-type scheme to approximate the spatial derivatives and the two steps 5-6 
alternating 2-N storage Low-Dispersion and —Dissipation Runge-Kutta (LDDRK) 
method as a time marching scheme. Artificial damping terms were used in damping 
non-physical very high wave numbers waves. The obtained numerical solutions with 
acoustic perturbation are presented. 
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1. INTRODUCTION 
Numerical simulations of acoustic waves that interact with shock waves encounter a 
number of challenges. The first and the obvious one is the large disparity between 
the pressure fluctuations that represent the acoustic and the mean flow where the 
considered acoustic wave is specified to be in the order 10-6  times the dynamic 
pressure. The second obvious challenging is the shock waves. The interaction 
between acoustic and shock waves leads to more complications in the solution 
procedures where each member of this interaction process need special attention 
and treatment. Resolving shock wave requires dissipation to suppress the undesired 
waves and wiggles formed in the thin region around shock; while, the acoustic wave 
required a careful treatment because its sensitive nature. Therefore, the numerical 
methods used to solve this problem must simultaneously capture the shock and 
accurately resolve the very high frequency acoustic wave. In addition, these 
numerical methods need to be simple and efficient for long time integration so that it 
can be used in simulating flows with complex configurations. 

Finite-difference schemes are classified mainly into two classes, explicit and 
compact schemes. Explicit schemes use large number of grid nodes for high 
accuracy discretization while the compact schemes employ smaller stencils. In 
addition, compact schemes are more accurate than the equivalent explicit ones. The 
main disadvantage of the compact schemes is the matrix inversion at each grid 
point, which means higher cost of computational time and storage. In the past, many 
researchers used the compact difference schemes in solving various flow problems 
(e.g., Refs. [1-3]). Recently, Hixon and Turkel [4] derived a new compact implicit 
McCormick-type difference scheme. This scheme is fourth-order accurate. Hu et al 
[5] derived an optimized version of Runge-Kutta time marching schemes called Low-
Dispersion and --Dissipation Runge-Kutta LDDRK schemes. Both single-step and 
two-steps alternating schemes are included. The derivation of these schemes based 
on the Dispersion-Relation-Preserving methodology that minimizes the dissipation 
and dispersion errors for wave propagation. The optimized LDDRK schemes are 
fourth-order accurate in time for linear problems while the accuracy reduced to be a 
second-order for nonlinear problems. The implementation of LDDRK requires 3-N 
storage, where N is the number of degrees of freedom of the system (i.e., number of 
grid points multiplied by number of variables). Recently, Stanescu and Habashi [6] 
presented 2-N storage formulation for LDDRK schemes. This formulation provides 
fourth-order accuracy in time for both linear and non-linear wave propagation 
problems. 

According to memory requirements for physical problems with complex 
configurations, it is desirable to use 2-N storage LDDRK schemes. In the present 
paper, we combine the fourth-order compact MacCormack-type scheme with the 2-N 
storage LDDRK schemes. To assess the numerical stability of the considered 
scheme we use Fourier analysis for the fully discretized equations. In order to 
suppress the undesired high frequency spurious waves that are generated through 
the numerical solution we add explicit numerical damping terms. The additional 
damping terms are designed by using the damping method developed by Tam et al 
[7]. Through the next sections we present the numerical solution for very small 
amplitude acoustic wave that incident on the inlet of quasi-one dimensional 
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convergent-divergent nozzles with two different cases. First, no shock is considered 
while in the second a normal shock in the divergent part of the nozzle is considered. 

2. SPATIAL DISCRETIZATION 

For a computational domain consists of grid points from i= 0 to i = i max , the 
approximation of D which represent the spatial derivative of the function f at 
interior grid points of the computational domain is obtained from the equations: 

D;  = 4A1 x 5/1-1+4f1+f 	
1 

 D1-1 

	 f 4f +5f 
D;  - 4 Al  x 	 2 

D F  +D8  
D= 	 

2 

The superscripts F and B refer to forward and backward difference respectively. 

2.1. Boundary Stencils 
One-sided derivatives are used at the boundary points. For the boundary point 
approximation, Hixon has derived the following forms for both forward and backward 
sweeps for the sixth-order compact scheme. 

Left boundary point (j = 0 ): 
Do = So  f o+ S,f,+ S2 f 2 + S,f 3 + S4 f, 	 (2.a) 

pg. 	E,f,+ E, f 2 -1- E3 ,f 3+E,f, 	 (2.b) 

Right boundary point (j=i max ): 

D..x=-Eof,...-E11...-1-E2f,,.. -2 	fimax -3 E4f,.. -4 	(3.a) 

Dmax =-S0 f,„,.x 	f max-I S2 Amac-2 82 	S4 ft max-4 	(3.b) 

The coefficients of boundary stencils are: 

S,=-19/9, S1 =37/9, S,=-19/6, S 3 =13/9and S 4 =-5/18 	(4.a) 

E, —37/18, E,=35/9, E2 =-17/6, E3  =11/9 aild E4  =- 2/9 	(4.b) 

3. TIME MARCHING SCHEME 

The considered time marching scheme is the optimized 5-6, 2 N -storage (LDDRK) 
[6]. This scheme is two-steps alternating scheme, in the first step we use five stages 
and in the second we use six stages. The scheme is fourth-order accurate in time for 

(1.a)  

(1.b)  

(1.c)  
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linear and nonlinear problems. To describe this scheme let us assume the model 
equation OU/Or = F(U), where U represents the vector of conservative variables. 

Starting with an initial solution U 	, we perform the following two steps: 

1- Step with five stages. 

K, =F[ U ( '-' )  + Atl c„ K, 	 (5.a) 

U ( " )  =t,r ( " - ' ) 	65 , K 	 (5.b) 

With the coefficients values: 

en= 0.2687454 
h51 = 0.132438181 

c„= 0.8014706 	c„= 0.5623568 
17 52 = 0.225255541 

c31  =-0 216242573 	c53 = 0.088619374 
6 53 = 0.281939207 

c43 = 0.5051570 	 c5 ,= 0.620354186 
b„= 0.301360635 

c42 =- 0.230947251 	c„= -0.106644938 
b„= 0.0590065 c41 = 0.408496801 

2- Step with six stages. 

[
-1 

K, =F U (" )  +,6ill, d ,1  

L“" )  =U r ' " +i be,  K, 

With the coefficients values: 

I 
(6.a) 

(6 b) 

d 2 ,- 0.1158488 

d,2  = 0.3728769 
d3 , -0.048691969 

d43  = 0.7379536 

d„-- 0.419671983 
d,„= 0.301039008 

d„= 0.5798110 

d„- 0.251410958 

d„= 0.642887744 

dn= -0.167840653 

d„=1.0312849 
d6M1 =-2.305651238 
d6,= 4.67221773 

d= - 4.645000842 

do ,= 2.165565508 

bo = 0.77698851 

bo,= -1.498253149 
bo ,= 1.742235949 

b,= -0.588553479 
b„= 0.417581845 

b m= 0.15 

4. FOURIER ANALYSIS 
Fourier analysis provides an effective way to quantify the numerical errors 
(dispersion and dissipation errors) and resolution characteristics of the difference 
approximations. The background for Fourier analysis on discretized equations can 
be found in [8]. To assess the characteristics (dispersion, dissipation and stability) of 
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the considered numerical methods using Fourier analysis, we must define the 
amplification factor. This factor is defined by the ratio of the numerical solution at 
time levels n + 1 and n in the wave number domain. For the time evolution equation 

eU/or =F(U), we define the amplification factor as G=0„"1 10,," where (.7," is the 

spatial Fourier Transform of U". The amplification factor for the two steps alternating 
time advancing scheme is defined as G =G, G,IG e2  where G, is the amplification 

factor for the first step, G 2  is the amplification factor for the second step and G, is the 

exact amplification factor: 

jo-Y , G 2 =I+Lf3,(—jo- )' and G'•=e (-") 
	

(7) 
.1 .1 	 1 I 

With the coefficient values: a 1  =1 , a 2=1/ 2 , a 3=1/ 6 , a 4=1/ 24 , a 5=0.0036105 

and[1, 1 =1 ,p 2 =1/ 2 4.3 =1/ 6 ,134=1/ 24 ,13 5  =0.0121101,136=0.00285919 	, 

a=ce At, At is time step and k' is numerical wave number. According to the 
numerical wave number for the spatial scheme [9] with CFL number, we can write: 

0.5 sin(2kdr)+ 8 sin(kAx)  
a =(CFL) 

	

	 (8) 
5+4 cos(kAx) 

By writing the amplification factor G as: 
G 
	

(9) 

where 1GI is the numerical dissipation. It must be noted that, the numerical scheme 

is stable when IG I less than unity. In figure (1), we plot the numerical dissipation of 
the considered scheme for three different values of Courant-Friedrichs-Lewy (CFL) 
number. These values are selected as 1.16, 1.183 and 1.2. The scheme is stable 
only when the numerical dissipation less than unity. Therefore, the stability limit of 
the considered scheme is (CFL) 

5. ARTIFICIAL DAMPING TERMS 
The explicit damping terms are added to the difference equations where the value of 
these terms controlled by a free parameter called the damping coefficient. The 
values of the 3-Point Tam's damping weight coefficients are: 

do= 0.5 and di=d,=— 0.25. 

6. CASE STUDY PROBLEM 
The considered problem is selected from the workshop on benchmark problem [10]. 
In this problem, the amplitude of the incident wave is in the order of 10.6  times the 
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dynamic pressure that is based on the speed of sound of the incoming wave. The 
cross sectional area of the nozzle is plotted in figure (2) and defines by: 

134 	 , -200 	100 

117 -17 cos(711 , -100 x,19 
100 

97.2 + 0.3x 	19 	5_80 

(10) 

Upstream the nozzle (xi', 200 ), the incoming acoustic wave is specified by 

e sin 	x  -t [co 
1 M 

Where M = 0.5 is the 
and 	co =0.17 	is 	the 
equations are the quasi-one 

Where 

U=j 

The equation of state is 

Mach 

pu 
LpEi 

angular 
dimensional 

number, 	6" = 1 0 	is the 
frequency of the 

time dependent 

(7  (AU) 	(:9  (A F) ± 

amplitude 
acoustic wave. 

u  

0 
pdA/dx 
0 

Euler equations: 

of the acoustic wave 
The governing 

(12)  

(13)  

(14)  p= 

pu 
p u 2  + p 

(pE+p)u] 

(7x 

(E-0.5u 2 ) 

, H= 

Where p,u, p and E are density, velocity, pressure and the total specific energy 
respectively. y--c.,./c, . It has the constant value 1.4. Since the nozzle cross sectional 
area A(x) is independent of time, and for the governing equations to be easier to use 
with the time advancing numerical schemes we do some algebraic manipulations 
and then write the governing equations in the conservative form as follows: 

d p 	(pu) (pa) d A =0  
Bt ox 	A dx 

d(pu)  d  (3 -y (PP)?  + 6,  _0( p E 	(puAY  
dx   

0 
at dx 2 p 	 p  

A(.0= 

1-114  
p 
P 
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e(pE) +a 
ex( 

I 	(y-1) (pu)'\  y (pE)(pu) 

d A 
=o 

1  dx 

(15.c) 
et p 

1 + 
Al 

2 

 (pE)(pu) 

p1  

(7 -1) (pur 
y  

p 2 	p 

To establish the normal shock in the nozzle, the exit pressure to inlet total pressure 
is specified to be 0.76. This case with the shock is similar to the previous study done 
Bui and Mankbadi [11] using an unstructured finite volume algorithm. Initial 
conditions are computed by integrating the steady state governing equations 
analytically [ 10]. We compute and show the numerical values for the initial steady 
state variables in the two different cases (without and with shock) in figure (3) and 
figure (4) respectively. Mach numbers in the indicated two different cases are shown 
in figure (5) and figure (6) respectively. 

7. BOUNDARY CONDITIONS TREATMENT 

For the considered problem, the boundary conditions are divided into inflow and 
outflow boundary conditions. Inflow boundary conditions must allow the incoming 
acoustic waves to propagate into the computational domain. Also, the inflow 
boundary conditions must permit the reflected waves to leave the computational 
domain. The outflow boundary condition must allow the outgoing acoustic waves to 
pass without inducing non-physical reflections to the computational domain. 

7.1. Inflow Boundary Conditions 

At the inlet of the considered nozzle, we apply the radiation boundary condition of 
Tam and Webb [12]. Radiation boundary conditions will allow the incoming acoustic 
wave to propagate into the computational domain and at the same time permit the 
reflected waves to leave the computational domain without reflections. The radiation 
boundary conditions are derived from the asymptotic solutions of the governing 
equations. For the current problem, the following equations represent non-
homogeneous radiation boundary conditions that can be applied at the left boundary. 
The equations are: 

0 
Or 

\P 

=(] -M)ax  
p 
u 	I 

pi  1 

2toe 	,cos[co 	 
(1+M) 	(1+M 

(16) 

    

7.2. Outflow Boundary Conditions 

At the exit of the nozzle (outflow boundary) we apply Thompson non-reflecting 
boundary condition [12]. These boundary conditions based on the theory of 
characteristics. The compatibility equations of the original governing equation (15) 
can be written in the following form: 

c9I) 	du 
-pc — +(u_c)(e7 19 	0u) puc OA 

of 	-pc — + 	= 0 
at Ox ex A Ox 

(RI) 
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gp ,c9 P 10P (.7"P  
dt 	of 

-c 	 +u — -c - , 
, dx 	ex 

Pp 	 eu) puc 2  PA — +pc —+(u +c)1 —+pc 	 -0 
et 	at 	 A ex 

Where c 	pl p is the local speed of sound. The considered nozzle problem has 
two different cases for the outflow boundary conditions. One, is supersonic outflow 
boundary conditions and the other is subsonic. 

1- Supersonic Outflow Boundary Conditions 
The flow at the nozzle exit is supersonic, this means that all of the waves are forced 
to move out of the computational domain. Therefore, the compatibility and the 
original governing equations are identical. There is a need for some special 
boundary treatment. The spatial derivatives of all the governing equations are 
discretized with backward differences. 

2- Subsonic Outflow Boundary Conditions 

When the pressure at the nozzle exit increases compared to the total inlet pressure, 
a shock is formed in the divergent part of the nozzle. In this case, the outflow at the 
nozzle exit is subsonic with the acoustic perturbations. Based on the analysis of the 
characteristic theory, there are two outgoing characteristic waves and one incoming 
characteristic wave. The outgoing waves are the acoustic wave with the velocity 
(4+ c) and the entropy wave of the velocity u (the entropy wave formed inside the 
nozzle). The incoming wave is the acoustic wave with the velocity(u - c). According to 
the idea of non-reflecting boundary conditions of Thomson, we must suppress the 
incoming acoustic wave. To do so we consider the compatibility equations R2 and 
R3 and instead of the compatibility equations RI we use the following equation: 

Op du 
ot pc  dt 

8. NUMERICAL RESULTS 
Simulating acoustic-shock waves interaction in quasi-one dimensional converging-
diverging nozzle is performed by using fourth-order, 3-point stencil, compact 
McCormick-type scheme for spatial derivative approximations and the optimized 5-6, 
2-N storage Low-Dispersion and -Dissipation Runge-Kutta method (LDDRK) as a 
time marching scheme. 

According to Fourier analysis of the considered compact scheme, the numerical 
wave number is purely real. This is a property of central schemes. This means that, 
the considered compact scheme has a little own dissipation. Therefore, simulating 
nonlinear problems require additional terms to damp the non-physical waves. In the 
discretization of the conservative governing equations we use explicit damping terms 
in order to suppress the spurious waves that generated during the computations. 

=0 (R2)  

(R3)  

(17) 
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A steady-state solution is obtained by implementing the mentioned numerical 
schemes until residuals are driven to machine zero. The steady state computation 
requires approximately 5000 times the time increment At . After the steady state is 
achieved we consider the incidence of the acoustic wave defined by the equation 
(11) on the inlet of the nozzle (x=-200), then we perform the problem for two 
different cases. One is without shock and the other is where a normal shock is 
formed in the divergent section of the nozzle. In the first case, we investigate the 
numerical acoustic solution. As soon we can resolve the acoustic waves we turn to 
investigate the effect of the normal shock on the acoustic waves. For our 
computations, we use the time step t=0.3 with spatial grid spacing x = 0.5 in both 
cases. 

For the first case, the inflow boundary conditions are subsonic (Mach number equal 
to 0.5). For boundary conditions treatment, we use radiation boundary conditions for 
the subsonic inflow boundary conditions. The outflow boundary conditions are 
supersonic (Mach number equals 1.55) so, there is no need for special treatments. 
We use 3-points stencil damping method for the interior points where no damping 
used for the terminal points (x = -200 &x = 80 ) of the computational domain. The 
damping coefficient is a free parameter used to control the damping terms. By 
numerical experiments, the small damping can not suppress the spurious waves and 
on the other hand higher damping values have harmful effects on the acoustic 
waves. Therefore, we can say that, the damping coefficient plays the key role in the 
success of the computation. In our computation we use the value 0.9 for the 
damping coefficient. The computed pressure fluctuations are shown in figure (7). 
From the presented results, it is clear that, no significant effect for the numerical 
dissipation on the acoustic solution. 

In the second case, a normal shock is formed in the nozzle by increasing the exit 
pressure with respect to the total inlet pressure. The inflow boundary conditions are 
subsonic (Mach number equals 0.5). As in the first case, we use the radiation 
boundary conditions for boundary condition treatment. The outflow boundary 
conditions are subsonic (Mach number equals to 0.6). We employ the characteristic 
boundary conditions. According to the presence of the normal shock we use a 
pressure sensor v, 	-2  P, +12 ,-111.01.1+2 P, +P,-11 to locate where the 

greatest pressure gradient is and then choose the value of the damping coefficient 
consequently. We used the 3-points stencil damping method interior points of the 
computational domain where no damping is used for the terminal points 
(x = -200 &x =80 ). In the computation of this case we use the value 0.6 for the 
damping coefficient and increase it to 2.4 around the greatest pressure gradient 
where the shock located. The computed acoustic solution is shown in figure (8), this 
figure shows one snapshot for spatial distribution of pressure fluctuations in the 
presence of a normal shock. From the presented results, it is clear that, the 
interaction between shock wave and acoustic wave amplify pressure fluctuations. 
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Figure (9) shows the numerical mean flow pressure in the presence of shock wave. 
The numerical solution shows very small and a non-significant wiggles around the 
shock. In figure (10) we see a very good agreement between the exact mean flow 
pressure (represents by line) and the numerical mean flow pressure (represents by 
bold black circles). 

9- CONCLUSION 

From the previous discussion we conclude that, the fourth-order compact 
McCormick-type scheme with the 5-6, 2-N storage Low-Dispersion and —Dissipation 
Runge-Kutta combined with a carefully selected damping coefficients perform the 
considered problem very well. According to small stencil, direct computations without 
matrix inversions and the capability to resolve waves with a high wave number limit, 
the indicated compact scheme is strongly recommended in acoustics computations. 

10- REFERENCES 

1- Lele, S. K., " Compact Finite Difference Schemes with Spectral-Like Resolution " 
Journal of Computational Physics Vol. 103, pp. 16-42, (1992). 

2- Sheg-Tao Hu, Kwang-Chung Hsieh, and Y.-L. Peter Tsai 'Simulating Waves in 
Flows by Runge-Kutta and Compact Finite Difference Schemes " AIAA Journal, 
Vol.33, pp. 421-429, (1995). 

3- Hixon, R. "A New Class of Optimized High-Accuracy Compact Schemes" AIAA 
paper 98-0367, (1998). 

4- Nixon, R. and Turkel, E. "Compact Implicit MacCormack-Type Schemes with High-
Accuracy" Journal of Computational Physics, Vol. 158, pp. 51-70, (2000). 

5- Hu, F. Q., Hussaini, M. Y., and Manthey, J. L., 'Low-Dissipation and Low-
Dispersion Runge-Kutta Schemes for computational Acoustics " Journal of 
Computational Physics, Vol.124, pp. 177-191, (1996). 

6- Stanescu, D. and Habashi, W. G.," 2N-Storage Low-Dissipation and Low-
Dispersion Runge-Kutta Schemes for Computational Acoustics" Journal of 
Computational Physics Vol. 143, pp. 674-681, (1998). 

7- Tam, C. K. W., and Shen, H, "Direct Computation of Nonlinear Acoustic Pulses 
using High Order Finite Difference Schemes", AIM Paper 93-4325, (1993). 

8- Vichnevetsky, R. and Bowels, J. B., " Fourier Analysis of Numerical 
Approximations of Hyperbolic Equations " (SIAM Philadelphia), (1982). 

9- Khalid M. Hosny, "Erratum", Journal of Computational Physics Vol. 163, pp. 547, 
(2000). 

10- Hardin. J. C., Ristorcelli, J. R. and Tam, C. K. W., (Editors), " First ICASE/LaRC 
Workshop On Benchmark Problems in Computational Aeroacoustics " 
(Hampton, VA), NASA CP. 3300, (1995). 

11- Bui, T. T. and Mankbadi, R. R., " Direct Numerical Simulation of Acoustic Waves 
Interacting With A Shock Wave In A Quasi-1D Convergent-Divergent Nozzle 
Using Unstructured Finite Volume Algorithm " International Journal of 
Computational Fluid Dynamics, Vol. 10, pp. 281-298, (1998). 

12- Tam, C. K. W., and Zhong Dong, "Radiation and Outflow Boundary Conditions 
for Direct Computation of Acoustic and Flow Disturbances in a Non-uniform Mean 
Flow " Journal of Computational Acoustics Vol. 4, No.2, pp. 175-201, (1996). 

13- Thompson, K. W., "Time-Dependent Boundary Conditions for Hyperbolic 
System", Journal of Computational Physics Vol. 68, pp. 1-24, (1987). 



-20000 	-10000 	000 
	

100.00 
Spatial DIstobJtion 

1.00 

Density Preseve 

-200 00 
1 

-100.00 	000 
Spatial Distribution 

Fig. (3): Initial Steady-State 
Solutions Fig. (4): Initial Steady-State 

Solutions 
.75— 175 — 

Proceedings of the 9. ASAT Conference, 8-10 May 2001 Paper CT-08 983 

050 0.50 

025 	  

-200.00 	-100.00 	000 	100.00 
Spatial Distribution 

Fig. (5): Mach Number 
(Without shock) 

0 25 

-20000 	-10000 	000 
Spatial Distribution 

Fig. (6): Mach Number 
(With shock) 

100 00 

2ao.00 

10000 

a 
e3 000 
It 

-10000 

20000 

00 	00 	1.6 	2.4 	3.2 
Wive Number 

Fig. (1): Numerical Dissipation 

1.50 

1.00 

0.50 

Density Prmsurc Velocity 

0.00 

.10000 	 000 
Spatial Distribution 

Fig. (2): Nozzle Geometry 

000 

1.50 — 

100 00 

100 00 

150 — 

1.25 — 

5 

a 
0.75 — 

1.50 — 

1.25 — 

a 
075 — 



I 0 0.00 

Fig. (7): One Snapshot of Pressure 	 Fig. (8): One Snapshot of Pressure 
Fluctuations (Without shock) 	 Fluctuations (With shock) 

0.80 

0.60 

0 

0.40 

100.00 	 -200.00 	-100.00 	 0.00 
Spatial Distribution 
	

Spatial Distribution 

0E0 

060 — 

040 — 

0 20 

.200.00 	-000.00 	 0.00 

Proceedings of the 9th  ASAT Conference, 8-10 May 2001 Paper CT-06 984 

1.50E-6 — 1.50E-6 

19100-6 

5.0o0-7 
S  

0.00E40 

0- -5.00E-7 

•I .00E-6 

-1.50E-6 

1.00E-6 — 

10000 -100.00 	 0.00 
Spatial Distribution 

5.00E-7 

o.00e«o 

-5.00E47 — 

-1.00E-6 — 

•1.50E•6 	 

-20000 
I 	I 	1 	f 	I 

	

.200 -160 -120 -80 -40 0 	40 80 120 
Spatial Distribution 

Fig. (9); Numerical Mean 	 Fig. (10): Numerical & Analytical 
Pressure (With shock) 
	

Mean Pressure (With shock) 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

