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Surrogate-Based Aerodynamic Design Optimization: Use of 
Surrogates in Aerodynamic Design Optimization 
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Abstract: The role of optimization in various practical applications has been increasing over 
the years. In the field of aerodynamics, design optimization is rapidly evolving in many ways. 
One of the latest developments in this field is the introduction of surrogates or metamodels. 
The use of surrogates has a number of advantages especially concerning the computation cost, 
memory and time budgets. The present paper aims to introduce the topic of surrogate-based 
optimization. An overview on the main aspects of surrogates and the associated terminology 
are discussed in detail. In addition, the paper provides a survey over the previous efforts 
contributing in this field. The paper is finalized with some general recommendations. 
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modeling,   
 
 
I. Introduction 
The application of optimization in the field of aerodynamics design is progressively 
increasing. Aerodynamic design optimization (ADO) is gaining an increasing interest 
motivated by the demands of handling sophisticated geometries, tackling more realistic flight 
conditions, and satisfying increasing design requirements (objectives). Since almost all 
modern aerodynamic design activities rely on numerical simulation computer codes (flow 
solvers), the use of ADO was strongly encouraged by the increasing capabilities of modern 
computers and the continuously improving numerical schemes, simulation, and optimization 
algorithms. 
 
Nevertheless, the direct coupling of numerical simulation codes with search algorithms shows 
a number of drawbacks. Surrogate models (also known as metamodels) are introduced as an 
alternative that can remedy much of these drawbacks. Surrogates replace the simulation codes  
in the sense that the search is directly coupled with them rather than the simulation codes.  
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This paper is devoted to the following: 
- illustrating the concept of surrogates, their types, and construction, and 
- surveying the related previous efforts in the field. 
 
The remainder of this paper is organized as follows: in the next section, the main elements of 
surrogate modeling are discussed. Next, the main types of surrogates are discussed and 
compared. A closely related topic which is the design of experiment (DoE) is then discussed. 
A survey over the efforts contributing in this field is presented near the end of the paper and 
the paper finalizes with the main conclusions and general recommendations. All abbreviations 
mentioned throughout the paper are listed in the appendix. 
 
 
II. Use of Surrogate Models in Aerodynamic Design Optimization 
In aerodynamic optimization problems, the flow fields are simulated using flow solvers based 
on computational fluid dynamics (CFD) techniques. These high-fidelity numerical simulation 
computer codes proved to be a reliable, efficient, flexible, and relatively cheap means of 
analysis and design especially compared with experimental methods. The main drawback of 
using numerical analysis codes is that they are computationally expensive, highly memory 
demanding, and time consuming. Despite the fact that most of the analysis codes already use 
simplified forms of the governing equations and the continuously increasing processing 
speeds and memory capacities of modern computers made the numerical analysis more 
manageable; the demand for more accurate real calculations and the search for more 
complicated designs arise as well.  
 
These drawbacks of analysis codes become more severe when they are utilized in the field of 
shape optimization since it requires rather more computations. The conventional optimization 
methods that use gradient-based techniques or even non-gradient search techniques require 
hundreds or thousands of analysis code implementation. Consequently, the cost of performing 
optimization for complex designs becomes rather expensive with the possibilities of multiple 
local optima. One way to minimize the time scale of such operations is the implementation of 
parallel computing, thus handling more one than design at a time. However, this way is not 
applicable with gradient-based optimization algorithms since they deal with one design at a 
time. Another problem related to using the optimization methods in direct conjunction with 
high fidelity analysis codes which is the occurrence of numerical noise.  
 
Typical sources of numerical noise include: 
- The discrete representation of continuous governing equations and physical quantities,  
- The numerical round-off errors, and 
- The incomplete iterative convergence of calculations. 
 
These errors can mislead the optimization algorithm or even cause local search methods to 
find fake optima. Another feature related to computer analysis codes is that a majority of them 
are originally designed as stand-alone modules and complications arise when trying to 
interfere their performance, in some cases the source codes are not accessible at all. 
Consequently, an increasing effort has been devoted to search for cheap alternatives of the 
high fidelity analysis codes in analysis, design, and optimization. One of these alternatives is 
the use of approximation models, metamodels, or surrogates.  
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The basic idea of the using the surrogates (approximation models) is to replace the high 
fidelity, expensive analysis code with a less expensive approximate model. The high-fidelity 
model is commonly represented by the functional relation 

( )xfy =              (1) 
 
where x  is the vector of design parameters (inputs) and y  is the output (objective value). On 
the other hand, a surrogate model is expressed as 
 

( ) ( )xαx ffy ≈= ,ˆˆ             (2) 
 
which is intended to be less computationally expensive than the high fidelity code. Here α  is 
a vector of undetermined parameters that must be evaluated prior to applying the surrogate.    
 
 

II.1. Classification of Surrogate Models 
Surrogates can be classified into two main categories according to their approximation 
strategy, namely, the black-box and physics-based approaches. In the black-box approach, the 
high fidelity analysis code is considered a stand-alone module that can not be modified; hence 
the name. Only the inputs and output(s) of this black box are of concern. Consequently, the 
approximation model uses a set of points to build a less-expensive model that "approximates" 
the real, more expensive inputs-output(s) relation.  
 
In contrast, the physics-based approach exploits to some extent the analysis code. It 
introduces modifications to simplify the governing equations either in their continuous or 
discrete forms and eventually, make them computationally less expensive. Obviously, this 
approach requires access and a good understanding of analysis code structure. In this study, 
we only focus on the black-box approach. 
 
Generally, black-box models use a set of n  selected design points, x , called the training set 
from the whole design space, Ω; the concept of this selection will be discussed later. The high 
fidelity code is then applied to each member of the training set to evaluate the respective 
outputs, y , possibly making use of parallel computation facilities. The unknown parameters 
α  are then estimated and the approximation model, ŷ , is eventually constructed. Hopefully, 
the surrogate manages to accommodate the training points and accurately represent the real 
input-output relation such that it can predict the response at new points. Fig. 1 illustrates how 
a surrogate replaces the high fidelity response at training points. 
 
The surrogate is then examined to test its accuracy generally using new points other than the 
training set. Finally, the surrogate is used in lieu of the high-fidelity code in design and 
optimization. The high fidelity model is overlooked and the subsequent search is made 
directly on the surrogate model. An additional step is required in surrogate-based 
optimization; the optimum design attained by the search technique must be validated using 
the high fidelity model. In some cases, the surrogate model accuracy is improved by 
augmenting the training set with the optimum; this can be repeated until no further 
improvement is achieved. The role of surrogates in aerodynamic design optimization can be 
visualized in Fig. 2. 
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Fig. 1. A Good Surrogate Incorporates the Response at all Training Points 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Basic Elements of (a) CFD-based and (b) CFD-surrogate-based ADO 
 
Despite that the computation cost of constructing the surrogate may be significant; this cost is 
incurred prior to the use of the surrogate in design and optimization. Consequently, the 
surrogate can be evaluated hundreds and thousands of times without significant computation 
cost. However, the mathematical operations involved in constructing and implementing some 
metamodels may become computationally expensive as the number of design parameters and 
design points increases that the relative superiority of using metamodels starts to diminish; 
which is known as the curse of dimensionality. Hence, a good selection of training points and 
a neat setup of the proper surrogate are crucial to yield a reliable substitute of the high fidelity 
flow solver.  
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The use of surrogate models has a number of appealing advantages over the direct use of 
analysis codes in design. These advantages include: 
- Less computation cost. 
- Smoothing out the numerical noise arising from numerical simulation. 
- No modification to the analysis code is needed. 
- Surrogate models give better "feeling" and understanding of the physical inputs-outputs 

relations. 
 
When used in design optimization, surrogates give additional benefits such as: 
- Smoothing out the noise arising from evaluating the objective and constraint functions. 
- Easy adaptation to parallel and distributed computations. 
- Separating the analysis code from the optimization algorithms. 
- Easy integration of various codes used in multidisciplinary optimization.  
 
Basically, the approximation methods that adopt the black-box approach can be classified 
according to two main criteria as follows: 
 
1- According to the nature of the unknown parameters, α ; surrogate models can be either 

parametric or nonparametric.  
 

- Parametric models use the initial training set to estimate the unknown parameters α ; 
once they are known, the training set are no longer used in making predictions at new 
points and only the parameters, that are already known, decide the response at the new 
points. Polynomial regression (PR) and multivariate adaptive regression splines (MARS) 
are examples of parametric methods.  
 
- Nonparametric models use the initial training set to estimate the unknown parameters 
α  and continue using the training set in predicting new design points. The response at the 
new points depends on both the parameters and all the training set points. Kriging (KG), 
artificial neural networks (ANN), radial basis functions (RBF), and support vector 
machines (SVM) are examples of nonparametric methods. 
 

2- According to the technique of building the surrogate model; surrogates can use either 
interpolation or regression techniques. It is worth explaining first the main differences 
between physical (real) and numerical (computer) experiments. 

 
Physical vs. numerical experiments: The major difference between physical and numerical 
experiments is the nature of error. The errors in a physical experiment are of a random nature; 
the values of errors change even if the same experiment is perfectly repeated. The error 
"noise" is assumed to be identically and independently distributed.  In contrast, errors in 
numerical experiments are of a deterministic nature; the values of errors will remain exactly 
the same whenever the same numerical experiment is repeated with the same inputs. 
  
- Regression models are primarily designed for physical experiments. Nevertheless, they 

are widely used with numerical experiments. In this type, a single function (usually 
polynomial) is designed to incorporate all the available points in the training set. An error 
term is added to the model to account for the independently and identically distributed 
random noise. Polynomial regression (PR), multivariate adaptive regression splines 
(MARS), artificial neural networks (ANN), and support vector machines (SVM) are 
regression models. 
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- Interpolation models are more appropriate for computer experiments. In this type, a 
simple base function (generally low order polynomials) interpolating the training set 
points is added to another function representing the local deviations at each point. The 
error noise is treated as a deterministic error that has fixed values at the respective design 
points. Kriging (KG), and radial basis functions (RBF) are interpolation models. Fig. 3 
summarizes the various classes of surrogate models 

 
 

 
Fig. 3. Classification of Surrogate Models 

 
 

II.2. Basic Steps of Surrogate Modeling 
Generally speaking, surrogate modeling is an iterative procedure that involves the main 
following steps: 
 
- Data generation, 
- Model-structure selection, 
- Parameter estimation, and 
- Model validation. 
 

II.2.1. Data Generation, Data Building Techniques 
The appropriate selection of the number and location of the training set points is crucial for 
designing a good surrogate model. In fact, the number of points in the training set increases 
with the accuracy needed in the model, the number of design parameters, and the degree of 
nonlinearity in the input-output functional relation. Data building is faced with two 
conflicting targets: 
 
- Increasing the model accuracy; by incorporating as large training set as possible. 
- Decreasing the computational cost of data generation by selecting as few training points as 

possible since all these points are evaluated by the expensive high-fidelity analysis code.  
 
Selection depends on the nature of experiment (physical or numerical), geometry of design 
space (regular or irregular), and target of surrogate modeling (analysis, design, or 
optimization). Nevertheless, the selection techniques can be classified according to two 
criteria: 
 
1- According to location of selected points: Points can either have a random, classical, or 

space-filling fashion. Sample selection is explained in more detail later. 
 
2- According to the building strategy: training set can be generated once (one-shot) or 

sequentially (stage-wise). 
 
 

Surrogate models 

Black-box based Physics based 

Nonparametric

Parametric Regression 

Interpolatio
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- In the one-shot strategy, all point in the training set are selected and evaluated by the 
high-fidelity code at the beginning of the surrogate construction process; no points are 
added during this iterative process. It is a relatively easy technique but it is less flexible 
and can be very computationally expensive in designing the surrogate model.  

 
- The stage-wise strategy continuously adds new points to the training set during the 
iterative process of surrogate design. It involves more complicated steps but it gives more 
flexibility and continuously incorporates the nonlinearity in input-output relation.  

 
Fig. 4 summarizes the various strategies in data generation 
 

 
Fig. 4. Classification of Data Generation Techniques 

 
 
II.2.2. Model Structure Selection 

Once the training points are selected and evaluated by the computationally expensive high-
fidelity analysis code, they are manipulated to construct the less expensive surrogate model. 
As stated earlier, the model can be parametric or nonparametric, regression or interpolation.  
Parametric models are relatively easier to implement whereas nonparametric models have 
superior utility when applied to cases with complicated input-output relations. 
 
Regression models are relatively easier to develop and implement. On the other hand, the 
computation cost increases when dealing with more complicated input-output relations. This 
is because more points must be added to the training set and higher order polynomials must be 
used with possible instabilities and false optima. Interpolation models are more appropriate 
for computer experiments. Interpolation models are relatively more complicated in 
construction and implementation but they are more flexible and cope better with complicated 
input-output relations. 
 
 

II.2.3. Parameter Estimation 
After selecting the surrogate model that is believed to accurately simulates and input-output 
relation, the undetermined parameters, α , must be estimated. The concept of estimation is 
known as the "maximum likelihood" and is applied by minimizing a suitable error function. In 
its simplest form, assuming Gaussian error, the maximum likelihood reduces to the least 
square error function. There are many variants for the error function minimization.  
 
 

II.2.4. Model Validation 
After fully building the surrogate model, a check for its suitability for the case in concern 
must be made. Basic "goodness-of-fit" tests such as maximum error, root mean square error, 
and sum of errors are the typical diagnostic checks. 
 
 
 
 

Data generation 
One-shot 

Stage-wise  
Space-filling 

Classical

Random  



Paper: ASAT-13-AE-14
 
 

 8/26 

II.3. Use of Surrogate Models in Design Optimization 
The strategies of incorporating surrogates within optimization methodologies are often 
referred to approximation model management frameworks (AMMF), model management 
frameworks (MMF), or surrogate management frameworks (SMF). These strategies vary 
depending on the surrogate type, optimization algorithm, and target of optimization. Their 
main strategies are: trust-region, space mapping, the use of global surrogate models, and the 
use of surrogates with evolutionary algorithms. They are briefly explained below. 
 
 

Trust Region Methods 
In this strategy, gradient-based optimizers such as steepest descent are applied to the surrogate 
function. The surrogate gradient is evaluated and the step size (also called the move limit) is 
chosen to ensure improvements in the surrogate response. Implementation of this technique 
requires gradient information from the high fidelity analysis and internal optimization to 
evaluate the move limit. It can be used for local optimization and design improvement 
purposes. 
 
 

Space Mapping 
The basic idea in this strategy is to use variable fidelity models. A low-fidelity (coarse) model 
is used to "map" the whole design space. Next, the model is optimized to locate the optimum 
points. A high-fidelity (fine) model is used to evaluate the response at the "promising" points 
and they are added to the data set. No gradient information is needed in this method but some 
complicated complications may require additional schemes and the method is suitable for 
local optimization. 
 
 

The Use of Global Models 
In this technique, an initial set of design points is created and the high-fidelity model is used 
to evaluate the response at each point. Then, the surrogate model is constructed and the 
promising points are located. The response at these specific points is evaluated by the high-
fidelity model and the points are added to the dataset. The process continues until the 
convergence criteria are satisfied. This basic key point in this method is the proper 
management of the design space sampling. Basically, the initial set must be space-filling to 
guarantee a surrogate that accurately simulates the input-output relation. On the other hand, it 
is demanded by the optimization algorithm to place more points near the promising points and 
regions with high curvature. Balance should be made between the two conflicting targets. 
Nevertheless, this conflict can be met using some techniques such as the expected 
improvement (EI) which aims to locate the new points based on some optimization criterion.  
 
 

The Use of Surrogates with Evolutionary Algorithms 
Here, the surrogate model is used in conjunction with evolutionary algorithms (EAs) such as 
genetic algorithms. The initial design data set is selected and the high-fidelity model is used to 
evaluate the corresponding response. A surrogate model is constructed and used to evaluate 
the response (fitness). The standard EA operators are applied to generate new population and 
the data set is updated. The process continues until satisfaction criteria are met.  
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III. Main Types of Surrogate Models 
In the literature, we find a variety of surrogates. However, the following metamodels are 
found to be the main models used in design and optimization applications. 
 
 

III.1. Polynomial Regression (PR) 
Polynomial regression is a parametric regression metamodel; also known as response surface 
model, RSM. It was originally tailored for physical experiments where the output is 
characterized by random errors [1]. In this method, the points in the training set are fit by a 
polynomial plus an error.  
 

ε+= yŷ              (3) 
 
where ε  represents the random error which is assumed to be normally distributed with zero 
mean and variance 2σ . The approximation polynomial can have any order; however, it is 
typically of the first order (linear) or second order (quadratic) ones, 
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respectively, where oβ  is called the intercept, ji,ij ≠β  are the interaction coefficients, ix  
refers to one of the k  design parameters. The polynomial coefficients s'β (also known as the 
regression parameters) represent the undetermined parameters vectorα . In the quadratic case, 
the total number of the undetermined parameters is ( )( ) 221 ++= kkm . Parameters are 
estimated via minimizing the sum of squares of the deviations of predicted values, ( )xŷ , from 
the actual high-fidelity values, ( )xy , using the equation: 
 

[ ] yAAAβ
1 TT −

=               (6) 
 
where n  is the number of training set points and y is a column vector that contains the exact 
values of the response at all training point estimated by the high fidelity model. TA  is the 
transpose of matrix A which is an mn×  matrix of training set points expressed as:  
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The uncertainty in the computed parameters is evaluated using the t -statistic. The t -statistic 
for the j th parameter jβ  is expressed as:  
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where jC  is the j th diagonal element of the matrix ( ) 1
AA

−T  and 2σ̂  is the error variance 
defined as 
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yAβyy2σ̂             (9) 

 
A low value of t -statistic indicates that the corresponding parameter was not accurately 
estimated and the overall accuracy of the model can be improved by dropping such 
parameters [1]. The response at a new point x  in the design space, ( )xŷ , is directly evaluated 
by substituting for x  in the polynomial equation.   
 
 

III.2. Kriging (KG) 
Kriging, also knows as design and analysis of computer experiments DACE, is a 
nonparametric interpolation model based on Gaussian stochastic process models. In contrast 
to RSM, kriging was originally tailored for computer experiments characterized by 
deterministic errors [2]. Kriging imposes a global model (functional relation) that interpolates 
all design points plus "localized" functions representing the deviations (departure) from the 
global model at all points. The response is expressed in terms of the design parameters as 
 
( ) ( ) ( )xxx zfŷ +=           (10) 

 
where ( )xf  is a low-order polynomial that interpolates the design points. Typically, a 
constant value was found sufficient for modeling complex input-output relations [3]. Hence, 
the output can be viewed as a random field with mean β , 
 
( ) ( )xβx zy +=ˆ           (11) 

 
( )xz  is a Gaussian stochastic function that represents the realization of random process with 

zero mean, variance 2σ , and covariance given by 
 

( ) ),( jiZCov xxR2σ=          (12) 
 
where ),( ji xxR  is the correlation matrix which is an nn×  symmetric matrix with ones in the 
diagonal and n  is the number of training set. Other terms in the matrix are given by the 
spatial correlation function 
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where i  and j  denote two training points, l  refers to a design parameter, and k  is the 
number of design parameters. The spatial correlation function can be viewed as functions of 
the "weighted" distance between samples.  It can have many forms; typically a linear, a cubic, 
or an exponential (Gaussian) function 
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( ) )exp( pddscf ×−= θ          (16) 
 
The mean parameter, β , is evaluated by minimizing the sum of squares of error of the 
estimated error using the equation 
 

[ ] yRAARAβ 111 −−−= TT          (17) 
 
where A  is an mn×  matrix of training set points depending on the choice of the 
function ( )xf ; in the constant case, A  is a 1×n  vector of all ones. The parameters θ  (and 
p ) that ensure the "best fit" of the model to the training data are evaluated by maximizing the 

likelihood estimation MLE (or minimizing its negative). MLE can have a variety of forms: 
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where the maximum likelihood estimation of 2σ  is expressed as: 
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Generally, evaluating the MLE is a nonlinear unconstrained optimization sub-problem where 
2σ  and R  are functions of the unknown parameters. The response at a new point x  in the 

design space, ( )xŷ , is directly evaluated by applying the equation  
 
( ) ( )AβyRxrβx 1 −+= −)(ˆ Ty          (24) 

 
where )( xr  is the correlation vector between x  and all points in the training set. 
 
 

III.3. Radial Basis Functions (RBF) 
Radial basis functions method is a nonparametric regression modeling technique. It is 
designed to suit outputs with deterministic errors. The method uses linear combinations of 
radially symmetric functions based on the Euclidean distance from a given "centre" as the 
basis functions to approximate response functions. A radial basis function model can be 
expressed as 
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where i  refers to one of the n  training points which is the centre of the function K  and α  is 
the corresponding weight factor. The radial function K  can have many forms, typically, 
linear, cubic splines, Gaussian, multi-quadratic, and inverse multi-quadratic  
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respectively, whereθ  is called the "shape parameter" of the function. It controls the domain of 
influence of the respective function and is chosen according to the input-output relation. The 
set of weights α  represents the undetermined parameters in this method. They are evaluated 
by solving the algebraic system of equations 
 

yKα =            (31) 
 
where K  is an nn×  symmetric matrix formed by the training points such that  
 

( )|||| ji
ij KK xx −=           (32) 
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α  is an 1×n vector of weights, and y  is an 1×n vector of outputs at the training points. The 
response at a new point x  in the design space, ( )xŷ , is directly evaluated by applying the 
equation  
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III.4. Multiple Adaptive Regression Splines (MARS) 
Multiple adaptive regression splines method is a parametric regression method. In MARS, the 
range of variation of each input (design parameter) is divided into sub-intervals. The locations 
at the start and end of each sub-interval are termed "knots". MARS aims to approximate input-
output functional relations by adaptively selecting a set of basis functions (splines). This is 
done through a forward/backward iterative approach on the different intervals of the 
independent parameter ranges. The MARS surrogate model can be expressed as 
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where ma  is the undetermined regression parameter and M  is the total number of basis 
functions, mB , which can be expressed as  
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where m,ix  is the i -th input of the k of design parameters, m,it  is the knot location of the 
corresponding parameter, m,is  equals 1± , q  is the power of the function, and the +  
subscript indicates that the power function is truncated (assigned to zero outside the knots) as 
 

( )[ ] ( ) 00 ≤−=− mimimi
q

mimimi txstxs ,,,,,, ,       (36) 

 
That key parameter in this model is to specify the location of knots which is dictated by the 
type of input-output relation and shape of design space. The undermined regression 
parameters are evaluated by minimizing the sum of error squares.  
 
 

III.5. Artificial Neural Networks (ANN) 
Artificial neural network model is a nonparametric regression method. This method utilizes 
the functional concept of neurons in the brain. A neural network is composed of neurons 
which can be represented as nonlinear transfer functions of the inputs. A typical configuration 
of the ANN surrogate is the feed-forward neural network which can be expressed as: 
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where α , γ , and β  are the undetermined parameters, k is the number of input parameters, 
and φ is a transfer function, typically on the form  
 

( ) ( ) 1
1

−−+= aeaφ           (39) 
 

 
 

III.6. Models Validation 
In the literature, we find many techniques for testing the fitness of the surrogate; some of 
them are unique to certain types of surrogates. For example, regression error is used with PR 
[4], sample sensitivity and cross validation are used with kriging and RBF [3, 5]. 
Nevertheless, there are a number of universal techniques that are used to assess and compare 
the accuracy of the various surrogated. Of these techniques, the error variance of the training 
set, also called the process variance, is used to assess the fitness of the model with the training 
points [3, 6].  
 
However, the fitness of the surrogate is generally assessed using new points other than the 
training ones. The surrogate performance in predicting these untried points is tested using a 
number of methods mainly:  the root mean square, RMS [7, 8], the maximum absolute, MAE 
[7], and the 2R [7- 9] error measures. 
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where y  is the mean of the exact response at the p  untried points iy  and ŷ  is the 
corresponding surrogate response value. A smaller value of RMS and MAE and a higher value 
of 2R  indicate better surrogate accuracy. 
 
 

III.7. Comparison of the Various Surrogate Models 
Having discussed the basic metamodels, it is important at this point to hold some comparisons 
to get a feel of the pros and cons and the range of application of each. In fact, we can find 
some comparisons in the literatures. We can summarize all these efforts in Table 1. For the 
interested reader, we recommended [3, 10, 11] for more details. 



Paper: ASAT-13-AE-14
 
 

 15/26 

 
Table 1. Basic Features of the Main Surrogate Models  

 
     Features 
Models Advantages Disadvantages 

Polynomial 
Regression 

(PR) 

- well-established model, easy to 
implement, require fewer calls of the high 
fidelity model. 

- better performance with low order non-
linear functions 

- best suited for small scale applications 
with less than 10 design parameters. 

- due to the "smoothing" capabilities of 
polynomials, optimization converges 
relatively faster with noisy functions  

- a drawback is expected with highly 
non-linear and irregular 
performance problems. 

- higher order polynomials can be 
adopted. However, a large number 
of training points is needed. Using 
higher-order polynomials invokes 
instabilities and yield false optima. 

Kriging  
(KG) 

- well suited for numerical experiments 
with deterministic errors. 

- extremely flexible by virtue of a wide 
range of correlation functions. 

- even when a constant term is used for the 
global part of the model, the performance 
is comparable to a quadratic regression 
model. 

- has a higher performance when applied to 
low-order nonlinear and large scale 
problems over a wide range of samples 
size and design 

- model construction can be time 
consuming for large scale problems. 
It involves matrices operations, 
optimization sub-problems. Such 
costs may overweight the benefits. 

- if the training points are relatively 
"close" to each other, the correlation 
matrix can become singular. 

- Additional points are needed to 
assess the accuracy of the model. 

Radial 
Basis 

Functions 
(RBF) 

- yields good results for a wide range of 
sampling size and design. Produces good 
approximations to response functions 
with various patterns of both random and 
deterministic errors. 

- for high-order nonlinear and small scale 
problems, RBF models are relatively 
more accurate and robust  

the evaluation of the model 
parameters involves computational 
complications especially with large 
number of design parameters; such 
computations can be highly expensive 
regarding computation and memory. 
 

Multiple 
Adaptive 

Regression 
Splines 

(MARS) 

- relatively more accurate and flexible 
compared with the standard PR since the 
design space is split into sub-intervals 
rather than a single one. 

- computation cost of model construction is 
significantly reduced. 

 

- a relatively new technique, more 
assessment studies are required. 

- since MARS is based on dividing 
the design space, it fails for small 
training set size. Caution must be 
paid to selecting the knot locations 
depending on problem nature and 
designer experience. 

Artificial 
Neural 

Networks 
(ANN) 

yield better approximations compared to the 
classical response surface methods in cases 
if the nature of the problem is unknown, 
involves large number of design parameters, 
or not completely bounded design spaces 

- a relatively large number of 
parameters are involved; the 
evaluation of  these parameters 
requires high computation and 
memory requirements. 

- many sophisticated procedures for 
estimating the number of neurons, 
initialization, training, and 
regularization. 
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IV. Design of Experiments; Sampling Techniques 
Sampling, known also as design of experiment DoE, is a governing step in the construction of 
surrogates; a good sampling design will generally improve the performance of the surrogate 
model. In this section, the term "factors" will be used to refer to the design parameters and the 
term "levels" will refer to the finite number of possible value each factor can take. Next we 
explain how data can be prepared prior to sampling. Later we present a brief survey over the 
various sampling techniques.   
 
To prepare the design parameters for sampling, they should be on the form  
 

u
ii

l
i xxx ≤≤ , [ ]ki ,1∈          (43) 

 

where ix  is the i -th factor, and u  and l  denote the corresponding upper and lower bounds 
(given by the designer), respectively. Hence, the design space Ω  can be viewed as a 
hypercube of k  dimensions bounded by the factors. A bounded unconstrained optimization 
problem implies a regular design space (cube) whereas constraints impose irregularities to the 
design space. Next, to eliminate the effect of different scales, all bounds are scaled to a 
common range, typically, [ ]11,−  or [ ]10, . Consequently, all factors are normalized to lie 
within the range. In what follow, we will briefly describe specific features of most of the 
designs used in surrogate construction.  
 
 

IV.1. Random Designs 
Random designs such as Monte Carlo are the simplest and most straightforward DoE 
technique. The points are randomly selected inside the design space. A random generator 
algorithm is involved in the process. The major disadvantage of the random technique is that 
the generated points are not space-filling and there is no guarantee that these points will be 
concentrated where significant variations and curvature of the response function exist.  
 
 

IV.2. Classical Designs  
The classical techniques were primarily designed for physical experiments where random 
errors are expected. However, they are used in numerical experiments as well. The basic idea 
is to select points from the design space extremes. The classical technique is relatively simple 
and easily implemented. Full factorial design (FFD), partial factorial design (PFD), and face 
centered cubic (FCC) are examples of the classical technique. Such technique does not 
guarantee space-filling which is preferred for numerical experiments. In addition, the number 
of design points grows rapidly, sometimes exponentially, with factors and levels. They are 
also not suitable for irregular design spaces. 
 
 

IV.2.1. Full Factorial Design (FFD) 
It is the most basic classical design. The number of design points is dictated the number of 
levels and factors. The most common are the k2 full factorial in which there exist two levels 
for each factor, namely, at the lower and upper levels and the k3 full factorial in which there 
exists three levels for each factor; at the lower, upper, and mid levels, Fig. 5.a.  
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IV.2.2. Partial Factorial Design (PFD) 
It is used in lieu of full factorial for large experiments. Only a fraction of the full factorial is 
used. The common designs are 12 −k  and 13 −k . Consequently, it is relatively less expensive 
but rather less space-filling, too. 
 
 

IV.2.3. Central Composite Design (CCD) 
This design is a two-level (full or fractional) factorial design, augmented by a number of 
center points and two "star" points for each factor. The star points are positioned at a distance 

kdk +≤≤− 11  for the central point. A relatively better space-filling but higher cost 
characterize this design, Fig. 5.b. 
 
 

IV.2.4. D-optimal 
A D-optimal experimental design is a collection of sample sites in a design space for which 
the value of the determinant || T XX  over all possible locations is maximized. X  is the kn×  
design matrix which contains all design points, x , k  is the number of factors, and n  is the 
number of design points. A number of "candidate" design points are selected and an iterative 
numerical optimization method is employed to locate the best design points. D-optimal has 
many advantages over classical designs such as it can deal with irregular design spaces and 
being considerably less expensive. However, it is extremely expensive and time consuming 
especially for high-scale problems; more than 5 factors [12], Fig. 5.c. 
 
 

   
(a)    (b)    (c) 

Fig. 5 Graphical Representation of Classical Designs for a 3-factor, 3-level Problem  
(a) FFD, 27 points, (b) CCD, 15 points, and (c) D-optimal, 10 points 

 
 

IV.3. Space Filling Designs 
In the space-filling technique, points tend to cover uniformly the whole design space rather 
than focusing on the extremes only. Such technique is more suited for numerical experiments 
where deterministic errors are more likely to occur. Space filling designs are relatively more 
sophisticated in implementation. Orthogonal arrays (OA), Latin hypercube sampling (design) 
(LHS, LHD), and minimum discrepancy sequences adopt the space-filling technique. Figures 
6 and 7 illustrate typical design spaces for two and three factors for classical and space filling 
techniques, respectively. 
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Fig. 6 Typical Sampling of 2-factor, 9-point Space with  

(a) Classical and (b) Space-Filling Design 
 
 

  

(a) (b) 
Fig. 17 Typical Sampling of 3-factor, 10-point Space with (a) D-optimal and (b) LHD  

 
 

IV.3.1. Latin Hypercube Design, Sampling (LHD, LHS) 
The basic idea of the LHD is to divide each factor k  into p  levels of equal probability. 
Consequently, when a one-dimensional projection of the hypercube is takes, there will be a 
single sample point at each level. A Latin hypercube is a matrix of p  rows and k  columns. 
This design has the advantage of offering flexible sample sizes and well-distributed sampling. 
On the other hand, space-filling is not always guaranteed. Some modifications, e.g. optimal 
LHD, were introduced to ensure evenly distributed points. 
 
 

IV.3.2. Uniform Designs 
A uniform design is simply an LHD with more uniformity. Viewing the design space to be 
divided in "cells", the main difference between LHD and uniform design is that in uniform 
design, samples are situated at the center of each cell rather than randomly selected inside the 
cell. A uniform design adds uniformity to the design with no extra points (cost) added.  
 
 

IV.3.3. Orthogonal Array (OA) 
An orthogonal array is a matrix of p  rows and k  columns with every element being an 
integer between 0  and 1−q . An orthogonal array has a strength t  reflecting the number of 
combinations of l  levels appearing in any of the r  columns of the array. Orthogonal array 
can be viewed as an LHD with uniform spacing between points when projected to any factor. 
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IV.3.4. Minimum Discrepancy Sequences 
The discrepancy of a design matrix is a measure of non-uniformity of samples distribution. A 
minimum discrepancy sequence aims to construct a deterministic sequence of samples to 
finally produce a uniform space-filling distribution. They are suitable for models that are built 
incrementally. Typical examples of the methods are Hammersley, Sobol, Halton, and Faure 
sampling sequences.  
 
 
V. Survey over Surrogate-Based Optimization Work 
There has been an increasing interest in the topic of incorporating surrogate models with 
optimization algorithms. Etman [13] applied both quadratic regression and kriging surrogates 
in some basic structural design problems. He was not satisfied with using kriging approach in 
design optimization problems. He claimed that it involved impractically expensive 
computations. However, he highlighted the advantages of flexibility and accurate prediction 
related to kriging. In another field, Giunta [12] searched for the optimum wing design of a 
high speed civil transport (HSCT) aircraft for four separate objectives. Quadratic regression 
and Gaussian kriging surrogates were used. Two test cases were studied involving five and 
ten design parameters. The design space was constructed using full factorial and D-optimal 
designs. Again, it was argued that quadratic regression gave better results. Nevertheless, it 
was stated that more study for kriging was needed to accurately judge it. 
 
However, by time, researchers became less satisfied with the accuracy of polynomial 
surrogates. It was believed that polynomial regression surrogates are incapable of accurately 
replacing the exact function over the whole design space. Consequently, many attempts were 
made to resize the design space. Using this concept, the work done by Giunta was improved 
in [14]. A quadratic polynomial surrogate was used in a multidisciplinary optimization of the 
HSCT for structural and aerodynamic objectives. In this work, rather than studying the whole 
design space, only the portion that incorporates the feasible designs. This "reasonable design" 
approach was proved to yield a considerable improvement in the surrogate accuracy and 
optimization results. However, we think that such approach can only be efficient in cases 
where the range of reasonable designs is known or in design improvement applications. On 
the other hand, in cases where the best design is unknown, this approach may discard 
promising areas in the design space. 
 
Instead of focusing on a fixed portion of the design space, an iterative approach was used. In 
[15], a quasi-Newton optimizer was used to search over a quadratic polynomial surrogate for 
a subsonic flying wing of maximum lift. The design space, constructed using a central 
composite design (CCD), was sequentially resized around the optimum points until no further 
improvement in the optimum location was achieved. Similarly, [16], the RAE2822 transonic 
airfoil was optimized for lift-constrained minimum drag. SQP was used to search over a 
quadratic polynomial surrogate. LHD was used to construct the design space which size was 
continuously reduced around the optimal points. The process was repeated until convergence. 
The main drawback of such approach was highlighted; a new design set ought to be 
constructed after every "re-sizing" of the design space. To remedy this drawback, Wang [17] 
used an inherited LHD sampling where after each resizing, the new sample set inherited the 
samples already existed from previous iterates. The optimum design of an I-beam for 
minimum vertical deflection under concentrated loading was found faster and more accurate.   
 
Rather than modifying the design space, Papila and Haftka [18] discussed modeling errors 
associated with polynomial regression surrogates and the various ways of repairing them. 
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They argued that although regression surrogates smooth the small error noise, outliers (data 
with large errors) would deteriorate the accuracy of the surrogate. They suggested that the 
surrogate accuracy would be improved via the iteratively re-weighted least square fitting 
(IRLS) where low weights were assigned to data with large errors and the whole data were 
refitted. The process would continue until convergence.   
 
Researchers also recognized another major drawback of using quadratic regression surrogates 
is that they fail to model response functions with high degree of nonlinearity [19, 16, 20, 21]. 
Venter et al. [20] used cubic and quartic polynomials instead of the quadratic one. They used 
gradient-based optimizer to search the minimum weight of a plate with variable thickness 
under bending and buckling loads. Highly accurate surrogates and better optimization results 
were obtained. However, the use of higher order polynomials in rather nonlinear problems 
would invoke instabilities and false local optimum points [6]. 
 
There have been many efforts in using other surrogates to model highly nonlinear problems. 
For example, in [19] both quadratic regression and neural network surrogates were used in 
predicting the static longitudinal stability of a high speed civil aircraft. A design space of 13 
design parameters was constructed using a central composite fractional factorial design 
including 283 points. It was argued that in predicting problems with unknown, complicated 
nature, or expended ranges, quadratic surrogates failed to fit the problem and would be 
expensive if more design points were added to increase the accuracy. In addition, Fang et al. 
[21] conducted a mass-constrained optimization of automobiles structure design for maximum 
crash worthiness (resistance). A composite objective function of three weighted design 
objectives involving ten parameters was considered and searched using an SQP optimization 
technique. The design space was constructed with orthogonal arrays including 27 design 
points. Both quadratic regression and radial basis functions surrogates were used and the 
relative results were compared. It was argued that quadratic regression failed to model the 
highly nonlinear problems. Hu et al. [22], conducted two similar structure optimization 
problems. They used the quadratic regression metamodel with the low scale one including 
two design parameters and used the Gaussian kriging with the highly nonlinear large scale 
one with seven design parameters. They assessed the superiority of Kriging metamodel in 
nonlinear problems over the quadratic regression one. 
 
Researchers attempted to enhance the performance of kriging surrogates in many ways. Two 
approached were surveyed in the literature. The first approach is to use the functional analysis 
of variance (ANOVA) to specify the important design parameters. Considering only the 
parameters that influence the response function the most would minimize the problem size 
and eventually improve the surrogate performance.  
 
In [23] a multiobjective genetic algorithm (MOGA) was used to construct a Pareto set based 
on a quadratic polynomial surrogate to optimize a single-stage, a two-stage turbo-pump, and 
the NASA rotor67 transonic blade. An LHD was used to locate 121 sample points resembling 
up to 14 design parameters in the design space. Jeong et al. [24] coupled Gaussian kriging 
surrogate with genetic algorithm search technique to optimize the RAE2822 transonic airfoil 
shape and flap position for maximum lift-to-drag ratio. Ten design parameters were tested via 
the analysis of variance and only five of them were found of a reasonable influence on the 
objective function. A design space of five parameters including 50 design points was 
constructed using the orthogonal arrays. More points were added in regions of poor accuracy 
using the expected improvement (EI) technique.  
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In another application, MOGA was coupled with a Gaussian kriging surrogate in [25] to 
construct the Pareto set of non-dominated optimum designs of a subsonic engine nacelle. To 
minimize the problem size, the 40 design parameters were screened first using the analysis of 
variance (ANOVA) techniques to specify the most effective ones that possess higher weights. 
The kriging surrogate was iteratively improved via augmenting the design set with points 
obtained from the GA optimization and evaluated by the high fidelity flow solver. 
 
Another approach to improve the kriging surrogate performance is to augment the correlation 
matrix with first and second order derivatives of the correlation function at all points, thus 
introducing sensitivity information and improving the surrogate structure [3]. Leary et al. [26] 
conducted an optimization of a gas turbine nacelle inlet. They compared Gaussian kriging, 
gradient-enhanced Gaussian kriging, and radial basis functions surrogates. They used 
sequential τLP  sampling to construct the design space and BFGS quasi-Newton algorithm to 
search the optimum. They concluded that kriging surrogates are more accurate compared to 
RBF. They also highlighted the difficulty of constructing the kriging model and evaluating its 
parameters; further difficulties were shown when gradient data were introduced. The use of 
gradient-enhanced kriging was given the term co-kriging and was studied in more detail 
recently in [27]. It was claimed that co-kriging would give better model fitness for highly 
dimensional phenomena and enable using less training points. Two methods of co-kriging, 
direct and indirect, were addressed. It was concluded generally that minor improvement was 
achieved compared to the increased cost and complications of building the models.  
 
In [28], the design of a hybrid single element rocket liquid engine injector was optimized for 
three different objectives. The Pareto set was constructed using MOGA based on a quadratic 
regression surrogate. The design involved four design parameters. Keane [29] searched the 
optimum NASA transonic airfoil for minimum drag. A Pareto set based on a Gaussian kriging 
surrogate was constructed using a non-dominated sorting genetic algorithm (NSGA-II). The 

τLP  sampling technique was used to construct the design space.  
 
In [30, 31], a multiobjective optimization was conducted to a three-element airfoil of a civil 
aircraft wing. Two objectives were involved, maximum lift at landing and near stall condition. 
A modified version of MOGA was used to locate the Pareto set. The initial training set 
included 30 points and the expected improvement (EI) of both objectives was applied to 
locate additional 60 points in a 6-design parameters LHD space. The work was extended in 
[32] to a three-dimensional wing and the sweep angle was added to the design parameters.  
By virtue of their advantages, surrogate models were integrated in multidisciplinary 
optimization schemes. Simpson et al. [6, 7, 8] conducted a multidisciplinary optimization of 
an aerospike rocket engine nozzle design. Two disciplines, aerodynamics and structure, and 
three objectives, maximum thrust, minimum weight, and minimum gross lift-off weight, were 
involved. Both quadratic regression and Gaussian kriging were applied and the relative results 
were compared. The design space of three design parameters was constructed by orthogonal 
array sampling and included 25 design points. They pointed out that kriging was more 
appropriate for highly nonlinear problems and it gave better results.  
 
In [33], a multidisciplinary optimization framework based on surrogate models was 
implemented in two design problems; an aircraft concept design including 13 design 
parameters in three disciplines and an autonomous hovercraft design including 11 design 
parameters. A generalized reduced gradient (GRG) search method was used to search over a 
surrogate model built with artificial neural networks (ANN) approach. In [34], another 
collaborative multidisciplinary framework in the optimization of a tail-less unmanned aerial 



Paper: ASAT-13-AE-14
 
 

 22/26 

vehicle (UAV). Disciplines included aerodynamic performance, structural analysis, and 
overall performance. They were all based on quadratic regression surrogates with a trust 
region approach to refine the design space. They concluded that, due to lack of accuracy, 
quadratic surrogates could be used as a priori investigation and more accurate base functions 
ought to be used. 
 
Similarly, Won et al. [35], used a quadratic regression model in a design optimization of a 
high speed stand-off missile (HSSM) within a multidisciplinary optimization. The design 
space of ten design parameters including up to 129 points was constructed using a CCD 
technique and an SQP optimization scheme was used. They highlighted the errors associated 
with the regression model used. In [36], a multidisciplinary optimization based on a quadratic 
regression surrogate was conducted. The weight of a cantilevered composite beam under a 
parabolic distributed load was minimized in two disciplines; a stress-constrained and a 
deflection-constrained optimization of three design parameters. In the system level, results 
that satisfied both disciplines and minimized an objective function were investigated. A 
uniform LHD was used to construct the design space which was explored using a sequential 
quadratic programming (SQP) optimizer.  
 
In [37], a kriging-based MOGA was used in multidisciplinary optimization of a small jet 
aircraft to obtain the non-dominated wing designs. Disciplines included aerodynamics and 
structure, four objective functions, and 109 design parameters. The design space was 
constructed using LHD sampling and new points were added at locations of maximum 
expected improvement (EI). Recently, the weight of a hypersonic vehicle with air-breathing 
engine was minimized in [38] where a multi-disciplinary optimization based on Gaussian 
kriging was conducted. 
 
 
VI. Conclusions and General Recommendations 
The role of optimization in aerodynamic design and manufacturing is increasing over the 
years making use of the growing development of CFD codes and computation capabilities. 
The main obstacle facing the experts in this field is the high computation costs, memory and 
time demands associated with real problems. The introduction of much cheaper surrogates 
tends to remedy these drawbacks. There is a wide variety of surrogate models each has its 
own structure, accuracy, pros and cons, and area of application.  
 
In this paper, we surveyed the aspects of surrogate-based aerodynamic design optimization in 
particular. The associate jargon was explained and the related previous efforts were discussed. 
We can conclude that, the efficient use of surrogates in aerodynamic design optimization 
problems implies satisfying the following demands: 
 
- A good understanding of the problem in concern is fundamental. The physical nature of 

the related phenomena and the mathematical behavior should guide you in selecting the 
appropriate surrogate. 

- Choose the appropriate sampling strategy according to the available computation budget: 
is it better to use all your computational resources to construct the surrogate or leave some 
to further improvements? Reserve some resources for surrogate assessment. 

- Choose the surrogate model that suits the nature of the case investigated. You may need to 
test more than one model and choose the more suitable. 

- Assess the selected surrogate model and find the best ways to increase the accuracy: 
confining the design space, adding more training points, etc… You need to check the 
surrogate response at new points with that of the high fidelity model. 
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- Select the optimization algorithm that is best suited for your case: local/global search, 
single design/ population, etc…  

- Compare the response of design obtained by the surrogate with that of the high fidelity 
model. How accurate is the predicted value? Are you satisfied with the performance 
improvement? Do you need to search for better designs?    

 
 
Appendix: List of Abbreviations 
 

ADO aerodynamic design optimization 
AMMF approximation model management frameworks 
ANN artificial neural networks 
ANOVA analysis of variance 
BFGS Broyden-Fletcher-Goldfarg-Shanno, quasi-Newton search algorithm 
CFD computational fluid dynamics 
DFP Davidon-Fletcher-Powell, quasi-Newton search algorithm 
DoE design of experiments 
EA evolutionary algorithm 
EI expected improvement 
FCC face centered cubic 
FFD full factorial design 
GA genetic algorithm 
KG kriging 
LHD, LHS Latin hypercube design, sampling 
MAE maximum absolute error 
MARS multivariate adaptive regression splines 
MLE maximum likelihood estimation 
MMF model management frameworks 
MOGA multiobjective genetic algorithm 
MOOP multi-objective optimization 
NSGA nondominated sorting genetic algorithm 
NSGA-II fast nondominated sorting genetic algorithm 
OA orthogonal arrays 
PFD partial factorial design 
PR polynomial regression 
RBF radial basis functions 
RMS root mean square  
RSM response surface model 
SA simulated annealing 
SMF surrogate management frameworks 
SQP sequential quadratic programming 
SVM support vector machines 
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