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Abstract: Artificial Neural Networks (NN) is a well-known tool among artificial intelligence 
techniques that are able to reproduce arbitrary nonlinear relationships existing between input 
and output variables. Model based Predictive Control (MPC), or simply predictive control, is 
a family of control schemes that uses a model from the plant as a predictor of the future plant 
outputs a nd he nce opt imizes t he f uture c ontrol i nputs f or t he m inimum f uture e rrors a nd 
minimum control energy. Among this family Generalized Predictive control (GPC) is one of 
the most famous. 
 
In another part of this work [5],, a neural network representation is shown to be suitable for 
modeling a  s mall gas turbine engine (SR-30). In t he pr esent pa per, t his m odel i s us ed i n a  
model-based predictive c ontrol s cheme. T he r esults of  t his c ontroller a re c ompared w ith a  
classical P roportional-Integral-Derivative ( PID) c ontroller tune d offline w ith a g enetic 
optimization technique. Both are tested on the SR-30 turbojet engine model. 

PID cont roller cann ot cope with model changes i n the whole operating range of  the engine 
and therefore a  p redictive control scheme i s then proposed as a  solution to this problem. A 
neural m odel i s us ed a s a  pr edictor f or t he calculation of  G PC pa rameters. T he nonl inear 
system free response is obtained by recursive future predictions while the dynamic response 
matrix is obtained by instantaneous linearization of the input /output relation. 
 
The results illustrate the improvements in control performance that could be achieved with a 
neural predicative scheme compared to that of a classical PID controller. 
 
Keywords: Small tur bojet e ngines, artificial int elligence, neural n etworks, predictive 
controller, PID, GPC. 
 
 
Nomenclature 
ARX AutoRegressive with eXternal input 
F Vector of predicted free response 
G system impulse response matrix 
Gf Fuel flow rate (kg/s) 
Kd derivative gain 
Ki,  
Kp,  proportional gain, integral gain 
N Engine revolution speed,(rpm) 
N1 lower value of predicting horizon 
N2 Higher value of predicting horizon 
NN Neural networks 
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NNGPC Neural network generalized predictive controller 
Nu Control horizon 
PID Proportional, integral and derivative controller 
T Sampling time 
tr Rise time 
ts Settling time 
ŷ  Vector of predicted outputs for prediction horizon 
u  Vector of future control increments for the control horizon 
w  Vector of future references 
λ Weighting factor for control increments 
 
 
Introduction 
Model B ased P redictive C ontrol ( MBPC), or  s imply P redictive C ontrol, i s a  f amily o f 
algorithms with common strategy. MBPC appeared in the decade of 1970s and had got a good 
reputation in the chemical industries and process control [1]. 
 
The ma in strategy o f th e M BPC is  as f ollows, (Error! Reference source not found.): A 
model of t he c ontrolled s ystem i s us ed t o pr edict i ts be haviour i n t he f uture. A  know n 
required reference trajectory is then given for certain prediction horizon. Then an optimisation 
algorithm i s us ed t o find t he opt imum c ontrol s equence f or c ertain num ber of  steps in the 
future that minimise a certain cost function which includes future predicted errors and control 
increments. A receding horizon technique is then applied where only the first control signal of 
the optimum future control sequence is applied to the controlled system. 

 
Fig. 1   Prediction strategy 

 
Generalized Predictive Control (GPC) was developed by Clarke et al. in 1987 [2]. The GPC 
uses ideas from Generalized Minimum Variance (GMV) [3] and is perhaps one of  the most 
popular methods at the moment. 
 
Since the last three decades predictive control has shown to be successful in control industry. 
Generalized P redictive C ontrol ( GPC) w as one  of  t he m ost f amous l inear pr edictive 
algorithms. T he control l aw of  G PC c ontains t wo parameters t hat d escribe t he s ystem 
dynamics: s ystem f ree r esponse ( f) and system i mpulse r esponse m atrix (G). Often these 
parameters a re c alculated from the  di screte line ar mode l. For nonl inear s ystems, either a  
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nonlinear system model is instantaneously linearized or a nonlinear optimization is used. The 
validity of  t he l inear m odel i s t he s hortcoming of t he f irst one  and t he possibility of  non -
uniqueness of local minimum is that for the second. The neural network (NN) model is used 
as a predictor to calculate these parameters for GPC.  
 
The nonl inear s ystem f ree r esponse i s obt ained i nstantaneously w hile d ynamic r esponse i s 
linearized every b atch o f t ime. This m ethod [ 4] i s t ested on a b enchmark nonl inear model. 
Results a re c ompared with t hat of  ot her neural pr edictive t echniques f ound i n pr evious 
literature. Also, this method  in[4] is applied and validated on a realistic multivariable aircraft 
model. The s imulation results show that this method has some good advantages over others 
neural pr edictive t echniques. In one h and, the s ystem d ynamics pa rameters ar e cal culated 
more accurately directly from the nonlinear NN model. And in the other hand, the used linear 
GPC has a  cost function with onl y on e global m inimum. The method in [4], a s a  t rade-off 
between nonl inear ne ural pr edictive c ontrol ( NPC) a nd i nstantaneous l inearization 
approximate ne ural l inear pr edictive control ( APC), i s pr omising for control of  nonl inear 
systems. 
 
A. W atanabe e t a l [ 7] w orked on  P ID and fuzzy logic a lgorithm in order t o control SR-30 
turbojet e ngine. They ob tained t ransfer f unction of t he S R-30 b y using f requency response 
method. They tested and simulated both closed loop controller PID and fuzzy logic controller. 
They developed their model with MATLAB environment and tested it by NI LabVIEW. 
 
R. Andoga et al [8] discussed digital electronic control of a small turbojet engine. They stated 
that the main purpose of control of gas turbine was increasing its safety and efficiency. Their 
engine w as c ontrolled b y PIC 16 F84A m icrocontroller, which ma nipulating th e f uel f low 
valve. 
 
M.Lichtsinder et  al . [9] worked on de velopment of a simple real-time transient performance 
model f or AMT j et engine. T he fast m odel i s obt ained us ing t he Novel G eneralized 
Describing Function, proposed for investigation of nonlinear control systems. They presented 
the Novel Generalized Describing Function de finition and then di scusses t he application of  
this t echnique for t he development a  f ast t urbine engine s imulation suitable for control and 
real-time applications. 
 
In another part of this work [5], a neural networks representation is shown to be suitable for 
modeling a  s mall g as tu rbine e ngine ( SR-30). In t he pr esent w ork, t his model i s us ed i n a  
model-based pr edictive control s cheme. This mode l is  line arized at di fferent en gine d esign 
points, this linearized model is used in design of a classical PID controller. The PID controller 
is t uned of fline w ith a  genetic opt imization technique. B oth c ontrollers a re t ested on t he  
SR-30 t urbojet e ngine model a nd c omparison i s m ade be tween t he r esults f rom t hese 
controllers with the same input. 
 
 
Turbojet Engine Controller Design 
For a gas-turbine engine, particularly for a jet engine, the speed n control is one of the most 
important a spects ( even mos t impor tant tha n the en gine t emperature control) and it is 
currently realized by some specific hydro-mechanical or electro-mechanical controllers. 
 
The engine s peed is the  mos t impor tant ope rating pa rameter, especially f or the  mul ti-spool 
engines, because it represents the parameter which assures the most accurate co-relation with 
the engine thrust amount, as well as with the engine fuel consumption; meanwhile, the speed 
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n offers an image about the dynamic load of the engine mobile parts (compressor blades and 
disks, turbine blades and disks, shafts), as well as an indirect image about the thermal charge 
of the engine hot parts (combustor, turbine(s), exhaust nozzle). 
 
An aircraft engine operates at various f light regimes, that means at various f light speed and 
flight a ltitudes, which means tha t the  engine th rust va riation must f ollow the  a ircraft f light 
dynamics n ecessities, therefore the  e ngine s peed (and thrust) mus t b e strictly c ontrolled, 
because of its important operating role. 
 
The engine speed is one of the engine operating parameters, which is the easiest to measure, 
both for s teady s tate regimes and for d ynamical regimes. That fact represents an advantage 
and promotes the engine speed as the most important controlled engine parameter. 
 
In t his paper one  has s tudied an engine speed c ontroller with fuel f low rate a s a  r egulating 
parameter. The controller design was based on engine neural networks model. 
 
Discrete PID Based on Engine NN Model  
The discrete PID controller was used with the NN model of the SR-30 turbo jet engine. Now, 
the tuning of the PID is achieved by using genetic algorithm. The GA is carried out using a 
MATLAB bui lt-in r outine s o c alled S imulink R esponse O ptimization (SRO) T oolbox a s 
shown i n Fig. 2. T he S RO, a utomatically, formulates a n opt imization p roblem and calls a 
genetic algorithm and direct search toolbox, as an optimization routine to solve the problem. 
 

 
Fig. 2   Simulink Response Optimization (SRO) Toolbox 

 
A classical discrete PID control system can be described as shown. The input-output relation 
of the PID controller is expressed mathematically by equation (1)[13]. 
 

0

( ) ( 1)
( ) ( ) ( )
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p i d
t

e t e t
u t K e t TK e t K

T

 
     (1) 

where, u(t) is t he c ontrol s ignal, e(t) is t he e rror s ignal, a nd Kp, Ki, and Kd denotes t he 
proportional gain, integral gain and derivative gain respectively, T is the sampling time and N 
is the number of samples, u1(t) represents the output of the controller at the sampling point (t). 
 
If the sampling period is short enough, the approximate calculation by equation (1) can get an 
accurate result and the discrete control process is close to the continuous control process.  
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The digital PID Controller transfer function as a function of z has the following form [13] 
 

1
( )

1
d

p i

Kz z
C z K KT

z T z

                
  (2) 

where: Kp, Ki and Kd are the proportional, integral and derivative parameters of the controller 
respectively and ‘T’ t he s ampling t ime. The r equired step response characteristics of  t he 
engine are rise time (tr) = 0.872 s, settling time (ts) = 4 s and maximum overshoot (Mp) = 2%. 
 
PID controller i s t uned, based on t he l inearized ne ural m odel a t di fferent ope rating poi nts, 
with s tep c hange f rom 41050 t o 82000 r pm. The opt imal P ID p arameters a re s hown i n 
Table (1) and t he r esulted s tep r esponse s hown i n Error! Reference source not found. 
represents the engine response at step input from n=41050rpm to n= 82000 rpm. This input 
covers a wide range of engine speeds. 
 
In contrast, i f t he s ame controller i s us ed w ith an i nput of  s maller a mplitudes a s s hown i n 
Error! Reference source not found. and Error! Reference source not found., the response 
of the engine with the full range PID controller has a high over shoot response compared with 
the s cheduled P ID c ontroller. T his i s due  t o t he f act t hat t he P ID controller i s a  l inear 
controller. It i s t hus not  c apable of  de aling opt imally w ith a nonl inear constrained s ystem 
across its whole operating range. 
 
Gain-scheduling P ID co ntrollers ar e pr oposed and their pa rameters a re r ecalculated and 
shown in Table (1) using small-amplitude step inputs, to cover the engine operating ranges in 
which the data used for the estimation and validation are available. 
 
 

Table (1) PID parameters at different step changes based on 
linearized neural network models and ARX model 

 

Model Step changes 
(rpm) kp ki kd MSE 

Linearized neural 
models at certain 

design points 

41050-46050 22.3465 11.7934 2.6964 0.002554 
46050-51060 9.5792 8.7627 0.99334 0.00336 
51060-56050 6.1426 8.6645 1.2238 0.00371 
56050-61050 6.3598 9.2752 1.1889 0.003231 
61050-66060 8.3136 12.1784 0.99342 0.002649 
66060-71060 5.1877 8.9899 1.6088 0.003409 
71060-76100 7.479 13.4361 1.3721 0.00245 
76100-82000 4.6472 10.6291 0.70902 0.002762 

Linearized model at 
no=61050 rpm 41050-82000 7.4465 11.5974 1.2223 0.02024 
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Fig. 3   Engine response with step change from n=41050 to n=82000 rpm. 

(a) Engine step response, (b) PID controller input  
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Fig. 4   Engine response with step change from n=41050 to n=46050 

(a) Engine step response, (b) PID controller input  
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Fig. 5   Engine response with step change for n=71060 to n=76100 

(a) Engine step response (b) PID controller input  
 
Error! Reference source not found. represents the output f rom a  n eural model controlled 
with PID controller tuned at n=61050 rpm, the curve shows that the engine response became 
better as engine speed became near to the no= 61050 rpm and the error increased as the point 
became far away from the design point no. 
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Fig. 6   Engine response with different steps change from n=61050 to n=82000 

(a) Engine step response (b) PID controller input  
 
The s ystem nonl inearity is  well illus trated if an increasing amplitude square pul se s ignal is  
given to the system. Error! Reference source not found. shows the response of the engine in 
case of square pulse signal input with the PID controller. There is an over shoot in the engine 
response. 
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Fig. 7   The response of the engine in case of square pulse signal input with the PID 

controller  
 

Predictive controller design 
In order to implement the predictive controller strategy, the basic structure shown in Error! 
Reference source not found. is us ed. A  m odel i s us ed t o pr edict t he future pl ant out puts, 
based on pa st and current va lues and on t he proposed opt imal future control actions. These 
actions are calculated by the optimizer taking into account the cost function (where the future 
tracking error is considered) as well as the constraints.  
 

 
Fig. 8.  Basic structure of MPC 

 
The basic idea of GPC is to calculate a sequence of future control signals in such a way that it 
minimizes a  mul tistage cost f unction defined o ver a  p rediction hor izon. T he i ndex t o be  
optimized is t he ex pectation of a qua dratic function measuring t he di stance be tween the 
predicted s ystem out put a nd s ome p redicted r eference s equence ov er t he hor izon pl us a  
quadratic f unction m easuring t he control e ffort. G PC pr ovides a n e xplicit s olution ( in t he 
absence of  c onstraints), i t c an d eal with uns table a nd no m inimum pha se pl ants a nd 
incorporates t he c oncept of  c ontrol ho rizon a s w ell a s t he consideration of  w eighting of  
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control increments in the cost function. The general set of choices available for GPC leads to 
a greater variety of control objectives compared to other approaches, some of  which can be 
considered as subsets or limiting cases of GPC. 
 
The GPC algorithm consists of applying a control sequence that minimizes a multistage cost 
function  J: 

      
 

           
2

1

2 2

1

ˆ 1
uN N

j N j

J y k j w k j u k j  (3) 

Subject to:  1 0u k j     for 
2u

N j N   ,where N1 denotes the minimum prediction 
horizon, N2 the maximum prediction horizon and Nu the control horizon, λ is a w eight factor 
penalizing c hanges i n t he c ontrol i nput t o ob tain s mooth c ontrol i nput s ignals a nd d is the  
system time delay. 

 
Then the predictor equation becomes in matrix form 
 ˆ   y G u f  (4) 

where: 
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T
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Then J  could be written in matrix form as: 

    ˆ ˆ
T

J      Ty w y w u u   (5) 

where: 

   1 2

T

w k N w k N     w   

Minimize to get optimum u  we get: 

    
1

* T T


     u G G I G w f  (6) 

Taking the first element of the control sequence (as the receding horizon principle) 
    *u k   H w f  (7) 

where: 

  1
1 0 0 0

T
T T

      H G G I G  

J



Paper: ASAT-14-211-CT 
 
 

12 

For a linear time-invariant system the parameter H  is unchanged over the time. But the free 
response f should be calculated every time step. 
 
The incremental controller ensures zero offsets even with non-zero constant disturbance. The 
choices of  p arameters (

1 2
, ,  and 

u
N N N  ) de termine t he s tability and performance of  t he 

GPC controller. Some guidelines for selecting them exist in [6-10]. 

Free System Response ( f ) 
To get the free system response the prescribed NN is given a zero increment vector û then the 
output predicted vector Ŷ  will be the system free response f . 
 

Impulse system response (G ) 
The impulse response of the system is calculated using trained NN model with a linearization 
around the current operating point. To get the first column of the G matrix a small value for 

1k̂
u  is assumed as small va lue  , where 1 and the corresponding output p rediction i s 

obtained.  
ˆ 0 0 0    u   (8) 

Then the first column will be 

 1
1 ˆ( )


  G Y f   (9) 

It will be easy after that to form the special shape of G matrix then calculate H vector. 

Predictive controller scheme  
The proposed control s cheme Error! Reference source not found. consists of  a  nonl inear 
neural n etwork m odel i n t he f orm of  N N m odel a nd a l inear G PC c ontroller. T he n eural 
model i s t rained of f-line w ithin the c omplete r ange o f s ystem input . After pe rforming t he 
training, t he n etwork i s then us ed b y the G PC controller t o calculate t he f ree r esponse of  
nonlinear s ystem e very time  s tep. Every batch of time  the  impul se response ma trix is  
calculated through linearization. 
 
The control law Error! Reference source not found. is computed every time-step to get the 
next control increment. 

 

 
Fig. 9   Proposed Neural Network GPC Control Scheme 

 

Application to the SR-30 NN model 
The predictive controller parameters are 

1
1N  , 

2
4N  , 1

u
N  , 0.05   
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The s ystem nonl inearity is  well illus trated if an increasing am plitude square pul se s ignal i s 
given to the system. The Simulations results and Comparison with the PID controller with the 
same input will be illustrated below. 
 
Error! Reference source not found. shows the response of the engine in case of enhancing 
the full-step response f rom 41050 t o 82000 r pm. It i s c lear that the oscillation around f inal 
position eliminated and the rise and settling time are reduced 

 

 
Fig. 10   Engine response with step change from 41050 to 82000 rpm 

(a) engine step response, (b) predictive controller input  
 
Error! Reference source not found. shows the engine step response with random step input 
from 61050 to 46050 finally to 82000 rpm. It is clear that the engine response with predictive 
controller is improved where the oscillations are reduced and the settling time is reduced. 
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Fig. 11   Engine response with different steps change from n=61050 to n=82000 

 (a) engine step response, (b) predictive controller input  
 
The s ystem nonl inearly is w ell illus trated if a n increasing amplitude s quare pul se s ignal is  
given to the system. Error! Reference source not found. the response of the engine in case 
of square pulse signal input with the predictive controller. It is clear that there is no over shoot 
in the engine response. 
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Fig. 12   Engine response in case of square pulse signal input  

(a) engine step response, (b) predictive controller input  
 
 
Results of comparison between PID controller and predictive controller  
In t his s ection, a  comparison i s m ade b etween t he P ID c ontrollers with t he pr edictive 
controller w ith r espect t o t he s ame i nput s ignal as s hown i n Error! Reference source not 
found., 14 and 15. 
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Fig. 13   Comparison between PID and predictive controllers in case of in case of square 

pulse signal input (a) engine step response, (b) controller input  
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Fig. 14   Comparison between PID and predictive controllers in case of step input from 

41050 to 82000 rpm (a) engine step response, (b) controller input  
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Fig. 15   Comparison between PID and predictive controllers in case of different steps 

input from 61050 to 82000 rpm (a) engine step response, (b) controller input  
 
The Simulations results of the predictive controller and Comparison with the PID controller 
with the same input are illustrated above which show that the engine performance is improved 
with t he pr edictive controller, t he r esponse os cillation a nd ove rshoot i s s maller w ith t he 
predictive controller rather than the PID controller, the engine rise time is also smaller. It can 
be therefore concluded that the parameters in the gain-scheduling PID controller need to be 
changed with the operating range, but using predictive controller enables a global controller to 
be i mplemented a nd pr ovides t he opt imal c ontrol pe rformance a cross t he ope rating r ange. 
Predictive c ontroller pr ovides t he be st c ontrol p erformance against di sturbances a nd m odel 
uncertainties. 
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Conclusion 
A representative neural network SR-30 engine model was used to develop a  P ID controller 
and pr edictive controller. R esults f rom t he t wo c ontrollers w ere compared a nd p redictive 
controller found to be accurate for engine control during the full operating rang. 
The following results are derived from our analysis: 
1. PID controller was built based on the neural networks model of the SR-30 engine. 
2. Tuning of  t he P ID c ontroller w as pe rformed w ith of fline w ith a  g enetic opt imization 

technique. 
3. PID c ontroller c annot c ope w ith m odel c hanges i n t he w hole ope rating r ange of  t he 

engine. 
4. A ne ural m odel w as us ed as a pr edictor f or t he cal culation of G PC pa rameters. The 

nonlinear s ystem f ree r esponse w as obt ained b y r ecursive f uture pr edictions w hile t he 
dynamic response matrix was obtained by instantaneous linearization of the input /output 
relation.  

As a  conclusion, the r esults illus trate c learly the  improvements in system pe rformance tha t 
could be achi eved with a ne ural p redicative con troller com pared t o that of  a classical P ID 
controller. 
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