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Abstract: 

In this paper the design and implementation of the International Data Encryption 
Algorithm (IDEA) key schedule is presented. The IDEA key schedule takes 128-bit input key 
and returns 52 subkeys each of 16 bits during the encryption or the decryption operation. 
The key schedule includes the design of the inverse modulo (216+ 1) multiplier and the 
inverse modulo 216 adder. The inverse modulo multiplier circuit is used to generate 18 
inverse multiplicative keys and the inverse modulo adder circuit is used to generate 18 
inverse additive keys. The inverse multiplicative key is calculated through multiplying the key 
to the power (216- 1) modulo (216+ 1). A 16 bit counter controls the inverse modulo multiplier 
circuit during the modulo multiplication process. A zero state problem is denoted during the 
generation of the inverse multiplicative keys because 216  is treated as zero during the 
modulo (216+ 1) multiplication in the encryption process. 

The IDEA key schdule is implemented on Xilinx FPGA Spartan II family and the 
target chip is XC2S100-5PQ208C. 
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1- Introduction: 

IDEA cipher was developed to increase the security against differential cryptanalysis 
[1-3]. IDEA encrypts or decrypts 64-bit data blocks using symmetric 128-bit key. The 128-bit 
key is expanded further to 52-subkeys blocks each of 16 bits. The plaintext block is divided 
into four quarters, each of 16 bits long. The block cipher IDEA is believed to be very secure 
due to the proper interaction between three different group operations. This interaction adds 
confidence in IDEA's security. The reason beyond choosing the implementation of IDEA key 
schedule is that; IDEA is one of the most secure block algorithm available to the public at this 
time and no currently known attack against the full IDEA rounds performs better than 
exhaustive search [4-10]. To complete the IDEA algorithm implementation, IDEA key 
schedule must be done. IDEA is an iterated cipher consists of 8 rounds followed by an output 
transformation as shown in Figure 1. 

The cipher is based on a design concept of mixing operations from different algebric 
groups. The three groups used are on pairs of 16-bit subblocks namely, bit-by-bit XOR, 
addition module 216 

and multiplication modulo (216
+ 1). 
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Fig. 1 IDEA Block Cipher Block Diagram [15] 

As shown in Figure 1, each round consists of two stages the transformation stage 
and the multiplication addition (MA) stage. The two multiplications and the two additions at 
the beginning of Figure 1 are called the transformation stage and its process is reversable. 
The two multiplications and the two additions in the middle of Figure 1 are called the MA 
stage. The MA satage process is not reversable. 

IDEA key schedule must be implemented along with the IDEA algorithm on the same 
FPGA because the generation of 52 subkey blocks requires a chip having 832 I/O, only for 
this purpose, to communicate with the IDEA FPGA. Another solution for the key schedule 
implementation is runtime reconfigurable such that the key schedule is done by directly 
modifying the bit stream download to the FPGA, thus enabling the implementation without 
any logic gates required for the key schedule. The first approach is the most suitable one, 
because the 52 subkey need to be generated inside the IDEA FPGA.[11] 

The IDEA algorithm key schedule consists of input 128-bit register, control unit, 

inverse modulo (216  + 1) multiplier unit, inverse modulo 216  adder unit, swapping keys unit 
and 52 register each of 16 bits for the subkeys. 

The latency to generate the decryption keys is much longer than the latency to 
generate the encryption keys. Most of the IDEA key schedule modules are easily 
implemented and the only overhead is introduced by the inverse modulo (216+ 1) multiplier. 
The inverse modulo multiplication operation has the maximum latency during the generation 
of the decryption keys. 
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This paper focuses on implementing the IDEA key schedule in both encryption and 
decryption operations on Xilinx FPGA spartan II family to produce the needed subkeys for 
the encryption or the decryption process. 

Section 2 introduces the analysis of IDEA key schedule including the generation of 
the encryption and the decryption keys. The analysis of the key expansion for IDEA algorithm 
and the software verification for the design are introduced. Section 3 introduces the circuits 
design, sub modules and the implementation of the IDEA key schedule. Section 4 presents 
the simulation results. Section 5 gives concluding remarks of implementing the IDEA key 
schedule. 

2- Analysis of the IDEA Key Schedule: 

The 52 key subblocks of 16 bits used in encryption process are generated from the 
128-bit user selected key as follows: The 128-bit key is partitioned into 8 subblocks that are 
directly used as the first eight key subblocks. The 128-bit key is then cyclic shifted to the left 
by 25 positions, after which the resulting 128-bit block is again partitioned into eight 
subblocks that are taken as the next eight key subblocks. The obtained 128-bit block is again 
cyclic shifted to the left by 25 positions to produce the next eight key subblocks. The cyclic 
shift left procedured is repeated 6 times until all 52 key subblocks are generated as shown in 
Figure 2. 
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Fig. 2 IDEA Key Schedule Block Diagram 

The 52 key subblocks of 16 bits used in the decryption process depends on the 52 
key subblocks previously generated from the 128 bit user-selected key during the encryption 
process as shown in Table 1. 

2.1 Mathematical Formula for Modulo (2^  + 1) Multiplier: 

The modulo multiplication function is calculated as follows : 
a*bmodn=a*b—q•n. 	where q = integer (a * b) / n . 	( 1  ) 

There are two methods that can be used to implement the modulo (216+1) multiplier either 
Division by (subtract and shift) [12] or Systolic Array [13]. The division technique is based on 
subtracting the modulo number from the multiplication result until the subtraction result is 
less than the modulo number. The Systolic Array is based on Montogomry Algorithm [14]. 
The Systolic Modular multiplication throughput is one modular multiplication every clock cycle 
with a latency of (2n+2) cycles for multiplicands having n digits. 

The analysis of the hardware implementation for the two techniques shows that, the 
first technique is very slow and the result comes after several times of subtraction controlled 
by a comparator while the second technique is very hard to implement beside it needs huge 
number of logic gates and needs some post-processing before the modulo multiplication 
result comes. 
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Table 1. Encryption & Decryption keys subblocks: 

Stage Encryption Decryption 
Round 1 Z1 ,Z2  ,Z3 ,Z4  ,Z5  ,Z6 Z4 	 1 , Z60 ,-Z51 ,

7
52 	,4-

7 
 47 ,Z48 

Round 2 Z7 ,Z8 ,Z9 ,110 ,Z11 ,Z12 Z43 -1  ,-Z45 ,-Z44 ,Z46 1 	Z41 ,Z42 
Round 3 Z13 ,Z14 ,Z15 216 ,Z17 ,Z18 Z37 -1  ,-Z39 ,-Z38 ,Z40 - 	235 ,Z38 
Round 4 Z19 ,Z20  ,Z21 ,Z22 ,Z23 ,Z24 Z31 -I  ,-Z33 ,-Z32 ,Z34 1  ,Z29 230 
Round 5 Z25 ,Z26 ,Z27 ,Z28 229 230 Z25 -1  ,-Z27 C226 228 1  ,Z23 ,Z24 
Round 6 Z31 ,Z32 ,Z33 ,Z34 ,Z35 ,Z36 Zig 	,-Z21 ,-Z20 ,Z22 I  ,Z17 218 
Round 7 Z37 ,Z33 ,Z39 240 ,Z41 ,Z42 Z13 -1  ,-Z15 ,-Z14 ,Z16 	1  ,Z11 ,Z12 
Round 8 Z43 ,Z44 245 246 247 248 Z7 -1  ,-Z9 ,-Z3 ,Z10 -1  ,Z5 ,Z6 

Transformation Z49 ,Z50 ,Z51 ,Z52 ZI -1  ,-Z2 ,-Z3 	,Z4 -1 
 

The used mathematical formula to implement modulo (216+1) multiplier is as follows [ 15 ]: 
Let a and b be two n-bits of non zero integers. Then: 

(el) mod 2") - (a*b div 2") 	if (a*b mod 2") > (a*b div 2") 
a*b mod(2"+1)= 

(a*b mod 2°) - (a*b div 2") 2" + 1 if (a*b mod 2") < (a*b div 2") 

For n = 2, 4, 8, 16, in which 2" + 1 is a prime number [ 16 ]. 

Note that: (a*b div 2°) is the quotient when (a*b) is divided by 2" which corresponds to the 
right shift of (a*b) by n bits and (a*b mod 2") is the n least significant bits. 

The implementation of this modulo (216+ 1) multiplier is very fast and efficient 
compared with the other two techniques discussed before. 

2.2 Inverse Modulo ( 216 
+ 1) Multiplier: 

The transformation stage and the output transformation each includes two modulo 
multipliers and their functions are reversable which means using secret key for encryption 
and its multiplicative inverse for decryption. The MA stage includes two modulo multipliers 
and their functions are not reversable which means using the same secret key for both 
operations encryption and decryption. 

2.21 Computing Inverses: 

Modular arithmetic sometimes permits the computation of multiplicative inverses. The 
analysis to implement the inverse modulo (216+ 1) multiplier shows that, computing the 
multiplicative inverses can be done using one of the following three theorems [ 17 j: 

Euler Theorem, Extended Euclidean Theorem, and Chinease Remainder Theorem. 

Euler Theorem is preferable for the hardware implementation over the other two 
theorems as it is very efficient and also applicaple for the hardware implementation. 

2.2.2 Euler Theorem: 

An important quantity in number theory which is reffered to as Euler's totient function 
and written as 0(n). Euler's totient function is the number of positive integers less than and 
relatively prime to n. 

It should be clear that for a prime number p: 0 (p) = p-1. 

Thus to get the multipticative inverse ( a-1  )such that ( a ) is relatively prime to ( n ): 

( 2 ) 
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e mod n = a°(1)-1  mod n. 	 3  ) 
For prime number n=(216 + 1)=65537, key K then 0 (216  + 1) = 65536 and 

K "1  mod (216  + 1) = K0(2 16  + 1)-1  mod (216  + 1)=K66666  mod (216  + 1). 	( 4 ) 

This means the inverse multiplicative key is calculated through multiplying the key to the 
power (216  - 1) modulo (216  + 1). 

2.2.3 IDEA Key Schedule Zero Input Problem: 

The problem with this inverse modulo (216 +1) multiplication operation appears when 
the output of a modulo multiplication operation is 216  which is intercepted as zero and this 
zero will be multiplied by the key in the next step during the 65535 times of modulo 
multiplication. If the modulo multiplication result is zero, it is not true and will result in 
incorrect inverse key. Therefore, this zero output has to be detected. 

This state is detected during the computation of the inverse modulo multiplication key in 
order to correct the inverse key result as shown by the following equation. 

K K-1  mod (2/6  + 1) = 1. 	 ( 5  ) 
2.2.4 The Solution for IDEA Key Schedule Zero Input Problem: 

The solution for the IDEA key schedual problem, which appears during the generation 
of the inverse modulo multiplication keys, is concerned with the detection of the zero result 
during the process. The inverse modulo multiplier circuit treats the zero result as 216  in the 
next operation of modulo multiplication. This means multiplying the key with 216  instead of 
zero. The solution gives the correct inverse modulo (216  + 1) multiplication key that satisfy 
equation ( 5 ). 

2.3 Inverse Modulo 216  Adder: 
The inverse modulo 216 adder generates the inverse modulo addition keys. This 

operation is calculated through the subtraction process of the key from 216. The result is the 
inverse modulo addition key used during the decryption process. 

2.4 Software Verification: 

A software verification for the IDEA key schedule using the above technique for 
solving the zero input state problem results in correct inverse modulo multiplicative keys and 
consequently correct encryption/decryption process of the IDEA. Also, this verification 
provides a validity for the hardware implementation of the IDEA key schedule. 

3- Design and Circuit Description: 

The designed and implemented circuit is the IDEA key schedule, which includes the 
inverse modulo multiplication circuit and the inverse modulo addition circuit. The circuit 
consists of several sub-modules. All sub-modules design, simulation and verification are 
explained. Figure 3 shows the block diagram of the IDEA key schedule. 

First the IDEA key schedule consists of four main blocks the control unit, the inverse modulo 
multiplication unit, the inverse modulo addition unit and the swapping keys unit. Second the 
input 128 bits key undergoes three operations at the same time as follows: 

(1) At the Inverse modulo multiplication unit, the input 128 bits key are partitioned into 18 
subblock keys each of 16 bits. Then these 18 subblock keys are taken to form the 
keys for the encryption process and generate the inverse modulo multiplication keys 
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for the decryption process. The Inverse modulo multiplication unit affects the Control 
unit in the sense that it has the maximum latency. 

(2) At the Inverse modulo addition unit, the input 128 bits key are partitioned into 18 
subblock keys each of 16 bits. Then these 18 subblock keys are taken to form the 
keys for the encryption process and generate the inverse modulo addition keys Ow 
the decryption process. 

(3) At the Swapping keys unit, the input 128 bits key are partitioned into 16 subblock 
keys each of 16 bits, Then these 18 subblock keys are taken to form the keys for the 
encryption process and the keys for the decryption process. 

(4) The Control unit is responsible for all control signals to the other three units. It has 
three output control signals the first is the encryption / decryption control signal, the 
second is the select subkey control signal in the decryption process and the third is 
the select output subkey control signal. 

128 bit Key input Register 
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16 hit 18 Subkey 4- 

Mux 	 Register 
Multip. 
Inverse 

Unit 
16 hit 
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Fig. 3 IDEA Key Schedule Block Diagram 
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3.1 Inverse Modulo ( 216  + 1) Multiplier Block Diagram: 

Key 	  
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Fig. 4 Inverse Modulo ( 216  + 1) Mu Itiplier Block Diagram 

Figure 4 shows the block diagram of the inverse modulo multiplier. The inverse 
modulo multiplier has one input and one output each of 16 bits. 

First, the input key enters 2:1 MUX I which is controlled via 16 bit counter and this output is 
the first input of the modulo multiplier. The counter starts the inverse modulo multiplication 
operation and control the output from the inverse modulo multiplier. The same input enters 
the modulo multiplier circuit. 

Second, the two inputs to the modulo multiplier are modulo multiplied in parallel. 

Third, the output from the modulo multiplier is fed back again to the MUX I and this operation 
is done 65534 until the inverse multiplicative key is produced. 

If the output from the MUX I is all zero then this output is encoded to become the key 
shift left 16 bits plus one which enable the operation to continue to get the correct 
multiplicative inverse key. 

As shown in Figure 4 the multiplicative inverse key is produced after 65535 clocks using 
Euler Theorem. Therefore, before the decryption process starts and to get the inverse 
multiplicative keys for 18 keys, the key schedule needs 18 X 65535 clocks which is very 
large number of clocks. 

The Inverse multiplicative key unit consists of 18 : 1 MUX with 5 select lines and the 
Inverse multiplicative key circuit. 
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3.2 Inverse Modulo 216  Adder Block Diagram: 

Fig. 5 Inverse Modulo 216  Adder Block Diagram 
Figure 5 shows the block diagram of the inverse modulo adder. The inverse modulo 

adder generates the inverse modulo addition keys, this operation is calculated through the 
subtraction process of the key from 215. The result is the inverse modulo addition key. The 
Inverse additive key unit consists of 18 : 1 MUX with 5 select lines and the Inverse additive 
key circuit. 

3.3 Design of the Control Unit: 
It consists of 5 bit counter and 5 bit decoder. It is responsible for the choosing of the 

process whether encryption / or decryption. The counter controls the two 18 : 1 MUX inside 
the Inverse multiplicative key unit and the Inverse additive key unit. The decoder regulates 
the output from the Inverse modulo multiplier circuit and from the Inverse modulo adder 
circuit. It enables the right register to receive the proper inverse key during the decryption 
process. The swapping keys unit is used to interchange the order of the keys which were 
used during the encryption process in MA stage. 

Finally, the key schedule module has 52 MUX, each of them has two inputs, the 
encryption key and the decryption key. These MUXs are controlled via the control signal 
encryption / decryption. 

3.4 Design of the Sub-Modules: 
Figure 2 shows the overall sub-modules of the IDEA key schedule circuit. The 

different sub- modules design is explained as follows: 

( a ) Modulo (216+1) multiplier: 
Figure 6 shows the block diagram of the modulo multiplier which has two inputs 

and one output each of 16 bits. The operation of this modulo multiplier is explained as 
follows: 
First the two inputs are multiplied with the array multiplier. The output of the multiplier is 
divided into two sections, the 16 most significant bits and the 16 least significant bits. 
Second the subtractor subtracts the 16 most significant bits from the 16 least significant 
bits and at the same time the two sections of the multiplication result are compared. 
Third the subtraction result is incremented by one. The comparator output is low if the 16 
least significant bits is greater than or equal the 16 most significant bits. The comparator 
output controls 2 : 1 MUX which has two inputs, the subtraction result and the subtraction 
result plus one. If the comparator output is high, the MUX output is the subtraction result 
plus one otherwise, the MUX output is the subtraction result. 

The modulo multiplier consists of several sub-modules which are 16 bit array 
multiplier, 16 bit subtractor, 16 bit comparator, one bit incrementer and 2 : 1 MUX.[ 18 ] 



Subtractor 

Incrementer 

2 : 1 Mux 

Proceedings of the 10°  ASAT Conference, 13-15 May 2003 	Paper AR-9 725 

16-bit Input 	 16-bit Input 

Array Multiplier 

r  _13_1i  

r.nmnaratnr 

16- bit output 

Fig. 6 Modulo ( 216  + 1) Multiplier Block Diagram 

( b ) Array multiplier: 

The multiplication is done in parallel using the array multiplier. It is two 16-bit 
parallel input circuit and 32-bit parallel output. The array multiplier is based on the idea that 
partial products in the multiplication process may be independently computed in parallel. An 
n*n multiplier requires n * (n-2) full adder, n-half adders, and n2  AND gates [ 19 1. The worst 
case delay of the multiplier is (2n +1)t, where t is the worst case delay of the adder having 
the longest path. The Array multiplier result in latency of one clock. The array multiplier has 
224 full adder. The full adder has 3AND2 gates and 2X0R3 gates. 

3.5 Design Integration: 

The implemented sub-sub modules are simulated and then integrated to constitute 
the sub modules. The design features simplicity, speed and high rate of throughput. Table 2 
shows the latency and the number of gates of the inverse modulo multiplier and the inverse 
modulo adder implemented modules. 

Table 2 Implementations of Inverse modulo multiplier and Inverse modulo adder. 

Inverse modulo multiplier Inverse modulo adder 

Latency 65535[(2n + 1)t1  +nt2 413 4-3t4 I nt2 

No. of gates 1803 32 

Where t1  is the full adder latency inside the array multiplier, t2 is the full subtractor 
latency, t3  is the incrementer latency, and t4  is the 2:1 MUX latency. Calculating nt2  and 
comparing it with (2n + 1)t, + nt2 + t3  +t4  multiplied by 65536. The result showed that nt2  can 
be neglected. 
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The Inverse modulo multiplier latency is larger than the Inverse modulo adder latency 
at the order of 65535[(2n + 1) t1 + nt2 + t3 +t4] value which is very huge. The hardware of the 
Inverse modulo multiplier increased with 1% to correct the zero state problem in order to get 
correct inverse key. Results showed that, at the cost of very minor increase of the used 
number of gates about 1% with almost the same latency, the process of generating inverse 
multiplicative keys executed correctly. 

4 — Simulation Results: 

The simulation results for the IDEA key schedule with the selected Xilinix family and 
targeted fitting chip is presented. The schematic design entry is used. After the sub modules 
are individually simulated in both functional and timing simulation. These integrated sub 
modules are simulated again in both functional and timing simulation as shown in Figures 7. 
The design entry, simulation, and implementation strategy was done using Xilinx Foundation 
Series Ver 2.1 [ 20 ]. The target chip is Xilinx XC2S100-5PQ208C Spartan II family having 
100.000 gates count [ 21 ]. 
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Fig 7 Inverse Modulo (216  +1) Multiplier Simulation Results 

In Figure 7 the 16 bits input key applied to the Inverse modulo (216  + 1) multiplier is 
INVMOD15. The counter state is Q15. The first Mux output is OMUX15. The second Mux 
output is OMUXL15. The subtractor output is SK015. The incrementer output is 0C15. The 
modulo multiplier output is OKMT15, and the output is OUT15. The inverse modulo 
multiplication result was exactely same as resulted from the software implementation. The 
input key is (OX ABCD) hexadecimal value and the output inverse multiplicative key is (OX 
0A9B) generated after 65535 clocks. 

5 — Conclusion: 

The design of the IDEA algorithm key schedule including the design of Inverse 
modulo (216  + 1) multiplier is presented, designed, simulated, and implemented on FPGA. 
The motivation of the design is the generation of the needed 52 subkeys blocks for the IDEA 
algorithm that enables IDEA to operate in both processes encryption and decryption. The 
advantage of the design is the pipelined architecture of the inverse modulo multiplier to 
accelerate the IDEA key schedule design. The maximum achieved speed is 50 MHZ which is 
due to the complexity of the inverse modulo multiplier design. The number of CLB is 810 for 
the IDEA algorithm key schedule. Hardware simulation results showed that, at the cost of a 
minor increase of the used number of gates in the Inverse modulo multiplier design about 
1% ) and with almost the same latency, the process of the generation of the inverse keys is 
executed correctly to correct the IDEA key schedule zero state problem. 
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