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Testing and Model Identification of a Turbojet Engine 
Using Neural Networks 

 
I. M. Atia* and A. M. Bayoumy †

A/D Analog to digital 
ARX AutoRegressive with eXternal input 
b A bias of a neuron unit 
Gf Fuel flow rate (kg/s) 
GSP Gas turbine simulation program 
I/O Input and output 
logsig The sigmoid function 
n Engine revolution speed,(rpm) 
NN Neural networks 

 
 
Abstract: Artificial Neural Networks (NN) are a well-known tool among artificial 
intelligence techniques that are able to reproduce arbitrary relationships existing between 
input and output variables of even highly non-linear systems. 
 
In this paper, a small turbojet engine SR-30 is tested on a minilab test-rig. Then linear ARX 
(AutoRegressive with eXternal input) structure and nonlinear neural network representations 
are used for modeling the dynamics of this small turbojet engine. This modeling is based on 
real engine data obtained from testing of the SR-30 engine. 
 
In order to build a feed forward NN model, one could identify the nature and characteristics of 
its dynamics and the order of the system to be modeled by using conventional linear system 
identification. This step is used to obtain a linear ARX model. Using the input/output 
relationship of this model, a neural model is trained for the SR-30 turbojet engine that 
represents the nonlinearity of the engine throughout its full operating range. Validation of this 
neural model is performed using another set of the experimental data. 
 
The work shows that neural model could capture system nonlinearity and represent the real 
engine dynamics better than the linear ARX model.  
 
 
Keywords: Small turbojet engines, artificial intelligence, neural networks, system 
identification, modeling and simulation, engine testing. 
 
 
Nomenclature 

 

                                                 
* Egyptian Armed Forces, Egypt, Hema1080@yahoo.com 
† Egyptian Armed Forces, Egypt, ambayoumy@gmail.com 

mailto:asat@mtc.edu.eg�
mailto:Hema1080@yahoo.com�
mailto:ambayoumy@gmail.com�


Paper: ASAT-14-169-CT 
 
 

2 

P Pressure 
p External input 
PID Proportional, integral and derivative controller 
PR Pressure ratio 
R Number of inputs 
tansig A hyperbolic tangent function 
TIT Turbine inlet temperature 
w Weight of neural networks connection 
 
 
Introduction 
Gas turbines have various application areas as prime movers in planes, in power plants for 
electricity generation and in naval vessels for propulsion [1, 2, and 3]. Gas turbine engine 
design and manufacturing process has its origins back to mid 1940’s. Because of their broad 
application fields, engineers tried to design more efficient, powerful, economic and reliable 
gas turbines. Nowadays, almost all aircrafts are powered by gas turbines, which have different 
configurations such as turbo-fan, turbo-prop, turbo-shaft, and turbo-jet. 
 
Increasing demands for gas turbines in many fields have caused different customer needs. 
Especially more efficient and reliable engines are the most important desirable features in 
industry. Although gas turbines have some disadvantages such as high fuel consumption rate, 
high technology production techniques, high technology materials usage, engineers are still 
working to increase their efficiency. Gas turbines are very important power generator 
alternatives for today’s airplanes. For example, jet fighters utilize small gas turbines as a main 
engine starter and auxiliary power sources. Small gas turbines are generally composed of a 
single stage radial compressor, a diffuser, a combustion chamber, a single stage axial turbine 
and a nozzle. These different structures are combined by complicated aero-thermodynamic 
rules. 
 
Mathematical modeling, transient behavior analysis of a small gas turbine engine is the focus 
of this study. Transient intervals are the operating regions where the most critical conditions 
arise in gas turbine operations [4, 6, and 7]. 
 
For this purpose, dynamic modeling of gas turbine engine should be constructed and its 
responses to different operating conditions with different fuel inputs should be analyzed. 
Various aero-thermal and differential equations are used for transient analyses [2, 3, 4, 5, and 
6]. The resulting differential equations are non-linear in nature and can be solved 
simultaneously with aero-thermal equations. 
 
In [8] an extended least-squares algorithm with optimal smoothing was used by Norton, to 
identify time-varying transfer function models to represent large transient and non 
equilibrium effects and provide a more detail insight into the slow thermal dynamics of the 
engine. In order to identify a model capable of representing the engine at all operating points, 
Rodriguez [9] used a multi objective genetic programming approach on the same data and 
allocated weights to various objectives, to assess their significance in the structure selection of 
Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX) models of 
the engine. Chiras et al. [10, 11] used nonparametric data analysis in both time- and 
frequency-domains and an orthogonal estimation algorithm to estimate NARMAX models of 
the engine. A simple NARX model was identified which was able to represent both the small 
and large signal dynamics of the engine. 
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Neophytos Chiras et al. [12] developed a feed forward neural network model of a Spey gas 
turbine engine. This model was used to model the fuel flow to shaft speed relationship. The 
performance of the estimated model is validated against a range of small and large signal 
engine tests. It is shown that the performance of the estimated models is superior to that of the 
estimated linear models. 
 
In fact, the number of operations required in neural networks model is minimal with respect to 
the analytical model, whose non-linear set of thermodynamic equations usually requires an 
iterative algorithm to be solved. Another advantage of a NN is its intrinsic ability of 
adaptation to a given plant. While the analytical model has to be “tuned” to have its output 
represent accurately the behavior of the plant, a NN already adjusts its output implicitly 
during the training phase. However, the NN approach to the simulation of a real plant can 
only be considered for a stand-alone model if a large number of data related to the desired 
input and output variables is available. 
 
A. Watanabe et al. [13] worked on PID and fuzzy logic algorithm in order to control SR-30 
turbojet engine. They obtained transfer function of the SR-30 by using frequency response 
method. They tested and simulated both closed loop controller PID and fuzzy logic controller. 
They developed their model with MATLAB environment and tested it by NI LabVIEW. 
 
In their study, R. Andoga et al. [14] discussed digital electronic control of a small turbojet 
engine. They stated that main purpose of control of gas turbine was increasing its safety and 
efficiency. Their engine was controlled by PIC 16F84A microcontroller, which was 
manipulating the fuel flow valve. 
 
D. May et al. [15] make a simulation of the SR-30 engine using GSP software provided a 
model. The model was used to determine the healthy operation of the engine. The integration 
of a developed algorithm has enabled the system to be used for aerodynamic component 
monitoring, as well as, mechanical systems monitoring. 
 
O. Léonard et al. [16] make a modification to the SR-30 engine and the test bench. These 
modifications were led by a triple objective: the improvement and the enrichment of the 
measurement chain, the widening of the engine’s operational domain. Several performance 
models of the engine were developed to support data validation and engine condition 
diagnostic. Ecosimpro [17] was selected as the platform for the development of the engine 
model. 
 
M.Ghoreyshi et al. [18] presents the design procedure and application of a nested neural 
network for diagnostics of a small jet engine. Such a diagnostics technique is based on the 
performance analysis while the performance model was developed with TURBOMATCH, the 
Cranfield University's gas turbine simulation code. To validate this model, an outdoor test 
was conducted to run the small engine. Areas examined in this paper are performance 
validation of the engine, neural network design, training data generation, and networks 
training procedures. The assumptions, measured parameters selection and the results obtained 
are presented and discussed. The results obtained show the good prospects for the use of NNs 
for detection of existing faults, isolation of faults and quantification of fault levels. 
 
In this paper, a small turbojet engine SR-30 is tested on a minilab test-rig. Then linear ARX 
(AutoRegressive with eXternal input) structure and nonlinear neural network representations 
are used for modeling the dynamics of this small turbojet engine. This modeling is based on 
real engine data obtained from testing of the SR-30 engine. 
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In this paper a feed forward neural network is used to model the fuel flow to shaft speed 
relationship of a SR-30 turbojet engine. The performance of the estimated model is validated 
against a range of small and large signal engine tests. In order to build a feed forward NN 
model, one could identify the nature and characteristics of its dynamics and the order of the 
system to be modeled by using conventional linear system identification. This step is used to 
obtain a linear ARX model. Using the input/output relationship of this model, a neural model 
is trained for the SR-30 turbojet engine that represents the nonlinearity of the engine 
throughout its full operating range. Validation of this neural model is performed using another 
set of the experimental data. 
 
 
Neural Network Model 
Neural networks are so fashionable that even old types of models known by other names, 
have been converted to, or reinvented as neural networks. This makes it difficult to find a 
universal definition of what a neural network is and even impossible to cover all types of 
neural networks. A simple definition of neural networks can be formulated as in [28]: A 
system of simple processing elements, neurons that are connected into a network by a set of 
(synaptic) weights. The function of the network is determined by the structure of the network, 
the magnitude of the weights and the mode of operation of the processing elements. 
 
The basic neural network element is a neuron shown in Fig. 1. This is a processing element 
that takes a number of inputs, applies some weights and sums them up with a bias b, and feeds 
the result (E) to an activation function as shown in equation(1). The inputs to the neuron can 
be external inputs or outputs of proceeding neurons.  
 
E = ∑ wi ∗ pi + bR

i=1                        (1) 
 

 
 

Fig. 1   Neuron: y = f (Wp + b).[29] 
 
The activation function (f) can be any kind of singular valued function, linear (purelin) or 
nonlinear. The most popular nonlinear activation functions used in system identification are 
the sigmoid function (logsig) (2) and the hyperbolic tangent function (tansig). These functions 
are nonlinear thus they define the nature of the particular neural network. 
 

( )
1logsig( )

1 xx
e 


           (2) 

 
The net work consists usually of three layers: input layer, hidden layer and output layer. , each 
layer consists of number of neurons which are the computational atoms, and which are 
interconnected with each other using weighted connection [25]. Each neuron sums the 
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incoming signal weight products and a bias and passes the result through a nonlinear 
activation function as represented by the following equation(3). 
 

1
( ) logsig ( )

R

i i
i

y t w p t b
=

 
= + 

 
∑           (3) 

 
where y(t) is the output , pi(t) is multiple inputs, wi is a weight of connection, b is a bias of a 
neuron unit, t is the time and R is the number of inputs. 
The setup of a NN requires the choice of the number of layers, the number of neurons in each 
layer, the transfer function of each layer and the training algorithm [19]. Two phases are then 
required to make the NN become operative. The first one is the training (or learning) phase, in 
which the NN is taught to match a known set of corresponding input and output values. This 
allows the NN to “learn” the relationship existing between inputs and outputs.  
 
During the learning process, “learning” is achieved through modification of weights 
associated with each neural connection made by the training algorithm (also called “learning 
rule”). The training process aims, in general, at the minimization of the error between 
predicted and actual values. This phase is the most time consuming and it is critical for the 
success of the NN as a predictive model. The second phase is called generalization (or 
testing). Here, the NN is tested on another known set of corresponding input and output 
values different from the training set and the performance is evaluated [19, 20]. 
 
Cybenco [22] proved that a neural network with one hidden layer of sigmoid or hyperbolic 
tangent units and an output layer of linear units is capable of approximating any continuous 
function. The network is described by the magnitude of the weights and biases and should be 
determined by training the network on the estimation data. The estimation of the weights is 
usually a conventional estimation problem and several algorithms are available for this 
purpose. 
 
Neural network are built from neurons [21, 23]. Which are the computational atoms, and 
which are interconnected with each other using weighted connections. The information is 
propagated from each neuron's output to a number of neuron's inputs. The neurons are 
arranged in layers, and if there are only connections from neurons to neurons in the next layer, 
the net work is called a feed forward neural net work. In case where there are feedback 
connections, the network is called a recurrent neural network 
 
Recurrent neural networks often suffer from instability and long training and recall times. 
These problems are not present in feed-forward neural network. Considering these advantages 
of feed-forward neural networks only this type of neural networks is used in this work, the 
dynamic behavior of the plant is modeled using external feedback lines and delayed values of 
the neural net work inputs. 
 
Feed forward neural networks are proved to have excellent function approximation 
capabilities [22-24] thus justifying the enormous amount of research dedicated to the subject 
in recent decades. Feed forward networks often have one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. Multiple layers of neurons with 
nonlinear transfer functions allow the network to learn nonlinear and linear relationships 
between input and output vectors.  
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In this paper a feed forward neural network with two hidden layer having a sigmoid function 
and output layer having a linear function as shown in Fig. 2 and using past inputs and outputs 
terms as inputs to model the SR-30 turbojet engine 
 

 
 

Fig. 2   Two-hidden layer feed forward neural network 
 
In order to build a feed forward NN model, one could identify the nature and characteristics of 
dynamics and the order of the system to be modeled by using conventional linear system 
identification. This step needs an experimental data which will be prepared in the next 
section. 
 
 
Testing of the SR-30 Turbojet Engine 
The NN approach was used to predict the operation of the gas turbine plant SR-30 turbojet 
engine. The SR-30 (Fig. 3) turbojet has been incorporated into many laboratories worldwide. 
The SR-30 engine is a turbojet engine with a single-stage radial-flow compressor with a 
maximum pressure ratio of, PR=3.4, a reverse-flow annular combustion chamber and a 
single-stage axial-flow turbine, and it operates obeying the Brayton thermodynamic cycle in 
the same fashion as large turbojet engines. The engine, as produced by Turbine Technologies, 
includes five pressure transducers, five thermocouples, a load-cell for thrust measurements, a 
custom motor winding for reading the engine RPM, and a fuel-flow-rate measurement system 
to monitor/measure the operating parameters of the engine. The engine generates 178 N of 
thrust at 87,000 rpm while ingesting m = 0.5 kg/s of air. The engine has a length of 27 cm, 
and the exit exhaust diameter of Dexit= 5.715 cm. 
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Fig. 3   SR-30 Test Rig 
Thirteen engine parameters are measured with the stock MiniLab configuration. The basic 
sensor package includes pressure, temperature, RPM and flow sensors (calibrated) measuring 
parameters common to Brayton Cycle type analysis. The sensors are routed to a central access 
panel and interfaced with data acquisition hardware and software from National Instruments. 
The sensor locations are shown in Fig. 4. The integrated sensor system (Mini-Lab) includes 
the following probes: 

• Compressor inlet static pressure (P1=P01). 
• Compressor stage exit stagnation pressure (P02). 
• Combustion chamber pressure (P3). 
• Turbine exit stagnation pressure (P04). 
• Thrust nozzle exit stagnation pressure (P05). 
• Compressor inlet static temperature (T1=T01). 
• Compressor stage exit stagnation temperature (T02) 
• Turbine stage inlet stagnation temperature (T03) 
• Turbine stage exit stagnation temperature (T04) 
• Thrust nozzle exit stagnation temperature (T05). 
• RPM (n) engine rotational speed derived from measuring the output voltage of a 

generator mounted on the compressor. 
• Additionally, the system includes a fuel flow (Gf) sensor and a digital thrust readout 

measuring real time thrust force based upon a strain gage thrust yoke system. 
 

 
 

Fig. 4   Sensor location [26] 
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The current system at the Egyptian Air forces Research Center includes a National 
Instruments NI PCI-6031E A/D board, which has a 16-bit resolution, 100 k Samples/s 
sampling rate, 64 analog input, 2 analog output, and 8 digital I/O ports. Signal connections to 
the A/D board are made using two enclosures, which are attached to the A/D board using 
cables. While one of these units (NI-SC-2345) houses the thermocouple input modules (NI-
SCC-TC02), the millivolt range input modules (NISCC- AI06), a connector block for digital 
output signals, and the analog output modules, the other unit (NI-CA-1000) houses a 
connector block (NI-CB- 68LPR) to connect other analog inputs. Each input module includes 
self-contained signal-conditioning units such as low pass filters and instrumentation 
amplifiers. 
 
While the thermocouple input modules are used to read the temperatures, the mill volt input 
range modules are used to read the load-cell output voltage and one of the pressure signals. 
Digital I/O lines are used to generate signals to turn on and off the relays. Relays (BASCO 
Company, ELK 924) are used to replace manual switches, which are used to start and to stop 
the ignition, the fuel flow and to turn on and off the valve for high-pressure air. More data 
about the engine can be found in [26]. 
 

Experiment Procedure 
The objective of this experiment is to measure (P01, T01, n, Gf, etc…) at different engine 
speeds (at steady state).  
 
Follow the “Pre-Start Checklist” and “Starting Procedure” to start the engine [27]. The turbine 
is inspected to insure proper rotation of the blades and to remove any debris that may get 
sucked into the SR-30 engine. The fluid levels are checked to insure adequate lubrication and 
fuel. The lab equipment is set up by connecting an air compressor and a computer to the Mini-
Lab. The air compressor is used to initiate rotation of the impeller in order to get the engine 
up to operating RPM range. The Virtual Bench program is used for data acquisition during a 
steady RPM of the engine. 
 
Steady state data are collected at different engine speeds ranging from 41,000 to 80,000 rpm. 
These data are used to build the engine model by using the neural networks. 
 
The following table summarizes the experimental data on the SR-30 turbojet engine. 
 

Table 1   Experiments Summary 
 

No. 
 

Sampling time 
ms 

Duration 
min 

Fuel 
type 

Max TIT 
°C 

Max speed 
rpm 

1 247 3.5 Diesel fuel 627 59,700 
2 247 3.7 Diesel fuel 643 70,000 
3 436 2.7 Jet A-1 746 76,400 
4 436 12 Jet A-1 775 80,000 
5 436 10.48 Jet A-1 706 71,200 

 
 
System Identification 
The first and most important step in model building is to identify the nature and 
characteristics of its dynamics and the order of the system to be modeled. This process is 
called System Identification. System Identification Toolbox software lets us to estimate linear 
and nonlinear mathematical models of dynamic systems from measured data.  
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The resulting model might be used to simulate the output of a system for a given input and 
analyze the system response, predict future system outputs based on previous inputs and 
outputs, or for control design. 
 
To identify a system, the following steps should be followed: 

• Data Collection 
• Model Generation 
• Minimization of errors 

 

Model generation is a multi-step process, as shown in Fig. 6. It is an iterative technique, and 
these steps are repeated until we get the final model, a sufficiently accurate representation of 
the physical system. 

 
(a) 

 

 
(b) 

 

Fig. 5   Experiment (3) data 
(a) fuel flow rate, (b) engine speed 
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Fig. 6   Flowchart of system identification 
 
The System Identification Toolbox product in Matlab program [29] supports all of these 
stages except data acquisition. This toolbox provides some support for experimental design by 
enabling you to generate input signals with different properties. This toolbox lets you estimate 
different model structures quickly; you should try as many different structures as possible to 
see which one produces the best results. You can also model data to validate and refine your 
experimental design. 
 
The identification problem in the time-domain for either linear or nonlinear modeling is to 
deduce relationships between past input-output data and future outputs. If a finite number of 
past inputs u (t) and outputs y (t) are collected into the vector  (t)(4). 
 

 )( ) ( 1)......... ( ) ( 1).... ( T
y ut y y y t n u t u t n     

  
    (4) 

 

Then the problem is to understand the relationship f between the next output y (t) and ϕ (t) 
To obtain this understanding a set of observed data is required which consists of the input u(t) 
and output y (t), from which the vector ϕ (t) can be built. The function (fid) can be linear or 
nonlinear function. In the case for which (fid) is a linear function several model structures are 
well documented such as ARX (Autoregressive with eXogenous inputs) model. This model is 
parametric and has the following structure 
 

1 1( ) ( 1) ... ( ) ( ) ... ( 1) ( )
a bn a k n by t a y t a y t n b u t n b u t n e t         

   
(5) 

 

where y (t) represents the output at time t, u (t) represents the input at time t, na is the number 
of poles, nb is the number of b parameters (equal to the number of zeros plus 1), nk is the 
number of samples before the input affects output of the system (called the delay or dead time 
of the model), and e(t) is the white-noise disturbance. 
 

The System Identification Toolbox product estimates the parameters 1..... na a and 1..... nb b  
using the input and output data from the estimation data set. In arxqs, na=nb=4, and nk is 
estimated from the step response. 
 
In our work, we use this tool to identify the system order which give the best performance. 
The best system is the ARX model with order [4 4 0] , na =4 and nb=4, is represented 
 

1 1( ) ( ) ( ) ( ) ( )A q y t B q u t e t    
1 1 2 3 4( ) 1 1.2 0.1724 0.307 0.3371A q q q q q          
1 1 2 3 4( ) 1746 946.8 1360 1265B q q q q q         



Paper: ASAT-14-169-CT 
 
 

11 

 

So the system input will be [ y(t),y(t-1),y(t-2),y(t-3),y(t-4),u(t),u(t-1)u(t-2),u(t-3)] 
 
The output from the ARX engine model was illustrated in the following Fig. 7 which shows 
the comparison between the ARX model with the measured data from experiment (4).The 
average value of the mean square error between the model output and the experimental data is 
equal to 0.03907. Linear ARX polynomial model can represent the engine with a fair 
accuracy. 
 

 

Fig. 7   Comparison between ARX model output and measured data 
 
 
Design of the Neural Network Topology 
Design of the appropriate neural network topology involves several important steps: 
 

1. Choosing the appropriate neurons’ transfer functions, 
2. Basic decision about the amount of neurons to be used in each layer, 
3. Selecting the amount of hidden layers. 

 

In this paper a feed forward neural network was built to model the SR-30 engine. Function 
approximation has been traditionally one of the most researched uses of neural networks. 
Typically, a two or three layer networks are sufficient to approximate complex functions with 
a finite number of discontinuities. In order to gain an insight as to how topology affects the 
outputs, tangent sigmoid, logarithmic-sigmoid and pure linear neuron transfer functions were 
selected and tested for further investigation. A network topology study was conducted in 
order to find the most appropriate architecture neural network to fit SR-30 engine speed 
parameter. Note that there are several hundred combinations of neurons and layers but for 
practical purposes we tested four candidate topologies shown in Table 2. The training input 
data sets for this part of the experiment are 1018 data points selected from the engine testing 
and then tested (or generalized) with 370 data points selected from the same testing data. 
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Training the Neural Network 
In order to simplify the analysis for development and training of the neural network models 
the MATLAB 
 

Neural Network Toolbox was employed. MATLAB is a general mathematical package 
produced by the Math works Company [6,7]. This tool is very efficient to handle matrices and 
was used throughout this research project to handle data manipulation tasks and neural 
network computations. 
 

Table. 2   Summary of Neural Network Training and Testing. 
 

No of hidden layer 2 2 2 2 
no of neurons in first hidden layer 10 10 10 8 

no of neurons in second hidden layer 10 5 1 6 
fn of the layer Logsig logsig logsig logsig 

Mean square error 0.05713 0.01881 0.1775 0.007316 
computation time  (s) 0.18499 0.128 0.185 0.124 
simulation time  (s) 143.444 143.444 143.444 143.444 

 
From the previous study we conclude the following result. The neural net work consists of 
two hidden layer with logsig function and the number of neurons in the first hidden layer is 8 
and second hidden layer is 6.the function of the output layer is a linear function as shown in 
Fig. 2.this is structure of the neural networks gives minimum mean square error with value of 
(0.007316). 
 

Selection of Training Algorithms 
Based on the analysis performed with several transfer functions in the neural network the 
Levenberg-Marquardt algorithm was found to be the most efficient and reliable means to be 
used for this study. The neural network employed in the SR-30 model is based on non-linear 
optimization techniques. The objective of the optimization is to train the network parameters 
weights (w) and biases (b) so they can be adjusted in an effort to optimize the performance of 
the network. Neural networks are taught to accommodate changes in the weights and biases to 
appropriately reconfigure the output. During each training operation the error between the 
output and target becomes smaller until a minimized error goal is achieved. These weighs and 
biases are somewhat equivalent to the regression constants found in many nonlinear 
multivariate estimation models and thus can be easily incorporated in any programming 
environment that supports array manipulation. The experimental data from experiment (4) is 
used for network training. The results of the neural net work training were shown in Fig. 8 
and Fig. 9). The average value of the mean square error Fig. 10 between the model output and 
the experimental data was equal to 0.007316 the model computation time was 0.124 s while 
the measured data running time was 443.412 s. 
 
 

Validation of the Neural Network Data 
The validation of the neural model is performed with a different input data to check the 
accuracy of the model. The experimental data from experiment (3) is used for network 
validation. The result of the validation process is shown in Figure (12). The average value of 
the mean square error between the model output and the experimental data is equal to 
0.01434. 
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Fig. 8   Input measured data 
 
 
 
 

 
Fig. 9   Comparison between neural output and measured data 
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Fig. 10   Mean square error result 

 
 
 
 

 
Fig. 11   Measured data used for model validation 
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Fig. 12   Validation data results 

 
 

 
Fig. 13   Mean square error result for validation data 

 
A comparison between the neural model and ARX linear model with the same data was 
shown in Fig. 14 and it is clear that the neural model can simulate the engine dynamics 
through its operating rang with good accuracy. 
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Fig. 14   Comparison between ARX and neural model with experimental data 

 
 
Conclusion 
A representative neural network SR-30 engine model was developed using data given from 
the testing of the engine. The neural network is trained to estimate the engine revolution speed 
(n) as a function of the fuel flow rate (Gf). Results from the neural model are compared to the 
actual performance provided in engine testing data with mean square error of value 
(0.007316). The results are adequate for the implementation in real-time simulation where the 
model computation time is 0.124 s while the measured data running time is 443.412 s . 
 
The following conclusions are derived from our analysis: 
 
1. The model developed in this research project purely addressed the SR-30 engine  
2. The information provided from the testing of the engine is a reliable source to study the 

performance of the SR-30 turbojet engine.  
3. The system identification results obtained in this paper indicate that linear ARX 

polynomial model can represent the engine with a fair accuracy 
4. Along with neural network technology, a neural network model has been developed. 

Results obtained from the neural network engine model show that a neural network with 
proper training is an accurate and efficient mean to calculate the engine speed. Neural 
networks can approximate with good accuracy the dynamics of the engine through its 
operating range. 

5. The comparison made with the results obtained from the linear ARX model and nonlinear 
neural model shows clearly the superiority of neural networks as a tool in nonlinear 
system modeling. 

6. The neural networks model cannot be build during the early phase of the engine design 
because the neural model needs a measured data from the engine to be modeled. 
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