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Abstract: In this paper, a lab-scale single-rotor helicopter system is modeled and controlled. 

The introduced system is first modeled mathematically and then modeled with an online 

identification method using MATLAB. The model is then used to design a PID controller for 

the system. The designed controller is then implemented using a multicore microcontroller. 

The control task is one of the tasks in the introduced control software where the role of the 

microcontroller is to execute it along with many different tasks like interfacing sensors and 

actuators, tuning control parameters, data filtering and logging. The implemented control 

system uses a multicore microcontroller to execute all tasks simultaneously and hence 

improves performance and functionality. It is also demonstrated that using multicore 

microcontrollers can reduce design-time, implementation-time and cost while keeping higher 

performance rates. This contribution shows that it is possible to design and implement 

complex real-time embedded control systems that employ advanced control algorithms using 

multicore microcontrollers. 
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Nomenclature 
 (m) Length of link   (N) Force along   WRT B-frame 

    (kg) Mass of BLDC Motor     Motor torque 

  (kg) Mass of link    Propeller torque 

  (m) Length of half link      Propeller torque on motor axis 

 (m   
) Gravity of earth    Angular position around   WRT E-frame  

   velocity around y1 WRT E-frame     angular acceleration around   WRT E-frame  

   Electric motor power     Mechanic motor power 

    Mechanic Propeller Power COG Center of Gravity 

BLDC Brushless DC Motor  DOF Degree of Freedom 

PWM Pulse Width Modulation ESC Electrical Speed Controller 

MCUs Microcontrollers J Moment of Inertia  

RPM revelation per minute  DMP Digital motion processor   

IMU Inertial measurement unit FLT Fuzzy logic tuning  
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Introduction 

Microcontrollers are single-chip computers which can be used to control real-time systems. 

Such controllers are also referred to as embedded real-time computers. MCUs are well suited 

to control applications, especially with widely changing requirements. These devices are cost-

efficient, single-chip, power-limited, easy to reprogram, and fast to deploy. Many control 

applications are computer-based, where a digital computer or an MCU is used as a main or 

supplementary digital controller. Early MCUs were very limited in resources and computation 

power and required many interfacing circuits while today's MCUs are computationally 

powerful and they are equipped with interface modules to facilitate the connection to 

controlled processes. 

Latest study [1] for embedded systems market revealed that industrial control and automation 

applications are the most common project types for embedded systems development. Almost 

all of these applications combine smaller embedded software tasks such as digital control 

algorithms, parameter tuning procedures, fuzzy-logic or ANN models and controllers, PWM 

generation, interfacing, logging, or fault-tolerance tasks. Therefore, the use of multiprocessing 

systems for such application would be of a great benefit where each task is executed by an 

independent part of the system [2]. Moreover, real-time embedded control systems have tight 

time windows to gather data, process that data, and update the system while conducting 

additional tasks like tuning of control parameters or executing a fault- tolerance algorithm. If 

this time window is missed, the stability of the system is degraded. This reduced control can 

be catastrophic to some applications, such as power conversion and advanced motor control 

[3]. 

For embedded control applications, multiprocessing systems can employ independent or 

cooperative control tasks where each task is running simultaneously. This improves 

throughput of multi-axis controllers, reduces the execution time of real-time controllers or 

leaves extra time for more tasks in almost every embedded controller. Although parallel 

implementations are generally known to improve performance, the use of embedded 

multiprocessing systems for control applications is still in its starting steps [2] [4]. However, 

many signs show that classical single-processor implementations are migrating towards newer 

multiprocessing ones. Recently, manufacturers of famous embedded real-time MCUs started 

announcing new multiprocessor families. The Concerto family of from TI Inc. [5] and the 

latest members of the SPC56 family from ST Inc. [6] are examples of multiprocessing 

systems for embedded real-time applications. Moreover, many researchers started to realize 

that using these multiprocessing techniques and systems would be beneficial even by using 

multitasking within a single processor [7] [8], by using multiple independent MCUs [9] [10], 

by using multicore platforms [4] [11] [12] or by customizing their own multiprocessing 

systems. 

Currently, traditional MCU technologies are migrating to multiprocessing systems as 

multicore MCUs are more and more becoming available. Unlike traditional MCUs, they 

consist of two or more independent processing units that are connected with an 

interconnection scheme along with memory modules and interface ports all within a single-

chip. Multicore MCUs guarantee truly parallel multitasking, shorter RT frames, low latency 

with much faster responses, and completely enhanced performance. The Parallax Propeller 

[13] and the XMOS XCore [14] are also examples for recent commercially available 

multicore microcontrollers. 

In this study, a lab-scale single-rotor helicopter system is modeled and controlled. The 

introduced system is modeled and then the model is used to design a PID controller for the 

system. The designed controller is then implemented using a multicore microcontroller. The 

control task is one of the tasks in the introduced control software where the role of the 
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microcontroller is to execute it along with many different tasks like interfacing sensors and 

actuators, tuning control parameters, data filtering and logging. The implemented control 

system uses a multicore microcontroller to execute all tasks simultaneously and hence 

improves performance and functionality. 

This paper is organized as follows. Section II presents the description and modeling of the 

single-rotor system. Section III describes the design and implementation phases of the control 

system. Section IV presents experimental results obtained from the system. Finally, section V 

shows the conclusions. 

System Description and Modeling 

The single-rotor helicopter system consists of a wooden bar connected to a wall via a one 

degree of freedom hinge. A brushless (BLDC) motor with its propeller is mounted at the end- 

far from the hinge- of the wooden joint. Fig.1. describes this system. As the motor rotates, it 

generates a force that lifts the joint causing a changing inclination angle from 0 to 90 degrees. 

The system resembles a helicopter airplane with the horizontal axis fixed. Studying the model, 

it is noticed that at the far end of the joint, two forces act at this point in opposite directions: 

the force generated by the rotating propeller and the weight of the motor, also at the middle of 

the joint the weight of the joint act at this point. The resultant of these previously stated forces 

causes a torque at the hinge that connects the joint to the wall which causes the joint to rotate 

around the hinge. A mathematical model is designed using Newton’s laws of motion and 

calculating the torque around the hinge. 

 
Fig.1. The singe-rotor helicopter system. 
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The system is nonlinear and therefore, we will predict the model using an identification 

technique. The system is put on action and a step is applied to its input as a control command 

to the BLDC motor. The response of the system to this step is measured. Fig.2. presented the 

scaled input step and the scaled response of the system. Again the system is commanded, but 

using a multi-sin signal and the response is measured. Fig.3. presented the scaled multi-sin 
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input and its measured response from the system. All inputs and outputs are scaled. The input 

which represents the control action to the BLDC motor is scaled to the range [0 to 1] that 

represents [0 to 1000] RPM The output angle of the system is scaled to the range [0 to 1] that 

represents the angles [0 to 90] degree. 

 

 
Fig.2. Input step and measured output angle of the system 

 
Fig.3. Input multi-sin and measured output angle of the system. 

The two measured responses of the system is used in a mixed-identification process using 

MATLAB identification toolbox. The process involves using the two responses to match a 

best-of-possible model of the system. An enhancement to this technique was applied by 

performing a brute-force identification of all possible mathematical models starting from 1 

pole to 15 poles and 1 zero to 15 zeros. This produces 255 models. All models’ responses are 

programmatically compared to the measured data. The found best-fit model is 5 poles and 4 

zeros. Fig.4. and Fig.5 shows the response of this identified model compared to the measured 

data for both step response and multi-sin response. 
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Fig.4. Measured and Identified responses of the system to a step input. 

 

 
Fig.5. Measured and identified responses of the system to a multi-sin input. 

 

The following is the transfer function of the model: 

     
                                                       

                                                            
 

 

 

(5) 

Controller Design and Implementation 

This section starts by introducing the Propeller multicore microcontroller that will be used to 

implement the control program. Then, we demonstrate how the feedback of the system, the 

angle from the helicopter, is measured and filtered before calculating the control action. Later, 
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the implementation of the controller within the introduced multicore microcontroller is 

presented. 

The Propeller Multicore Microcontroller 

The Propeller MCU [13] is a cheap 40-pin chip with an 8-core multiprocessor architecture. 

It is designed to provide high-speed processing for embedded systems while maintaining low 

current consumption and a small physical footprint. In addition to being fast, the Propeller 

chip provides flexibility and power through its eight processors, called cogs, that can perform 

simultaneous tasks independently or cooperatively, all while maintaining a relatively simple 

architecture that is easy to learn and utilize. Many programming languages are available to 

program this chip: SPIN (a high-level object-based language), Propeller Assembly and 

C/C++. The price of a single propeller chip ranges from 4$ to 8$. Fig.6. shows a block 

diagram of the Propeller’s architecture. It contains eight symmetric 32-bit processors (cogs) 

numbered 0 to 7. Each cog contains a processor block, local RAM, a video generator, I/O 

output register, I/O direction register, and other registers. 

All eight cogs are driven from the system clock; they maintain the same time reference and 

all active cogs execute instructions simultaneously. They also all have access to the same 

shared resources; shared memory and IO ports. Cogs can be started and stopped at run time 

and can be programmed to perform tasks simultaneously, either independently or with 

coordination from other cogs through main RAM. Each cog has its own RAM, called Cog 

RAM, which contains 512 registers of 32 bits each. Each cog can operate with a speed up to 

20 MIPS, resulting into a 160 MIPS total speed when it is running on an 80 MHz system 

clock. Moreover, cogs can execute local instructions or they can execute instructions in the 

shared memory space. 

The resulting design of the Propeller frees application developers from common complexities 

of embedded systems programming because the memory map is flat, so, there is no need for 

paging schemes with blocks of code, data or variables. This is a great time-saving mechanism 

during application development. Moreover, asynchronous events are easier to handle than 

they are with devices that use interrupts. The Propeller has no need for interrupts as cogs can 

be assigned to individual, high-speed polling tasks. The result is a more responsive 

application that is easier to maintain. 
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Fig.6. Architecture of the Parallax Propeller Multicore MCU. 

 

Reading Rotation Angle from the Helicopter Model 

For determining the inclination angle of our model to the horizontal position, the controlled 

variable, we use an IMU which includes a 16-bit 3-axis accelerometer MEMS along with a 

16-bit 3 axis gyroscope for measuring acceleration and angular speed respectively in all 3 axis 

x, y and z. This unit is also equipped with a DMP that can be programed to synchronize and 

filter the sensors readings and also can be used to further process the data to give the rotation 

matrix, cosine matrix or calculate yaw, pitch and roll angles internally. 

The inclination to the horizontal angle (α) which our controlled variable is calculated from its 

complementary angle (θ) from (6) 

                                              
 

(6) 

Sensors data give us information about acceleration in x axis (  ), acceleration in (y) axis (  ) 
and acceleration in (z) axis (  ) and also we have data given from gyroscope which is 

rotational speed around (x) axis (   ), rotational speed around (y) axis (   ) and rotational 

speed around z axis (   ). 

 
Accelerometer reads acceleration in all 3 axis all the time, if the sensor is in horizontal 

position the z axis reading (  ) is affected by the earth’s gravity (g) and the sensor should read 

the full gravity acceleration on (  ) in horizontal position. 
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As the sensor is inclined to the horizontal, the effect of gravity is distributed on two axis y and 

z. Performing analysis of the effect of gravity on the two axis y and z in case that the sensor is 

inclined to the vertical by θ as in Fig.1. We get that  

                                                              
 

(7) 

                                                              
 

(8) 

From equation (7) and (8), we get that  

        
    

    
                                                    (9) 

By using equation (9) we can calculate the inclination angle to the vertical (θ) and use 

Equation (1) to calculate (α). The gyroscope measures the rotational speed around all 3 axis. 

Simply according to the way we mounted the IMU on our model we get that. 

                                                                                                       (10) 

Integrating the above equation, we can get (θ) and accordingly our controlled variable (α). 

The implementation of an accurate angle estimation system is challenging. The accelerometer 

readings suffer from jitter noisy readings that happen randomly with different amplitudes. The 

gyroscope zero readings always drift with time and needs to be recalibrated constantly. The 

sensor suffers from a significant vibration caused by the high speed rotor that is in the model. 

This vibration effect is increased because of the fixed hinge and un-canceled gyroscopic effect 

and aerodynamic torque from the BLDC motor.  

Examining the sensors readings of the inclination angle while the rotor is running at its 

minimal hovering speed, we get that there is a vibration in readings with frequency of 14 Hz. 

To overcome this vibration in angle reading, a low pass filter is used and implemented on the 

(DMP) at frequency 10 Hz to remove any vibration caused by running motor. Note that the 

vibration frequency increases as the motor speed increases, so designing a low pass filter of 

the frequency of vibration caused by minimal hovering speed will filter out any vibrations 

caused by the motor at higher speeds. Fig.7.a. shows the sensor reading before low pass 

filtering and Fig.7.b. shows the vibration of the reading at higher motor speed and Fig.7.c. 

shows the sensor reading after low pass filtering, examining the frequency of the vibration we 

clearly see that the frequency now is about 16 Hz i.e. the frequency increases as the motor 

speed increases. 

   

(a) (b) (c) 

Fig.7. The sensor reading 
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Sensor fusion involves collecting data from various sensors and applying data fusion 

techniques to obtain optimal measurements. Sensor fusion can overcome the gyroscope 

drifting problem as its bias will be continuously recalibrated based on estimated error and 

accelerometer readings measurement. To address this sensor fusion problem the Kalman filter 

solution is proposed [15], however due to the involvement of a non-linear system of 

equations, the Extended Kalman filter version has been employed to simplify implementation. 

Due to the microcontroller limitation and in favor of speeding up the calculation as fast as 

possible the equations here are simplified whenever it is possible. The following state-space 

system represents the Kalman estimation technique. 

         (11) 

     (12) 

Where x is our state vector x = [θ, γ] and consequently            , where 

                      and     , where θ is the inclination angle and γ is the gyro 

bias. A is the Jacobian of    with respect to the states: 

  

 
 
 
 
 
     

    

     

    
     

    

     

     
 
 
 
 

 

 

 

 

 

(13) 

   
  
  

   

(14) 

The H matrix is a 1x2 (measurements x states) matrix that is the Jacobian matrix of the 

measurement value with respect to the states: 

   
            

    

            

  
  

 

(15) 

       
 

 

(16) 

Since there is no relation what so ever between the measured angle from the accelerometer 

and the gyro bias. The state update (state estimation) can be represented using the following 

equation: 

               
 

(17) 

And the update the state covariance matrix is 

               
(18) 

Where Q is the process noise covariance matrix. The Kalman gain is calculated from state 

covariance matrix P, observation matrix H and the measurement noise covariance matrix R. 
                     (19) 

The state covariance matrix P, is updated by the Kalman gain K, and the observation matrix H 

                (20) 

The state estimate is updated from the Kalman gain and the error between the calculated 

sensor output and the actual sensor output (measured at this point). 

                                (21) 

Fig.8. shows the output of the IMU after Kalman filtering, it shows a great improvement as it 

successfully filter out the noise due to accelerometer jitter effect, gyro bias drifting and the 
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most effecting parameter the vibration due to rotor spinning at high speed. The average error 

of the raw measurement is almost (80 deg.) which is very large and unacceptable. The average 

error of the LP filtered measurement is (30 deg.). The average error of the estimated 

measurement using Kalman filter and the LP filtered data is (2 deg.). The IMU sensor 

generates its output with a frequency of (125 MHz) and hence, for a digital controller that 

tracks the system and captures the best of its dynamics, the control loop time should be less 

than (0.008 sec.). 

 
Fig.8. Measured and filtered data of the roll angle (deg.). 

Controller Design and Implementation 

The system is to be controlled using a digital PID controller. The proportional, integral, 

derivative, or more popularly, the PID, is probably one of the most popular controllers in use 

today [16]. Equation (X) describes the basic operation of the digital PID controller: 

 
(22) 

The system is represented in a sampled-data form. E (k) is the input to the controller and the 

k
th

 sample of the error signal. The output of the controller is called control command, U (k). I 

(k) represents the integral the k
th

 error sample while D (k) represents the derivative of the 

same error sample.   ,    and    are the proportional, integral and derivative controller 

parameters. Fig.9. describes the structure of the digital PID controller. 

 
Fig. 9. Structure of the digital PID controller. 
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The three branches of the system are distributed calculations. The first branch is computed by 

simply multiplying the error sample with the    parameter. The second and third branches 

take more time to execute as they need to compute the integral and derivative of the error 

sample. The digital PID control algorithm is usually implemented with a sequential 

algorithm.Fig.10. Describes the digital PID control algorithm.  

 
Fig. 10. Operations within the sequential PID algorithm. 

Using the identified model of the system, the parameters PID controller was estimated using 

the PID tuning tool in MATLAB. The tuned PID parameters are used as base parameters for 

the control system. Variations over the three parameters are tested and recorded to be used for 

a fuzzy-logic tuning FLT program that monitors the system state and selects the best 

combination of parameters for the next control action. Fig.11. shows the simulation model of 

the control system including the FLT using Matlab. 

 
Fig. 11. Control system and FLT simulation model 

The primary role of an embedded controller’s software for this system is to measure the roll 

angle, to filter it, to calculate an action using a PID algorithm, and to interface the BLDC 

motor. Moreover, additional tasks are assigned to this control software. A self-tuning task for 

the PID parameters and an information logging task are also considered. Each task is 

separated and its time is measured. Table II shows the execution time of each of the tasks. All 

tasks are implemented within the Propeller MCU using SPIN language to optimize code size. 
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It is clear that if the tasks are executed sequentially, the 0.008 second time frame will be 

missed. Hence, the Propeller multicore MCU is used to execute the tasks simultaneously 

where each tasks is executed within a single cog. 

  TABLE I. TIMING DETAILS OF INNER TASKS 

Task PID 
IMU I2C 

Interfce 

LP/Kalman. 

Filter 

BLDCM 

Interface 
FLT * Logging 

Time (m. 

s.) 
1.5 2.1 3.2 1.0 3.2 3.6 

*: A minimized version to tune the    parameter only. 

Fig.12. shows the complete controller block diagram. The design consumes 7 cogs of the 

Propeller MCU. Each task within the controller’s software is executed within a dedicated cog. 

A single cog is dedicated to 32-bit floating point operations for better performance. The 

communication between tasks is represented with arrows and implemented using shared 

memory variables. The logging task has access to all shared variables and this helps collecting 
logging information. It has access to a serial interface to broadcast the logging data to a 

connected computer. The total control loop time is the time of the longest task which is 3.6 

milliseconds. This makes a speedup of almost 75% compared to a sequential implementation 

of all tasks. A delay at the end of the control loop is added to synchronize the control loop 

with the sensor data feed. However, the remaining time could be used for more tasks within 

each cog. The gathered logging data is used to capture the response of the system during 

different development stages. Fig.13. shows the response of the system to a changing step 

input. The response is gathered twice; with the FLT disabled and with it enabled. 
 

 
Fig.12. The complete embedded multicore controller. 
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Fig. 13. Roll angle (deg.) measurement of the system under control. 

Conclusions 

In this article, a model of single rotor helicopter system based on Newtonian mechanics was 

developed. The system is nonlinear. Using black-box approach is represented the dynamic 

properties of the system (identified using MATLAB Identification toolbox). We have 

described the design of the controller. We have designed the linear controller using PID 

algorithm to stabilize hovering the one DOF helicopter system. Parameters PID controller was 

estimated using the PID tuning tool in MATLAB and then the tuned PID parameters are used 

as based Parameter for fuzzy logic tuning. The sensors readings of the inclination angle while 

the rotor is running at its minimal hovering speed. Given the outputs provided by the available 

sensors, a Kalman filter was developed capable of estimating the angular velocity and Euler 

angle of the single-rotor helicopter system. The implemented control system uses a multicore 

microcontroller to execute all tasks simultaneously and hence improves performance and 

functionality. Finally, we get from this article show that the simplified model of single-rotor 

helicopter can be controlled using multicore microcontrollers, it reduced design-time, 

implementation-time and cost while keeping higher performance rates and the execution time 

of the algorithm reduced by 75%. 
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