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Abstract: A Laminated composite plate with embedded shape memory alloy wires are 

modeled and analyzed based on the modified higher-order shear deformation theory. The 

Hamilton’s principle in conjunction with Brinson’s constitutive model is used to obtain the 

three-dimensional governing equations. The Ritz solution technique is used to get the static 

response as well as the dynamic characteristics of the proposed plates. A simply-supported 

and cantilevered plates subjected to mechanical loads are used in the analysis with a prepared 

program using Mathematica langue. Parametric studies are conducted to demonstrate the 

effect of plate dimensions, fiber orientation angle and volume fraction of composite fibers and 

shape memory alloy wires, on the activated plate natural frequencies. The obtained results are 

compared to the available studies solved by different theories and found convenient. 
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1. Introduction 
The Shape memory alloy (SMA) has unique properties of one way shape memory effect 

(SME), two way shape memory effect, pseudoelasticity and high damping capacity. The SMA 

wires, strips, or sheets can be surface mounted or embedded in a structure core to form smart 

composite structure. Intensive researches have been made on SMA wires and bonded sheets 

working as actuators [1-8]. Ghomshei et al [1-2] proposed a nonlinear finite element model 

and experimental test for the time response of a shape memory alloy actuator composed of 

core material with SMA sheets or wires embedded in or bonded to the core part. The model is 

developed based on a higher order shear deformation theory and the von- Karman strain field 

equation. A one-dimensional constitutive equation with non-constant material functions and 

sinusoidal phase transformation kinetics is used to model the thermo-mechanical behavior of 

the SMA actuator. There are 2 types of martensite depending on the way that causes the 

transformation: 1st type is temperature induced martensite which caused by decreasing 

temperature only with free stress and this type doesn’t cause recovery stress as shown in 

Figure A1 number 3, while the 2nd type is stress induced martensite which caused by 

applying stress and this type generate recovery stress as shown in Figure A1 number 1-a and 

1-b. Balapgol et al [3-4] studied the deflection, natural frequency and time response of a 

laminated composite plate consists of  thin layer of SMA bonded to elastomer core using 

finite element method based on the first order shear deformation theory. 
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They concluded that the input power heat sink strength, thermal conductivity, and thickness 

of the elastomer layer play important roles for controlling the time response of the SMA 

laminated actuator. Gordaninejad et al [5] presented a two- dimensional finite element model 

based on classical lamination theory, energy  equations, and two- dimensional transition 

model of SMA layer for the response 

of thermally driven SMA / elastomer actuator. Wu et al [6]derived closed form solutions for 

the stress-strain-temperature response of thermally driven shape memory alloy composite 

actuator neglecting the heat conduction in axial direction. Rogers et al [7] used the Rayleigh-

Ritz method to perform a linear analysis for simply-supported plate embedded with SMA 

fibers. They studied the plate deflection, free vibration, buckling, and acoustic control. Lin et 

al [8] proposed a closed form solution for symmetric composite beams embedded with SMA 

fibers with various boundary conditions. The resultant actuation forces and normal stress 

distribution were calculated for the proposed beams. Several constitutive models have been 

proposed to predict the thermo-mechanical response of the SMA. One of the earliest models is 

the one-dimensional Tanaka’s model [9], which is macroscopic model that is derived from 

thermodynamic concepts and through experimental observations.  This means that the 

transformation doesn’t take action suddenly at one type, it takes time to gradually transform 

from full austenite phase 0   to full martensite phase 1  . The evolutionary equation is 

expressed using exponential function in the form of  ,T    Tanaka’s model is 

expressed its ability  to characterize most of the behaviors of the SMA. Liang and Rogers [10] 

improved Tanaka’s model by directly matching experimental results to get the evolutionary 

equation which is expressed using the cosine function. The constitutive equation of their 

model remains the same while parameters of the equations are determined through 

experiments. A major improvement of the Tanaka’s model was made by Brinson [11-12], 

who’s recognized that not all martensite that are converted to austenite will produce the 

recovery stress, but only the stress induced martensite (SIM) that is responsible for the shape 

memory effect. Consequently, the martensite fraction is divided into two parts: stress induced 

martensite and temperature induced martensite. This model also did not assume constant 

material functions in the constitutive relationship. Furthermore, Brinson’s model made some 

amendment that the constitutive equation will be valid at any temperature, and gave a better 

representation of the SMA behaviors compared to the Liang and Rogers’s model, and it is 

quite popular for engineering applications because it is simple, accurate and easy to implement 

into numerical applications.   In the present work, a mathematical formulation for composite 

plate with embedded SMA wires is deduced using the higher order shear deformation theory 

and SMA Brinson’s constitutive model. Hamilton’s principle is used to obtain the governing 

equations of motion. The effect on the SMA material constants, thermal stresses, and the 

recovery stress is considered for the proposed composite plate. The SMA wire layer is treated 

as an orthotropic layer similar to typical graphite/epoxy layers. The effective properties are 

determined using the rule of mixture, except that both the material properties and the recovery 

stress of the SMA wires are functions of the martensite phase fraction  . The SMA recovery 

stress values are expressed in the governing equation as external force[13], and computed 

using Brinson’s model as a function of the temperature applied to the SMA composite plates. 

Parametric studies are conducted to demonstrate the effect of plate dimensions, fiber 

orientation angle and volume fraction of composite fibers and shape memory alloy wires on 

the activated plate natural frequencies. The obtained results are compared to the available 

studies solved by different theories and found convenient. 
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Figure 1. SMA composite plates layers 

( :Nitinol-epoxy, : graphite/epoxy) 

 

2. SMA Brinson’s constitutive model 

 
The Brinson’s constitutive model assumes that the phase transformation depends only on 

temperature and stress [11] and volume fraction of martensite, ξS. A two equations namely the 

constitutive equation and the evolutionary equations are used to solve Brinson's model. Brinson 

divides the martensitic volume fraction into two parts: 

      S T     (1) 

where ξS corresponds to the fraction of the stress induced martensite (SIM) and ξT refers to 

the fraction of the temperature induced martensite (TIM), Thus: 

   ( ,  , ,  )S T T      (2) 

Making simple derivation and applying force condition, Brinson’s model for constant material 

parameter can be expressed as [12]: 

 0 0 0 0    (  )  (      )     (    )S SD T T            Ω
                             (3) 

 

where D is the Young Modulus, θ is the thermo-elastic tensor and Ω is the transformation 

tensor. The effect of the stress on the transition temperature must consider the conversion of 

TIM to SIM. This process of conversion starts when TIM is exposed to stress cr  s , and ends 

at a stress value of cr  f . The values of these critical stresses can be determined either by 

experiment, or theoretical using a model based on the potential energy necessary to 

overcome the chemical energy barrier for conversion of twins as done by Achenbach and 

Muller [14]. The stress temperature coefficients CA and CM in Brinson’s model are not 

assumed to be equal and both are determined by experiment. The effect of stress on the 

critical temperature is shown in Figure A1. Thus the evolution equations that represent S  

and T  as functions of stress and temperature Eq. (4) and given in the Appendix A [12]: 

  ( ,  , ,  )S S T T      (4) 

3. Displacement Field 

 
The displacement field equations of the modified higher order shear deformation theory 

(MHSDT) are represented by: 
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  (5) 

 

The displacement field Eq.(5) can be written in matrix form as follows: 

                       
         0 1 2 2 3 3U U z U z U z U     (6) 

where 
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 (7) 

4. Strain-Displacement Relationships 
The strain-displacement relationships can be expressed in a matrix form as follows: 

          0 1 2 2 3 3z z z         (8) 

where 

  
T

xx yy zz yz zx xy           (9) 
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 (10) 

5. Stress-strain Relationship  
The constitutive relationship for an embedded SMA layer is: 

           1 1 1 1

r

sQ T V        (11) 

where  1 ,  1 ,  Q  ,  1 , and  1

r   are the stress vector, strain vector, lamina 

stiffness matrix, thermal expansion coefficients vector, and SMA recovery stress vector, 

respectively with respect to principle material axes before transformation. The stiffness matrix 

of the SMA lamina is calculated using the SMA effective properties determined by the rule of 
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mixture [15-16] which are function of martensite fraction of SMA  . The vectors  1  and 

 1

r  are defined as follows: 

    1 1 2 3 0 0 0
T

     (12) 

    1 0 0 0 0 0
T

r

r   (13) 

The transformed stress-strain relations for an orthotropic lamina oriented are given by: 
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 (14) 

 

where ijQ  are the transformed stiffness coefficients of the [15-17],  i  and  r

i  are the 

vectors of thermal expansion coefficients and SMA recovery stress, respectively given in 

Appendix B [15]. 

6. Energy Formulation 

 
The governing equation of the smart plate is derived using Hamilton’s principle [15]:  

                                    
 

0
0

T

U V K dt      (15) 

where U is the virtual strain energy, V  is the virtual work done by the applied forces, and 

K  is the virtual kinetic energy of the whole structure system. 

The virtual strain energy U  of the plate with cross section area A and thickness h is given 

by [15]: 

                    

   2

2

h
T

h
A

U dz dxdy   


 
  

 
   (16) 

By substituting Eq.(14) in Eq.(16) for a number of layers k : 

           

        
11

i

i

k z T r

sii iA z
i

U Q T V dz dxdy     


          
   (17) 

where 
i

Q   ,  
i

 ,  r

i
  are the stiffness matrix, thermal expansion coefficients and SMA 

recovery stress vectors. iz , 1iz   are the lower and upper z-coordinates of layer number i  

measured from mid-plane, respectively. The terms in Eq.(17) are defined as: 

                                            m T rU U U U       (18) 

Where m T rU U U     are the mechanical, thermal, and recovery stress components of the 

strain energy given as follows: 
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 (19) 

Substituting Eq.(8) into Eq.(18) yields the virtual strain energy due to mechanical applied 

load is given as: 

        

        
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       
  

   
 

   (20) 

The virtual strain energy due to the thermal load is expressed as: 

 

          
1

0 1 2 2 3 3

1

i

i
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       

 
  (21) 

The virtual strain energy due to the recovery stress is represented by: 

   

          
1
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1
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 
   (22) 

Eq.(20) can be rewritten as: 
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where 
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And equation (21) can be rewritten as: 
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where 
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Also equation (22) can be rewritten as: 
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r
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where 
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The virtual work V done by the applied mechanical loads is given by[18]: 

        
      , , , , ,z zi i i

A
V p x y w x y t dxdy F w x y t     (29) 

where  ,zp x y  is the transverse distributed load and 
izF  is the transverse concentrated force 

at point i . The virtual kinetic energy K  can be written as [15]: 

                            
   

T

V
K U U dV   

    (30) 

where 

                          
   

T
U u v w   (31) 

For k layers Eq.(30) is represented as: 

                      

   
11

i

i

k z T

i
A z

i

K U U dz dxdy  


       
   (32) 

where i  is the density of layer number i . 

 

Substituting Eq.(6) into Eq.(32), one can obtain; 

               

               

               

               

0 0 0 1 0 2 0 3

0 1 2 3

1 0 1 1 1 2 1 3

1 2 3 4

2 0 2 1 2 2 2 3

2 3 4 5

3 0 3 1 3 2 3 3

3 4 5 6

T T T T

T T T T

T T T TA

T T T T

I U U I U U I U U I U U

I U U I U U I U U I U U
K dx

I U U I U U I U U I U U

I U U I U U I U U I U U

   

   


   

   

   
 
 
    

  
    
 
    
 

 dy (33) 

where 

                
   

1

2 3 4 5 6

0 1 2 3 4 5 6

1

, , , , , , 1, , , , , ,
i

i

k z

i
z

i

I I I I I I I z z z z z z dz


  (34) 

 

7. Ritz Solution Technique 

The unknown displacements 0 0 0, ,u v w , , ,x y z   , , ,x y z   ,x y  of  the given problem are 

approximated by (x-y) dependent functions that satisfy the geometric boundary conditions as 

follows: 

                
       , , , 1,2...11

T

i i ix y t a x y q t i    (35) 
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where  , ,i x y t  represents the unknown displacements 0 0 0, ,u v w , , ,x y z   , , ,x y z  

,x y  , while   ,ia x y  are column vectors of the Ritz approximation functions that satisfy 

the boundary conditions of the plate and   iq t are the column vector of the Ritz coefficients 

to be determined. The present study presents both simply supported and cantilevered 

boundary conditions. The used Ritz functions   ,ia x y  are listed in Appendices C and D, 

respectively. 

 

8. Equations of Motion 
 

The equations of motion are derived using the Ritz approximation technique for the eleven 

DOF. based on the displacement field equations. By inserting  0 ,  1 ,  2 , and  3 in 

terms of the generalized coordinates  iq  in equations (23), (25), and (27) yields to: 

                                
       

T

mU q t K q t   (36) 

where  K  is the laminate stiffness matrix. 

 
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       

  

                                

                                 


                                 

              1 3 2 3 3

A

T T T

dxdy

F H J    

 
 
 
 
 
 
 
                        

 (37) 

 

Equation (25)will be: 

                        
    

T

T TU q t F    (38) 

where  TF  is the thermal load vector. 

         
   0 1 2 3

T T T TT

T
A

F A B D E dxdy                                          (39) 

Equation (27) will be: 

                        
    

T

r rU q t F    (40) 

where  rF  is the recovery stress load vector. 

                
   0 1 2 3

T T T TT r r r r

r
A

F A B D E dxdy                                      (41) 

The virtual work V done by the applied forces can be written as:  

                 
      0

T
V q F F     (42) 

where  F  and  0F  is the distributed and concentrated load vectors, respectively given by, 
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    

    
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0 3
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A

TT

zi i i

F p x y a dxdy

F F a x y

 
 

 
 


 (43) 

The virtual kinetic energy W  is  expressed as follows: 

        
T

W q t M q t   (44) 

where  M  is the mass matrix of the laminate 
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 
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 
 
 
 
 
                                

 (45) 

By substituting equations (18), (36), (38), (40), (42), and (44) in Eq.(15) the whole structure 

equation of motion is represented by: 

                
             0 T rM q K q F F F F      

 (46) 

 K  is the stiffness matrix,  M  is the mass matrix,  F  and  0F are the distributed and 

concentrated load vectors,
 
 TF  and  rF are the thermal and recovery stress load vectors, 

respectively. The unknown  q  is the Ritz coefficients to be determined. 

 

9. Numerical examples and Discussion 
The static and dynamic responses of the proposed plate are presented [19-20]. Parametric 

studies are conducted to investigate the effect of plate’s dimensions, orientation and volume 

fraction of composite fibers and shape memory alloy wires on the activated plate natural 

frequencies. A simply supported and cantilever plates are used in these studies. A set of 

computer programs developed by Mathematica 7 is used in this study. 

     A multi-layered composite plate with embedded SMA wires is illustrated in Figure 2. The 

plate under consideration is made of 12 unidirectional composite material layers (i.e. 2 

SMA/epoxy and 10 graphite/epoxy layers). The length and the width of the plate are both 500 

mm, whereas the thickness h is 9 mm. The thickness of each SMA/epoxy layer is 0.5 mm, 

whereas the thickness of each graphite/ epoxy layer is 0.8 mm. The orientation angle of the 

SMA wires within the SMA/epoxy layers, and the graphite fibers within the graphite/epoxy 

layers of the plate are defined by the angles   and  , respectively.  It is also assumed that 

the SMA/epoxy layers are symmetrically placed as two outer layers with the plate mid-plane 

as shown in Figure 2. The relative volume fraction of the SMA wires and the graphite fibers 

within each layer of the plate is 0.5. The ply stacking sequence of the plate is [0°/(±45°)5 /0°]. 

The mechanical properties of the SMA wires and the graphite/epoxy composite are given in 

Table 1. A two different types of plate boundary conditions are investigated: cantilever plate 

(i.e. one edge of the plate clamped along the y-axis), and simply-supported plate (along its 

four edges).  The obtained results are presented as relative values (i.e. the relative 

fundamental natural frequency). They are defined as ratios of the fundamental natural 

frequency calculated when the SMA wires are activated to the values when they are not 

activated.  
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Figure 2. The geometry of the multilayered composite plate with SMA wires.   

 
Table 1. Mechanical properties of composite material and SMA wires [21]. 

 

Material Young’s modulus [GPa] Poisson’s ratio Density [kg/m
3
] 

Epoxy resin 3.43 0.35 1250.0 

Graphite fibers 275.6 0.20 1900.0 

SMA–martensite 26.3 0.30 
6448.1 

SMA–austenite 67.0 0.30 

 

The changes in the relative fundamental natural frequency of the plate are presented in Figure 

3 and Figure 4, as a function of the plate dimensions. It is assumed that the plate length a , 

and the width b , of the plate can vary in this case, whereas the thickness of the plate h
remains unchanged (changes in the dimensions of the plate obviously also result in changes in 

the plate mass). It can be seen that both the dimensions of the plate as well as the boundary 

condition type, have a great influence on the relative fundamental natural frequency of the 

plate. For the cantilever plate, the relative fundamental natural frequency of the plate 

increases due to the activation of the SMA wires towards a longer and narrower plate. The 

maximum relative fundamental natural frequency of the plate is, in this case, obtained for a 

beam-like structure, for which the SMA wires within the SMA/epoxy layers are lengthwise 

orientated. Contrary to this, the relative fundamental natural frequency of the simply-

supported plate, increases towards a wider and shorter plate. The maximum relative 

fundamental natural frequency is obtained for a beam-like structure for which the SMA wires 

within the SMA/epoxy layers are widthwise orientated. It is clear from, Figure 3 and Figure 4 

that the obtained results are very comparable with the published data obtained by Zak using 

the finite element technique with a mish size 8X8, [21]. It should be emphasized that the 

maximum changes in the relative fundamental natural frequency of the plate are observed in 

the case when the minimum number of constraints is imposed by the chosen boundary 

condition. Consequently, the maximum changes in the relative fundamental natural frequency 

are observed for the cantilever plate. 
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(a) Present model (b) Zak [21] 

 

Figure 3. Change in the relative fundamental frequency of a simply-supported plate as a function of its 

dimensions.  

   

  
(a) Present model (b) Zak [21] 

 

Figure 4. Change in the relative fundamental natural frequency of a cantilever plate as a function of its 

dimensions  

   

In Figure 5 and Figure 6 results for changes in the relative fundamental natural frequency of 

the plate are presented as a function of the orientation angle of the SMA wires within the 

SMA/epoxy layers, as well as the orientation angle of the graphite fibers within the graphite/ 

epoxy layers of the plate. The ply stacking sequence of the plate considered here can be 

defined as [α/(β/(β-90°)5/ α], where α denotes the orientation angle of the SMA wires within 

the SMA/epoxy layers, while β denotes the orientation angle of the graphite fibers within the 

graphite/epoxy layers. It is assumed that all other mechanical properties of the plate remain 

unchanged in this case.  It is seen from Figure 5 and Figure 6 that the relative fundamental 

natural frequency of the cantilever plate decreases rapidly with an increase in the orientation 

angle of the SMA wires within the SMA/epoxy layers of the plate from 0° to 90°. It appears 

that changes in this frequency of the plate are more affected by changes in the orientation of 

the SMA wires within the SMA/epoxy layers, than by changes in the orientation angle of the 

graphite fibers within the graphite/epoxy layers of the plate. The greatest performance of the 

plate is observed when the SMA wires are lengthwise orientated, which corresponds to the 

orientation angle of the SMA wires within the SMA/epoxy layers of 0°. For the cantilever 

plate boundary conditions the optimal orientation of the SMA wires within the SMA/epoxy 

layers for the greatest changes in the relative fundamental natural frequency of the plate is 0°, 

whereas the orientation of the graphite fibers within the graphite/epoxy layers is 45°. This 

corresponds to a ply stacking sequence of the plate of [0°/(±45°)5 /0°]. However, in the case 

of the simply-supported boundary condition the observed patterns are different as seen in 
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Figure 5. It is clear that the changes in the relative fundamental natural frequency of the plate 

are equally affected by both the changes in the orientation of the SMA wires within the 

SMA/epoxy layers, as well as by the changes in the orientation angle of the graphite fibers 

within the graphite/epoxy layers of the plate. For the simply-supported plate the optimal 

orientation of the SMA wires within the SMA/epoxy layers giving the greatest relative 

fundamental natural frequency of the plate is 45°, whereas the orientation of the graphite 

fibers within the graphite/epoxy layers are 0°/90° or 90°/0°. This corresponds to ply stacking 

sequences of the plate of [45°/(0°/90°)5/ 45°]. 

 
 

(a) Present model (b) Zak [21] 

Figure 5. Change in the relative fundamental natural frequency of a simply-supported plate as a function 

of the orientation angle of graphite fibers and SMA wires. 

   

 
 

(a) Present model (b) Zak [21] 

 

Figure 6. Change in the relative fundamental natural frequency of a cantilever plate as a function of the 

orientation angle of graphite fibers and SMA wires. 

It is clear from Figure 5 and Figure 6  (a) and (b), that the obtained results are comparable 

with the published data obtained by Zak using the finite element technique with a mish size 

8X8, [21]. 

The various mechanical properties of the composite material of the plate influence the plates 

relative fundamental natural frequency. The volume fraction of the SMA wires within the 

SMA/epoxy layers, as well as the volume fraction of the graphite fibers within the 

graphite/epoxy layers can also both vary. The influence of these changes on the relative 

frequency of the simply supported and the cantilever plate is investigated. It is shown in 

Figure 7 that the relative fundamental natural frequency of the plate increases with an increase 

in the volume fraction of the SMA wires, and with a decrease in the volume fraction of the 

graphite fibers. The maximum value of the relative fundamental natural frequency 

corresponds to the case when the outer layers of the plate are entirely made of the SMA 

material, whereas the inner layers are made of the epoxy resin. On the other hand when the 

volume fraction of the graphite fibers increases, the plate performance decreases rapidly, and 
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when the inner layers of the plate are entirely made of the graphite virtually no changes in the 

relative fundamental natural frequency of the plate are observed. 

 

  

(a) Simply-supported plate (b) Cantilever plate 

 

Figure 7. Change in the relative fundamental natural frequency as a function of the volume fraction of 

graphite fibers and SMA wires.   

 

In Figure 8 the location of the SMA/epoxy layers sz h within the plate has a great influence 

on the plate performance. The location of the SMA/epoxy layers (zs) within the plate can vary 

from the most extreme outer location to the central layers of the plate, and this corresponds to 

a ply stacking sequence change from [0°/(±45°)5/0°] to [(±45°)2 /45° /(0°)2 /(–45°)/ (±45°)2]. 

However, no assumptions are made regarding changes in the mechanical properties of the 

SMA/epoxy layers, or the graphite/ epoxy layers. From Figure 8, it arises that the relative 

fundamental natural frequency of the plate increases with a change in the location of the 

SMA/epoxy layer sz h . The changes in the relative fundamental natural frequency of the 

plate are much greater in the case of greater volume fractions of the SMA wires within the 

SMA/epoxy layers, and for the layers located closer to the extreme outer layers of the plate, 

than in the case of smaller volume fractions of the SMA wires within the SMA/epoxy layers, 

where the layers are located closer to the central layers of the plate. It is evident from the 

results presented in Fig. 8 that the plate performance is determined by the stiffness ratio of the 

SMA/epoxy layers and the graphite/epoxy layers. The stiffness of each material layer of the 

plate is also a function of the Young’s modulus of the composite material components, as well 

as the position of the layer within the plate. 

 

  
(a) Simply-supported plate (b) Cantilever plate 

 

Figure 8. Change in the relative fundamental natural frequency as a function of the volume fraction of 

SMA wires and location of SMA wire layer. 
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10. Conclusion 

 
An analytical model for laminated composite plates embedded with shape memory alloy 

wires was presented and analyzed based on the modified higher-order shear deformation 

theory using Ritz solution for simply-supported and cantilevered plates. The following 

conclusions have been drawn: 

a) Both the plate dimensions and boundary conditions have a great influence on the 

relative fundamental natural frequency of the plate. 

b) The relative fundamental natural frequency increases due to the activation of the SMA 

wires towards a longer and narrower plate of the cantilever boundary conditions. However, 

for simply-supported plate it increases toward a wider and shorter plate.  

c) The relative fundamental natural frequency of the plate increases with an increase in 

the volume fraction of the SMA wires, and with a decrease in the volume fraction of the 

graphite fibers.  

d) The maximum value of the relative fundamental natural frequency obtained when the 

outer layers of the plate are made by the SMA material, whereas the inner layers are made 

from the epoxy resin. 
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Nomenclature: 

 

  Thermal expansion coefficient of the SMA material 

   The unknown displacements vector 

   Strain vector in x-y-z coordinates 

   Stress vector in x-y-z coordinates 

i
Q    Transformed stiffness matrix of layer i  

U  Virtual strain energy 

V  Virtual work 

K  Virtual kinetic energy 

  ,a x y  Column vectors of the Ritz approximation functions that satisfy the 

boundary conditions of the problem 

  q t  Column vectors of the Ritz coefficients 

 K
 

Stiffness matrix 

 

 M
 

Mass matrix 

,z zip F
 

Distributed and concentrated loads 

 F ,  0F
 

Distributed and concentrated load vectors 

A Plate’s area 

a, b Plate sides’ dimensions 
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A, B, D Extensional, coupling, and bending stiffness matrices 

DOF Degrees of freedom 

E, F, H, J Higher order stiffness matrices 

h Total laminate thickness 

Ii Inertia terms 

k Total number of layers 

u Displacement of a generic point in the plate in the x direction 

u0 Displacement of the geometric mid-plane in the x direction 

v Displacement of a generic point in the plate in the y direction 

v0 Displacement of the geometric mid-plane in the y direction 

w Displacement of a generic point in the plate in the z direction 

w0 Displacement of the geometric mid-plane in the z direction 

θx Rotation of the normal to the mid-plane about the y-axis 

θy Rotation of the normal to the mid-plane about the x-axis 

θz First order displacement factor 

ξx, ξy Third order displacements or warping functions 

ψx, ψy, ψz Second order displacements or warping functions 

 

Appendix A. 

The evolution equations that represent S  and T  as functions of stress and temperature: 

1- Twinned Martensite   detwinned martensite 

Or (Austenite   detwinned martensite) 

a- T MS  and   (  )   (  )cr cr

s M S f M SC T M C T M         

            

  0 01 1
cos

2 2

crS S
S f M scr cr

s f

C T M
 

  
 

  
     

 
 (A-1)

 

                                 
 0

0 0

01

T
T T S S

S


   


  


                                            (A-2) 

b- T Ms  and    cr cr

s f     

  0 01 1
cos

2 2

crS S
S fcr cr

s f

 
  

 

  
   

 
 (A-3) 

  0
0 0

01

T
T T S S T

S




   


   


 (A-4) 

If M <T Mf S  and 0T T  

               
  01

cos 1
2

T
T M fa T M


        

            else, 0T   .g 

2- Martensite   Austenite 

For T AS  and (  ) (  )A f A SC T A C T A     
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0 cos 1
2

S

f S A

T A
A A C

  


    
      

     

                                                        (A-5) 

 0
0 0

0

S
S S


   


                                                                                        (A-6) 

 0
0 0

0

T
T T


   


                                                                                        (A-7) 

3- Austenite   Twinned Martensite  

For f sM T M  ,  cr

s   and 0T T  

Putting S  and 0S  in Eq. (A-1) gives the same formula of Liang’s model if we put the slope 

MC    because the transformation curves at  cr

s   are vertical lines as shown in Figure 

A1 [12],     

      0 01 1
cos

2 2
M fa T M

 


 
                                                            (A-8) 

In this case, the total induced martensite is a pure temperature induced martensite, i.e. T   

and 0 0T  . 

 
Figure A1. The effect of stress on the transformation temperature [12]. 

 

Appendix B. 

 

The vector of thermal expansion coefficients  i  and the vector of SMA recovery stress 

 r

i  referred to the body (x-y-z) coordinate system.  

 

2 2 2 2

11 22 11 22

3 11 22

cos sin , sin cos

, 0, 0, sin cos

x y

z yz zx xy

         

        

   

    
 

2 2cos , sin

0, 0, 0, sin cos

r r

x r y r

r r r r

z yz zx xy r

     

      

 

   
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Martensite 
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1-b 
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Martensite 

CM 
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3 

2 

Plastic Region 
Stress 

Temperature Af As Ms Mf 

cr
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cr
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CM1 
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Appendix C. The used column vectors of the Ritz approximation functions for simply 

supported boundary conditions are: 

 

           

  

     

  

1 2
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4 5

6

2 2

2 2 2 2 3 3

2 3 3 4 3 4 2 3
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3 4
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2 2

6 4 2 2 6

, , ,
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, 1

4
1 1
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T T

T
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a x y a x y
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x x
x y
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a x y a x y

a x y
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Appendix D. The used column vectors of the Ritz approximation functions for a cantilever 

plate are: 

 

  
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