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Estimation of the Relative Density for Honeycomb Panels 
Subjected to Blast  

 
H. M El-Fayad*, M. M Abdel-Wahab*, H. M.Farag* and A. A El-Ashaal** 

 
Abstract: Sandwich panels give an optimum and proven tools to handle problems related to 
design and analysis of the structures subjected to blast load. The present work focuses on 
estimating the relative density of steel honeycomb sandwich panels. These panels can be 
applied on defense works, homeland security, banks and civilian industries intended to 
minimize the effects of accidental explosions. Sandwich constructions with metallic 
hexagonal honeycomb core are utilized in this paper due to its high specific strength and 
stiffness relative to its weight. Estimating the relative density of the metallic hexagonal 
honeycomb core based on single degree of freedom and the scaling dimensional and 
considering the dynamic factor contrived under transient dynamic loads resulted from 
detonating any amount of TNT at any stand-off distance. The strength and stiffness of simply 
support honeycomb core panels were evaluated based on boundary condition of strength and 
deformation. The proposed approach suggested controlling the safety design for those panels.  
 
Keywords: Sandwich Panels, Honeycomb, Density, Blast Load 
 
 
Abbreviations 
TM5 : Technical manual 
F.E.M : Finite element method 
APDL : ANSYS Parametric Design Language 
DOE : Design of Experiments 
 
 
1. Objective 
The primary objectives are to establish design procedures and chart techniques for smooth 
designing the sandwich panel subjected to blast load or estimating the resistance of the 
prefabricated sandwich panels. 
 
 
2. Introduction 
Some structures during their service life might be subjected to explosive loads. For example, 
industrial explosion accidents are causes of such events. Also some important infrastructure 
such as government buildings, embassy buildings, and bridges might be targets for a terrorist 
bombing attack. Understanding structural response to explosive loads is essential to protect 
critical infrastructure against explosions. Sandwich construction with hexagonal honeycomb 
core is the most widely used construction in sandwich construction. It has been proven to be 
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more effective in resisting blast loading. The use of sandwich panels might be an effective 
method to mitigate the damaging effects of blast loading on structural buildings. Sandwich 
construction with hexagonal honeycomb core is common structural members. It is a structural 
element which consists of thin-wall elements as shown in figure (1). Typical hexagonal 
honeycomb core is shown in figures (2) and (3). Sandwich construction is mainly used to 
obtain specific strength and stiffness, i.e. to obtain minimum weight of structural elements 
under the premises of design requirements. Since they have a high strength to weight ratio and 
excellent energy absorption capabilities under dynamic loading conditions, the core of the 
sandwich structure can sustain large deformations under a constant load, enabling it to absorb 
energy as shown in the Figure (4) [1]. A relative density of the sandwich panel subjected to 
blast loads will be discussed and determined using scaling dimensional. 
 
 
3. Methodology 
 

3.1 Estimating the blast loads 
This section provides a rapid method to estimate the peak overpressure and the duration of the 
blast wave resulted from explosion of any spherical TNT charge. TM5 [2] provide an 
experimental design chart to calculate the positive phase shock wave parameters ( duration 
and positive pressure) for a spherical TNT explosion in free air versus scaling distance  
( Z= R/ W (1/3))  where :  
 
 Z: The scaling distance. 
 R: The target distance from the explosion [ft].  
 W: The explosive amount [lb].  
 
In the present study, the charts provided from TM5 were converted into four polynomials of 
order ten versus (Z) for the easy use into the dynamic response calculation. The first 
polynomial is for estimating the peak over pressure, P [Psi] will be of the form: 
 
Log (P) = 2.9267665 - 1.6622940 log (Z) - 0.88309316 (log (Z))2  
     + 0.026782407 (log (Z))3 + 0.52296827 (log (Z))4 + 0.078522816 (log (Z))5 
               -  0.20894177(log (Z))6 +0.26836759 (log (Z))7 +0.0084835013(log (Z))8  
               + 0.0000082855449 (log (Z))9 -0.0000015187132(log (Z))10                                  (1) 
 
The three other polynomials for estimating the positive phase duration, Tୢ  [ms] had the form: 
 
For: ૙ ൏ ࢆ ൏ ૛. ૟  : 
Log (Td/

W1/3) = -0.76047355    + 1.1372654 log (Z) + 3.3404647 (log (Z))2  
                 -0.60166015 (log (Z))3 + 17.186696 (log (Z))4 + 138.66359 (log (Z))5 
                          - 45.686235 (log (Z))6 - 1488.6916 (log (Z))7 - 1580.1739 (log (Z))8  
                          + 4088.5940 (log (Z))9 + 6422.6243 (log (Z))10                                            (2') 
 
For: ࢆ א ሾ૛. ૟, ૞ሿ: 
Log (Td/

W1/3) =  +102.92473     -1305.1188 log (Z) + 6914.2021 (log (Z))2  
                  - 19460.924 (log (Z))3 + 29474.072 (log (Z))4 -16283.437 (log (Z))5 
                          - 20855.160 (log (Z))6 + 47875.291 (log (Z))7 - 40117.890 (log (Z))8  
                          + 16129.822 (log (Z))9 - 2455.0256 (log (Z))10                                           (2'’) 
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For: ࢆ א ሾ૞, ૚૙૙ሿ: 
Log (Td/

W1/3) = + 29.084164    -199.77862 log (Z) + 528.58081 (log (Z))2  
                 - 624.83222 (log (Z))3 + 121.44870 (log (Z))4 + 589.66850  (log (Z))5 
                          - 819.77630  (log (Z))6 + 539.24999 (log (Z))7 - 200.19277 (log (Z))8  
                          + 40.372773 (log (Z))9 - 3.4540186 (log (Z))10                                         (2'’’) 
 
Table (1) shows the comparison between the pressure and time duration obtained by The TM5 
and the present equations [1] and [2’, 2”, 2’’’] for four random values of scaling distance. The 
table shows that the resulting errors are less than 5 %, this result indicates that the 
polynomials can be used to estimate the pressure and positive phase duration of the air blast 
and approximately the transient triangular load form as shown in figure (5), then the transient 
load can be applied on the model using ANSYS [3] or AUTODYN [4] program.  
 

3.2 Eigen Value Problem of the Honeycomb Panels 
A general theory of hexagonal honeycomb core sandwich panels subjected to blast loads is 
not available. In general, the blast loads caused by a high-explosive detonation are 
complicated. Therefore, for the sake of simplicity of design, the following assumptions are 
made: 
 

1. The panel is considered to be a simply hinged supported structure on all four edges 
when the blast waves interact with the panel. 

2. The blast load can be simulated as a uniformly distributed transient load. 

 
The dynamic behavior of the equivalent sandwich panels with solid panels has been 
investigated in this section. To convert the sandwich panels to an approximate equivalent 
solid plate, the relative densities of honeycomb was taken into account. Firstly the free 
vibration based on the frequencies and the modes shape of the plate has been discussed. figure 
(5) show a rectangular plate of length ( a), width (b), and thickness (h) subjected to an 
approximately uniform transient loads.  
 
The transverse displacement (lateral deflection) wሺx, y, tሻ of the natural surface of the plate in 
free vibration is governed by the differential equation, based on Kirchhoff theory [5]  
 

,ሺxݓସ׏ܦ y, tሻ ൅ ρ
∂ଶݓሺx, y, tሻ

∂tଶ ൌ 0                                                                                         ሺ3ሻ 

 
where: the biharmonic operator 
 

ସൌ׏  
∂ସ

∂xସ ൅ 2
∂ଶ

∂xଶ

∂ଶ

∂yଶ ൅
∂ସ

∂yସ                                                                                                   ሺ4ሻ 

 
 .The mass density (mass per unit area) :ߩ
 
And the bending stiffness or flexural rigidity of the plate 
 

ܦ ൌ
ଷ݄ܧ

12ሺ1 െ ଶሻߴ
                                                                                                                        ሺ5ሻ 
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where: 
E: young’s modulus. 
 .Poisson’s ratio :ߴ
A fundamental issue in free vibration analysis of plates is to solve the differential equation (3) 
subject to appropriate boundary conditions. By separation of variables, the transverse 
displacement of a plate can be expressed as  
 
,ݔሺݓ ,ݕ ሻݐ ൌ ܹሺݔ, ሻݕ ݐሺ߱ݏ݋ܿ ൅   ሻ                                                                                        ሺ6ሻߠ
 
where: 
 
 .An arbitrary constant  :ߠ
W(x, y): Eigen function or mode shape. 
߱: Natural frequency or Eigen value. 
Substituting Eq. (6) into Eq. (3) yields the Eigen value problem of the plate 
 

ቆ
∂ସ

∂xସ ൅ 2
∂ଶ

∂xଶ

∂ଶ

∂yଶ ൅
∂ସ

∂yସቇ  Wሺx, yሻ െ
ρωଶ

D
Wሺx. yሻ ൌ 0                                                   ሺ7ሻ 

 
For simply supported plate along all edges, Navier, was assuming that the displacement as: 
 

ܹሺݔ, ሻݕ ൌ ܣ  sin
ݔߨ݉

ܽ
sin

ݕߨ݊
ܾ

                                                                                              ሺ8ሻ 

 
where: 
m and n: Are integers. 
A: Nonzero constant. 
 
The eq. (8) satisfies the following boundary conditions  
 
At edge x = 0 or x = a 
 

ݓ  ൌ 0      ,                
߲ଶݓ
ଶݔ߲ ൌ 0 

 
At edge y = 0 or y = b 
 

ݓ  ൌ 0      ,                
߲ଶݓ
ଶݕ߲ ൌ 0 

 
Substituting Eq. (8) into Eq. (7), yields the following characteristic equation 
 

ସߨ ቆ
݉ଶ

ܽଶ ൅  
݊ଶ

ܾଶቇ
ଶ

െ  
ଶ߱ߩ

ܦ
ൌ 0                                                                                                 ሺ9ሻ 

 
The roots of equation (9) are the natural frequencies of the plate, namely 
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߱௠௡ ൌ ଶߨ ቆ
݉ଶ

ܽଶ ൅  
݊ଶ

ܾଶቇ ඨ
ܦ
ߩ

  ,     ݉, ݊ ൌ 1,2, …                                                                ሺ10ሻ 

The mode shapes are given by equation (10), with m and n representing the number of half 
sine waves in the x and y directions, respectively. 
The equivalent mass per unit area for the sandwich panel with equal faces ܯ௘ will be in the 
form: 
 
௘ܯ ൌ ௣݄௘ߩ ൌ ௣൫2݄௙ߩ  ൅ .௖ߩ ݄௖൯                                                                                          ሺ11ሻ 
 
where: 
 .௣:  The density of the materialߩ 

 ݄௘:   The thickness of the equivalent plate 
 ݄௙:  The thickness of the sandwich plate face. 

 ݄௖:  The height of the sandwich core. 
 .௖:  The relative density of the sandwich coreߩ 
 
The relative density defined as the volume of material for one cell divided by the total volume 
of that cell. Then the relative densities of regular hexagonal honeycomb core [5]: 
 

௖ߩ ൌ
ݐ8

3ሺ√3݈ ൅ 2 ஼ܶሻ
                                                                                                                ሺ12ሻ 

 
And the relative densities of un regular hexagonal honeycomb core: 
 

௖ߩ ൌ
ݐ7

3ሺ√3݈ ൅ 2 ஼ܶሻ
                                                                                                               ሺ13ሻ 

 
As an example: assume the sandwich panel with un regular honeycomb core with dimensions: 
(b = 140 cm, a = 260 cm) and thickness equal to (1cm+18cm+1cm=20 cm) with wall 
thickness equal to Tc = 1mm, with the properties: 
 
E: young’s modulus = 2×1011 pa = 2039432 kg/cm2 = 2.039432E+10 kg/m2. 
 Poisson’s ratio = 0.3 :ߴ
݈: Wall core length = 0.11547 m. 
 .௣: The density of the material = 7850kg /m3ߩ
 
Then: 
 
Bending stiffness D = E*h3/(1- Ԃ2)/12 = 19910.6913 kg/m 
 

ρୡ ൌ
7t

3ሺ√3l ൅ 2TCሻ
 ൌ

7 ൈ 0.001

3ሺ√3 ൈ 0.11547 ൅ 0.001ሻ
ൌ  0.01161                            

hୣ ൌ  2h୤ ൅ ρୡ. hୡ ൌ 2 ൈ 0.01 ൅ 0.011161 ൈ 0.18 ൌ 0.02200898 m 
Mୣ ൌ  7850 ൈ ሺ0.02200898ሻ 
Mୣ ൌ  172.770493 kg/m2 
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Using MATLAB program [7] and the equations listed above, the natural frequencies and the 
mode shape of the equivalent plate can be computed. Table (2) displays the computed natural 
frequencies in rad/sec, Figure (6) shows the 3D first mode shape for the plate. Figure (7) show 
the first mode shape in x and y direction for two mode. Figure (8) shows the 3D second mode 
shape for the plate. Figure (9) shows the second mode shape in x and y direction for two 
modes. 
 

3.3. Forced Vibration of the Plate: 
Consider the plate shown in figure (5) subjected to a uniformly distributed dynamic load, 
pሺtሻ. The general expression for deflected shape may be taken as [8]: 
 

z ൌ  ෍  

∞

୨ୀଵ

෍  

∞

୧ୀଵ

A୨୧ sin
jπx
a

sin
iπy
b

                                                                                                      ሺ14ሻ 

 
where: 
 A୨୧: The modal ordinate at the center of the plate. 
 
Equation (14) obviously satisfies the boundary conditions: 
 
At edge x=0 or x=a 
 

z ൌ 0      ,                
∂ଶz
∂xଶ ൌ 0                                                                                                               ሺ15ሻ 

 
At edge y=0 or y=b 
 

z ൌ 0      ,                
∂ଶz
∂yଶ ൌ 0                                                                                                              ሺ16ሻ 

 
Each possible combination of integer values of j and i define a modal shape. In the following 
only the first mode will be considered, that is ( j = i  =1), but the method  of extension to 
higher modes will be apparent. Thus the shape function is: 
 

z ൌ  Aଵ sin
πx
a

sin
πy
b

                                                                                                                         ሺ17ሻ 

 
And using the Lagrange’s equation 
  
d
dt

ቆ
∂K

∂Aଵሶ
ቇ ൅

∂U
∂Aଵ

ൌ
∂Wୣ

∂Aଵ
                                                                                                                   ሺ18ሻ 

 
The modal equation of motion can be obtained. 
where: 
 
K: The kinetic energy. 
ܷ: The strain energy. ௘ܹ: The external work. 
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3.3.1 Kinetic energy of the plate: 
Since the kinetic energy of any element of the plate is given by  
 
ܭ݀ ൌ 1

2ൗ  (19)                                                                                               ݕ݀ ݔ݀ ሶଶݖ ݉
 
where m is the mass per unit area, The total kinetic energy obtained by integration over the 
plate area will be 
 

ܭ ൌ 1
2ൗ ݉ න  

ܾ

0
න  

௔

଴
 ቀ1ܣሶ sin

ݔߨ
ܽ

sin
ݕߨ
ܾ

ቁ
2

ݕ݀ ݔ݀ ൌ 1
8ൗ ሶܣ ݉ 1

2
 ܽ ܾ                                  ሺ20ሻ 

 
Therefore  
 
݀
ݐ݀

ቆ
ܭ߲

ଵሶܣ߲
ቇ ൌ 1

4ൗ ଵሷܣ ܾ ܽ ݉                                                                                                         ሺ21ሻ 

 
 

3.3.2 Strain energy of the plate:  
The total strain energy by conventional plate theory is  
 

U ൌ
D
2

න  
ୠ

଴
න  

ୟ

଴
൥ቆ

∂ଶz
∂xଶቇ

ଶ

൅ ቆ
∂ଶz
∂yଶቇ

ଶ

൅ 2Ԃ
∂ଶz
∂xଶ   

∂ଶz
∂yଶ ൅ 2ሺ1 െ Ԃሻ ቆ

∂ଶz
∂x ∂y

ቇ
ଶ

൩ dx dy    ሺ22ሻ 

 
Operating in equation (12) give: 
 
߲ଶݖ
ଶݔ߲ ൌ  െܣଵ

ଶߨ

ܽଶ sin
ݔߨ
ܽ

sin
ݕߨ
ܾ

                                                                                              ሺ23ሻ  

 
߲ଶݖ
ଶݕ߲ ൌ  െܣଵ

ଶߨ

ܾଶ sin
ݔߨ
ܽ

sin
ݕߨ
ܾ

                                                                                              ሺ24ሻ 

 
߲ଶݖ

ݕ߲ ݔ߲
ൌ  ൅ܣଵ

ଶߨ

ܽ ܾ
cos

ݔߨ
ܽ

cos
ݕߨ
ܾ

                                                                                        ሺ25ሻ 

 
By substituting these expressions and integrating, the strain energy will be  
 

ܷ ൌ
ܦ ܾ ସܽߨ

8
ଵܣ 

ଶ ൬
1

ܽଶ ൅
1

ܾଶ൰
ଶ

                                                                                            ሺ26ሻ 

 
 

3.3.2 External work by a uniformly distributed load: 
 

௘ܹ ൌ ሻݐሺ݌ න  
௕

଴
න ଵܣ sin

ݔߨ
ܽ

sin
ݕߨ
ܾ

ݕ݀ ݔ݀ 
௔

଴
                                                                      ሺ27ሻ 
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௘ܹ ൌ ሻ ൬ݐሺ݌
4 ܽ ܾ

ଶߨ ൰  ଵ                                                                                                           ሺ28ሻܣ 

 
3.3.3 Modal equation of motion: 

By substituting these expressions into the Lagrange equation (Eq.18) yields the modal 
equation of motion in the form: 
 

ଵሷܣ ൅ 
ܦ4ߨ
݉

  ቆ
1
ܽ2 ൅

1

ܾ2ቇ
2

1ܣ ൌ ሻ ቆݐሺ݌ 
16

  2ቇ                                                                       ሺ29ሻߨ݉

 
The parables of the second term is the same as the square natural frequency obtained in 
equation (8). By considering the numerical example mentioned in section (3.2) with the 
uniformly pressure time function as displayed in figure (10).  
(Pressure=1.158319 MPa =118115.7 kg/m2) 
 
ሻݐሺ݌ ൌ  118115.7 ݂ሺݐሻ                                                                                                         ሺ30ሻ 
 
Substitution the numerical values into the modal equation of motion provide:   
 

ଵሷܣ ൅ 
4ሺ19910.6913ሻߨ

172.770493
  ቆ

1

ሺ2.6ሻ2 ൅
1

ሺ1.4ሻ2ቇ
2

1ܣ ൌ ሻ ቆݐሺ݌ 
16

ሺ172.770493ሻ2ߨቇ        ሺ31ሻ 

 
ଵሷܣ ൅ 1ܣ4862.322  ൌ   ሻ                                                                                ሺ32ሻݐሺ݌ 0.009383
 
Or  
 
ଵሷܣ ൅ 1ܣ4862.322  ൌ 1108.2796131 ݂ሺݐሻ                                                                      ሺ33ሻ 
 
Therefore: the natural frequency of the first mode 
 

߱ଵ ൌ √4862.322 ൌ  (34)                                                          ܿ݁ݏ/݀ܽݎ 69.7304 
     
And natural period of vibration 
 

ଵܶ ൌ ଶగ

ఠభ
ൌ ଶగ

଺ଽ.଻ଷ଴ସ
ൌ  (35)                                                                         ܿ݁ݏ0.0901

 
This result it is the same as that obtained in section (3.1) 
The modal static deflection A୬ୱ୲is obtained as:  
 

ଵ௦௧ܣ ൌ  
1108.2796131 

4862.322
ൌ 0.228 ݉                                                                                 ሺ36ሻ 

 
By converting the DLF curve mentioned in TM5 into polynomial of order ten versus (X):  
The dynamic load factor DLF can be obtained by the following equation with X=log (Td/Tn), 
and  ሺTୢ /T୬ሻ א ሾ0.01 , 10ሿ 
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DLF ൌ  1.5548175 ൅0.93410619 X െ 0.97345425 Xଶ ൅ 0.19406748 Xଷ

൅ 1.0987185 Xସെ0.47307345 Xହ െ 0.8972641 X଺

൅ 0.053293176 X଻ ൅ 0.33868533 X଼ ൅ 0.11759425 Xଽ

൅ 0.010565044 Xଵ଴                                                                                  ሺ37ሻ 
 

Using equation (37) with 
௧೏

భ்
ൌ

଴.଴଴ଽଶ଼

଴.଴ଽ଴ଵ
ൌ 0.103

௬௜௘௟ௗ௦
ሱۛ ۛሮ  DLF ൌ 0.3198636                   ሺ38ሻ 

 
The maximum dynamic deflection at the center of the equivalent plate is therefore 
 

௠௔௫ݕ  ൌ  ሺܣଵሻ௠௔௫ ൌ ሻܨܮܦଵ௦௧ሺܣ ൌ 0.228 ൈ 0.3198636 ൌ 0.073 ݉                   ሺ39ሻ 
 
 

3.4 Calibration with FEM and Design Experimental Application (DOE): 
For verification purposes, three cases of simply supported solid panel were analyzed firstly 
with the mathematical equations listed above using APDL-DOE [9], and secondly with FEM 
[1] and the results were listed in table (3). The table shows that the results obtained using 
APDL-DOE and FEM is very satisfied with error less than 5%. This method easily predicted 
the maximum deflection response of the honeycomb panel by converting the honeycomb to 
solid plate. Table (4) shows the initial input value for (DOE). Table (5) shows the output 
values for DOE and FEM due to initial values. Figure (11) shows the test model of the 
hexagonal sandwich panel used in FEM. And Fgure (12) shows the response of the tested 
panel versus time. Figure (13) shows the 3D-Plot of response surface (relative density, 
pressure, deflection) obtained using DOE program. The figure show that the maximum 
displacement obtained at minimum relative density and maximum pressure. Figure (14) 
shows the 3D-Plot of response surface (relative density, dimension ratio, deflection). It can be 
noted that the increasing of relative density and dimension ratio causes decreasing in 
displacements. 
 
 

3.5 Scaling Dimensional of the Sandwich  
This section considers the techniques for creating suitably scaled models of the panel structure 
for assessment of response due to blast loading. 
 
Consider a specific example of a blast loaded panel idealized as an elastically supported 
lumped mass as shown in figure (15): 
 
By applying the Rayleigh’s method, the behavior might be assessed as the follows: 
 
Characteristic the response by maximum displacement,Y୫ୟ୶, this depends on : 
 
Panel mass M, spring stiffness K, peak applied loading P*, duration of loading Td. 
 
Thus the maximum displacement Y୫ୟ୶ occurred only one time through the positive duration 
Td or through the first mode of vibration: 
 

 ௠ܻ௔௫ ൌ ఊభכܲ ఉభܭఈభ ܯ ܣ
ௗܶ
ఋభ ൅ ఊమܶఋమכܲ ఉమܭఈమܯ ܤ ൅    ሺ40ሻ                                               ڮ

  
In dimensional terms: 
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 ௠ܻ௔௫              כܲ                    ܭ                ܯ                 ܶ 
ሾܮሿ       ൌ     ሾܯሿఈ      ሾିܶܯଶሿఉ      ሾିܶܮܯଶሿఊ        ሾܶሿఋ                                                      ሺ41ሻ 
 
So, equating dimensional powers  
 
׷ ܯ   0 ൌ ߙ  ൅ ߚ  ൅  ߛ 
׷  ܮ   1 ൌ  ߛ  
׷  ܶ   0 ൌ  െ2ߚ െ ߛ2 ൅  ሺ42ሻ                                                                                                   ߜ
 
4 unknowns but only 3 equations, therefore selectሺ αሻ to solve (   β  γ  δ) in terms ofሺ αሻ. 

Solving   
௬௜௘௟ௗ௦
ሱۛ ۛሮ 

 
ߛ  ൌ ߚ    ,1 ൌ  െߙ െ ߜ    ݀݊ܽ    1 ൌ െ2ߙ 
 
Thus, in its simplest form the original equation may be written 
 

௠ܻ௔௫ ൌ  ଵ  ܶିଶఈ                                                                                     ሺ43ሻିכܲ  ଵିఈିܭ  ఈܯ   ܣ
 
Group together parameters with exponent, (α) 
 

௠ܻ௔௫ ൌ  ൤  ܣ
ܯ

ଶ൨ܶܭ
ఈ

 ൤
כܲ 

ܭ
൨                                                                                                   ሺ44ሻ 

 
Buckingham’s theorem also indicates [N-n] = [5-3] =2 Π numbers. 
 
where: N is an independent parameters and n is primary quantities. 
 
So select ( α), so that (M) will only appear once in any Π numbers set. 
 
This may be written as Π numbers in the form  
 

௠ܻ௔௫ ܭ
כܲ  ൌ  ൤  ܣ

ܯ
ଶ൨ܶܭ

ఈ

 ൌ ݂ ൤
ܯ

ଶ൨ܶܭ                     െ െെ՜   ଵ              ሺ45ሻܭ ݀݁݉ܽ݊               

 
௠ܻ௔௫ ܭ
כܲ  ൌ  ൤  ܣ

ܯ
ଶ൨ܶܭ

ఈ

 ൌ ݂ ൤
ܯ

ଶ൨ܶܭ ൌ  ݂ ൤
ൈ ܽ݁ݎܣ ௘ܯ

ଶܶܭ ൨   െ െ՜  ଶ              ሺ46ሻܭ ݀݁݉ܽ݊ 

 
Figure (16) shows the design chart represents the relationship diagram for steel panel with 
area (A: m2) with out-of-plane maximum deflection response has been measured as a function 
of the relative density and time duration. The peak deflection is relatively to time duration and 
inversely proportioning to the relative density of the specimen. Figure (16) is shown to be in 
approachable quick chosen to the relative density of the panel which gives the designer with 
effortlessness the estimation of the initial design of the panel subjected to blast loads or for 
estimating the resistance of the prefabricated sandwich panels or for using to estimate the 
initial values for the optimization technique. 
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4. Conclusion 
 Converting the charts provided by TM5 into tenth order polynomials for the peak 

pressure and positive duration, provides an easy method to predict the transient blast 
loads resulting from detonating any spherical TNT charge at any distance. 

 

 The study shows that the results obtained using theoretical procedure based on (DOE) 
and FEM is very satisfactory (the error is less than 5%). using an equivalent solid plate 
to a honeycomb panel is an easy way to predicted the maximum response of the 
honeycomb panel.  

 

 Design chart obtained using the scaling dimensional of the sandwich panel easy to be 
in approachable quick chosen to the relative density of the panel which gives the 
designer with effortlessness the estimation of the initial design of the panel subjected 
to blast loads. And for estimating the resistance of the prefabricated sandwich panels 
or for using into estimating the initial values for the optimization technique. 
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Table 1   Comparison Between TM5 Code and Present Polynomials 
 

Z parameter TM5 
Present 

error % 
Polynomials 

2.715454 
P              [psi] 114.8112 114.8106 0.000523 

Td/W
1/3       [ms/lb1/3] 1.400213 1.399885 0.023430 

1 
P              [psi] 844.7594 844.7628 0.000402 

Td/W
1/3       [ms/lb1/3] 0.1734818 0.1736322 0.086620 

50 
P              [psi] 0.6528669 0.6528662 0.000107 

Td/W
1/3       [ms/lb1/3] 3.941886 3.943845 0.049697 

4 
P              [psi] 47.59982 47.59979 0.000063 

Td/W
1/3       [ms/lb1/3] 1.288972 1.288724 0.019240 



Paper: ASAT-13-MO-22
 
 

12/16 
 

 
 

Table 2   Natural Frequencies ૑ܖܕ of the Proposed Plate [rad/sec] 
 

n                   m 1 2 3 4 
1 69.7 231.9 502.2 880.6 
2 116.8 278.9 549.2 927.6 
3 195.1 357.3 627.6 1006 
4 304.8 467 737.3 1115.7 

 
 
 

Table 3   Response Comparison of Simply Supported Solid Panel in DOE and FEM 
 

case Pressure 
bar 

Relative 
Density 
kg/m2 

AREA 
M2 

Aspect 
 ratio 

Duration 
sec 

Deflection 
APDL-DOE

Deflection 
FEM 

Error 
% 

1 11.58319 170.69825 2.879831 1.5 0.00928 0.065 0.062 4.61 
2 11.58319 170.69825 2.6878423 1.4 0.00928 0.062 0.061 1.61 
3 11.58319 170.69825 1.92 1 0.00928 0.047 0.049 4.08 

 
 
 

Table 4   Initial Values for DOE 
 

Item value E: young’s modulus, [pa] 2×1011  
P0 [bar] 11.58319 ߴ: Poisson’s ratio 0.3 
Relative density [kg/m2] 188.83603 ݈: Wall core length, [m] 0.11547 
Area [m2] 3.2641016 density of the material, [kg /m3] 7850 
Dimension ratio 1.9147688 Wall core thickness, [m] 0.001 
Duration, [sec] 0.00928  Plate thickness, (top or bottom), [m] 0.01 
 
 
 

Table 5   Output Values for DOE and FEM Due to Initial Values 
 

Item value 
Max.displacement [m], using APDL 0.0531 meter 

Max.displacement [m], using FEM 
0.0532142 meter back plate 

0.0531908 meter front plate node 42587 
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H Central distance between front and 
back faces. 

T1 Back plate thickness (face1) 

H1 Sandwich panel construction depth T2 Front plate thickness (face2) 
hc  Hexagonal core depth tc Hexagonal core wall thickness 
S Cell hexagonal size q(t) dynamic load 

 
Fig. 1   Typical Hexagonal Honeycomb Core Sandwich Panel. 

 
 
 

 

 
 

Fig. 2   Typical Regular Hexagonal Honeycomb Core.  
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Fig. 3   Typical un Regular Hexagonal Honeycomb Core 
 
 
 
 

Fig. 4   Internal Energy Absorbed By Hexagonal Core & Panel.[1] 
 
 
 

a: short length td: Positive duration 
b: long length P(t) : dynamic load 
h: Plate thickness X,Y,Z: coordinate system 

 

Fig. 5   A Rectangular Plate in Transverse Vibration 
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Fig. 6   3D Plot for Mode Shape ࣓૚,૚ 

 
Fig. 7   Plots of the Mode Shape ૑૚,૚ in 

x and y 
 
 
 

 
Fig. 8   3D Plot for Mode Shape ࣓૚,૛ 

 
Fig. 9   Plots of the Mode Shape ૑૚,૛ in 

x and y 
 
 

 
Fig. 10   Pressure Time History For The 

Numerical Example. 

 
Fig. 11   3D View of the Test Model. 
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Fig. 12   Displacement Versus Time for 
Node (42587) Center of the Front Plate. 

Fig. 13   3D-Plot of  Response Surfaces   
( Relative Density, Pressure, Deflection) 

 
 

Fig. 14   3D-Plot of Response Surfaces 
(Relative Density, Dimension Ratio, 

Deflection). 

Fig. 15   Equivalent SDOF Model for the 
Panel 

 
  

 
Fig. 16   Non Dimensional Paragraph for k1 @ k2

 


