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Abstract: In this paper, analytical formulas have been derived for the electromagnetic fields 

(EMFs) radiated from a vertical magnetic dipole (VMD) buried in planar stratified media. 

Three planar-layered conducting media model are adopted: air, seawater and ground. 

Expressions for the Hertz vector which are used to determine the electric and magnetic field 

components of the dipole in the three planar-layered media are reduced to the integrals 

obtained by Sommerfeld previously. A simple technique with the aid of the complex image 

theory is used to obtain highly accurate analytical expressions for Sommerfeld integrals (SI) 

that arise in these calculations, which earlier were very tedious and complicated to evaluate. 

Closed-form expressions for the far field in the three regions due to a vertical magnetic dipole 

buried in second region (sea-water) are calculated and their physical meanings are discussed. 

The results are numerically evaluated and plotted. In addition, the results obtained in the three 

regions are compared with each other and with those mentioned elsewhere, and  are proven 

that this method is very effective and simple. The formulas and computations can be applied 

to the communication in lower frequencies region. The achieved results will also be useful for 

remote sensing of the ocean surface, especially when the transmitter is close to the surface. 

 

Keywords: Far-field, radiation in the sea, electromagnetic propagation, stratified media, 

buried vertical magnetic dipole (VMD), Sommerfeld Integral (SI). 

 

I. Introduction 
The electromagnetic wave radiated from a vertical magnetic dipole (VMD) buried or 

submerged in planar stratified media is of interest for remote sensing, communication 

purposes, radar, microwave systems and applied optics. 

The problem of dipole radiation over media was originally formulated by Arnold 

Sommerfeld, in his classic work published in 1909 [1]. Since then, this problem has received 

a significant amount of attention and hundreds of papers have been published on the subject. 

The complete history of the problem is beyond the scope of this work, but suffices to say that 

independent derivations by Weyl [2], Norton [3] and others have presented more accurate 

representations for the field of the dipole, and have confirmed that there is an error in the sign 

of Sommerfeld's paper [1]. In 1941, Norton [4] has developed his formula for the field 

components to a stage where numerical results can readily be obtained. 
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In the pioneering work by Wait [5 –9],the Sommerfeld integral (SI) for the electromagnetic 

field of electric and magnetic dipoles radiating in the stratified medium (layered region) were 

evaluated by using asymptotic methods,contour integration,and branch cuts.In 1966,Baños 

[10] represented a complete perspective of the historical development of the mathematical 

analysis of the problem. 

The electromagnetic fields of vertical and horizontal electric dipoles on or near the boundary 

between two different media have been well known in terms of closed-form expressions for 

many years. When this classical problem is solved, the Sommerfeld integral will occur and 

there is no way of avoiding the evaluation of the Sommerfeld integral for either numerical or 

closed form solutions. Due to the highly oscillatory and slowly decay nature of the 

Sommerfeld integral, it was difficult to apply a direct numerical integration technique to 

evaluate these integrals. Therefore, some well-known approaches such as steepest saddle-

point method, branch cut method and stationary phase point method, have been employed to 

obtain some approximate solutions. However, these methods, involving lengthy algebra and 

several transformations, are very tedious and complicated. Moreover, the properties of the 

electromagnetic field radiated by a dipole get more complicated when the boundary includes a 

layer of third material with intermediate properties. 

In the early 1980’s, Chew and Kong [11] computed the electromagnetic field of a horizontal 

dipole (HD) on a two-layer earth. The medium was assumed to be low-loss such that the 

image-source fields were important. Integral representations of image source fields were 

evaluated with uniform asymptotic approximations. In 1982, Bannister [12] derived 

expressions for the field components of a horizontal electric dipole (HED) in the presence of a 

conducting half-space and his formals were valid from the quasi-static to the far-field ranges. 
In a series of works by King [13 –15], the complete formulas have been obtained for the 

electromagnetic fields excited by horizontal electric dipole (HED) and vertical electric dipole 

(VED) in planar two- and three- layered media. 

In 1988, Chew [16] was the first who derived simple and accurate formula (simple technique) 
for Sommerfeld integral. This formula was represented in an easily remembered steps. In 

2001, Long et al. [17] developed the simple technique [16] and derived the far-field 

approximation of the Sommerfeld integral rapidly depending on the stationary phase-point. 

Furthermore, the slowly varying part in the Sommerfeld integral has no singularities at the 

stationary phase point, leading to use Chew's formulas in other similar problems to calculate 

the far-field. 

The subsequent developments on the electromagnetic field of a dipole in layered region have 

been carried out by many investigators, especially including Long et al. technique [17]. 

Recently, many papers were published by Bishay et al. [18-21] that treated analytically the 

electromagnetic field of a vertical magnetic dipole in the presence of a three-layered rough 

region in details because of its many useful applications, especially in microstrip antenna. 

In this research, in order to tip the scales, we substituted the rough region used previously in 

Bishay et al. [18-21] with a planar media. Therefore, to obtain higher degree of numerical 

efficiency, higher accuracy and faster results, we used in this paper Long et al. [17] technique 

with the aid of the complex image theory [12] to derive closed-form expressions for the far 

field in the three planar layered media due to a vertical magnetic dipole buried in second 

layered (sea water). The physical meaning of these expressions is discussed and the numerical 

computations are also carried out. In addition, the results are represented graphically and 

compared with those mentioned elsewhere.  

 

II. Geometric Description and Basic Formulation 
The relevant geometry that is illustrated in Fig.1, shows the model used in the calculation 

where it comprises three layers (air, sea, and ground). The source is a vertical magnetic dipole 

(VMD) located in the sea (the middle layer) at depth 1d  horizontally. Physically, this 
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represents a small loop antenna of area 0S  carrying a circulating current I . R  is the distance 

between the source and an observing point ),( zrP  which is located in the sea at depth 2d . We 

suppose that the sea is of finite mean thickness a . If we describe, the geometry of the system 

by using the cylindrical polar coordinates ),,( zr  , then for the whole space  r0  and

 20  . Moreover, the air and the ground layers are infinite upward and downward along 

the z–axis, respectively. All regions are also infinite sideward and are homogeneous. A 

fundamental assumption in this analysis is that the displacement current (in the sea) is 

negligible compared to the conduction current [20]. 

 
 
 

 
 

 

 

 

 

 

 

   

 

 

 

 

Fig. (1):  Geometric configuration of a VMD located in the sea with a planar interfaces. 

 

It is well known that the electromagnetic field generated by a vertical magnetic dipole           

(a small horizontal loop antenna) can be derived from the magnetic Hertz vector 


which has 

only one component Z  in the z-direction for the time variation 
tie 
 ; consequently, the 

components of the electric and magnetic fields are given by [22]: 

r
iE Z




 0

 
 ,  

zr
H Z

r





2

   and    Zz
rrr

H 


















1
2

 .                  (1) 

The tangent components of either electric or magnetic fields are continuous at the boundary, 

so the Hertz vector and its derivative by z are continuous [22]. Then, the z-component of the 

Hertz vector z  should satisfy the following boundary conditions:  
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III The Integral Representation of the Fields in Three Media 
According to Sommerfeld [23], the z-component of the Hertz vector in each region at the 

general observation point ),( zrP can be obtained as follows: 
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where  22

ii ku   , (i= 1, 2, 3) and its real part is positive, and )(0 rJ  is the Bessel 
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where  jijijijiji uuuuuur  
, ( 3,2,1, ji ) is the Fresnel reflection coefficient. 

The non-vanishing components of the electric and magnetic fields in the three regions can be 

directly obtained after a fair amount of manipulative algebra, by substituting from (3) in (1) as 

follows: 
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In the seawater region at az 0 : 
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In the ground region at 0 z : 
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It should be noted that, the following notations are introduced: 
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where )()2( rHo   and )()2(

1 rH   are the second kind Hankel function of order zero and one, 

respectively.  

 

IV. Analytical Solution  for the Far-Field in Air 
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Taking into account the following relations: 
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then the denominator in (10) can be expressed as an infinite series: 
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According to the complex image theory [12], when the condition 2
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where 22 kid   . Using the formulas (13) and properly arranging (12), we have: 
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To find the value of 1  , we used the technique in [17]. Therefore, the integral (15a) can be 

rewritten as: 
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when r , the first factor in (16) is rapidly varying while the second one is slowly 

varying. Moreover, according to Jones [22], the location of the stationary phase point is given 

by: 
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When  r , we can use the following approximation for Hankel function: 
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  . One of the contributions of this paper is equation (24), 

where the component of the electric filed that used to be calculated previously by Long et al. 

[17] with an approximation for 1k  and 01 RRR mm     now we attain its value without 

this approximation. 

The physical meaning of Eq. (24) can be explained that the first term indicates a series of 

waves, which propagate upward from the source and make m round trips between the sea 

surface and the bottom, then travel along the path 
mR  in air and arrive at the field point, 

where )1/()1( nn   is the reflection coefficient at the sea bottom. The reflection coefficient 

at the sea surface is regarded as almost unity. The second term indicates another series of 

waves, which propagate downward from the source first, then reflect upward at the sea 

bottom, and travel along the path 
1mR  

in air and arrive at the field point. 

 

V. Analytical  Solution  for the Far-Field in Sea-Water 
The field point ),( zrP  is at distance 

2d under the sea surface as illustrated in Fig.1. In order to 

evaluate the value of the field in the sea-water region, we must solve the integral equations 

(6). It is clear that the first term of the integral is the direct wave (the primary field) from the 

source to the observing point. This term is important, if the transmitter and receiver are set 

very closely. However, if the two points are separated far from each other, this term will 

vanish because the propagation path is in the sea and the attenuation is very large. The second 

term is concerned with 
zu

e 2 , which represents the downward wave from the surface of the 
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sea to the observing point. The last term, which is the third term is concerned with 
zu

e 2
 , that 

represents the upward wave from the sea bottom to the observing point, if the receiver is close 

to the bottom, this term seems to be useful. 

Starting with the integral equation (6a) and after substituting by the values of the constant 

functions )(B
 
and )(C  from (6b) and (6c), we can write the electric field in sea-water 

2

E  

after a fair amount of manipulative algebra as: 

 







3

1

2

8
),(

i

i
oo SIi

zrE



         ,  (25) 

where  

 






 


drHe

u

hzu
)()2(

1

2

1
2

    , (26a) 
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
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













 


drH

err

er
re

u au

hu
ddu

)(
1

1 )2(

12

2321

2

23
21

)(

2

2
2

2

212

    ,  (26b) 

 




























 


drH

err

er
re

u au

du
hzu

)(
1

1 )2(

12

2321

2

21
23

)(

2

3
2

12

2

   , (26c) 

Starting with the integral Eq. (26a), and by using the same method in [17], we can rewrite 1  

as: 

 








d

rH

rH
rHe

u

hzu

















 







)(

)(
)(

)2(

0

)2(

1)2(

0

2

1
2

  

 .  (27) 

When r , the first factor in (27) is the rapidly varying part  while the second one is the 

slowly varying part. Then, the location of the stationary phase point is given by: 

 
    0

2

22

2 








rhzki    , (28) 

The solution of equation (28) is:   

 Rkr 22 
              

and         
22 )( hzrR   (29) 

After solving the rapidly and slowly parts, we have the solution of 1  as follows: 

 










 Rki
e

R

kr
i 2

2

2
1 2

     

 ,  (30a) 

In the same manner, we obtain the solution of 2  and 3  as:  

 

  )2(

3

1
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     , (30b) 
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where  22 dmrRm   and  22

1 )1( dmrRm  .  

From (30) in (25), it is easy to get the solution formula for the electric field 
2

E  in sea-water 

as follows: 
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

   ,  (31) 

The physical meaning of (31) can be explained that the second term represents a series of 

waves, which propagate upward from the source and make m round trips between the sea 

surface and the bottom, then travel along the path mR  and arrive at the field point in sea-

water. The third term represents another series of waves, which propagate downward from the 

source first, then reflect upward at the sea bottom, and travel along the path 1mR
 
and arrive 

at the field point. 

 

VI. Analytical  Solution  for the Far-Field in The Ground 
In this section we will analyze the integral equations (7) to find the solution of the far field in 

the ground region (third-layered). In this case, the field point ),( zrP  is at distance 2d  under 

the sea surface. We begin with the integral equation (7a) and after substituting the value of the 

constant function )(D
 
from (4d), the electric field 

3

E  can be expressed as: 
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   .  (32) 

Using the first formula of (11) and (13), then the electric field 
3

E can be rewritten as: 
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    , (33) 

Using the similar procedures for finding 
1

E  and 
2

E , the final result of the electric field after 

some lengthy but straightforward manipulations can also be given by: 
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   ,  (34)  
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It is clear that, the first term of (34) represents a series of waves, which propagate upward 

from the source and make m round trips between the sea surface and the bottom, then travel 

along the path mR  and arrive at the field point in ground. The second term represents another 

series of waves, which propagate upward from the source first, then reflect downward at the 

sea surface, and travel along the path 1mR
 
and arrive at the field point. 

 

VII. Numerical Results 
We here present some graphs showing the electric fields which is computed in three regions 

for different values of  a  (thickness of the sea). The source is a VMD located in sea at height  

h  above the sea bottom. In these Figures, the vertical scale is normalized by the factor  

  400 SI

 

. To attain the numerical calculation, we ascertain that  

50

0m
is a match for 




0m
under the conditions shown in Figures (2) - (10). 

Figures (2), (5), and (8) show clearly that the decrease in the sea thickness  a  led to an 

increase in the electric field. Moreover, Figures (3), (6) and (9) show that an increase in the 

height of the source h, increases the electric. Figures (4), (7) and (10) show that the electric 

field increases when the vertical distance of the field point 2d  is increased until it reaches to a 

certain value then decreased. Furthermore, Figures (11) - (13) show that the electric field is 

strong in sea-water region, where the source and the filed point are in the same region. These 

results coincide with previous results obtained by using other methods. However, this method 

is much easier and delivers these results more quickly and thus save the time exhausted in 

previous tedious approaches. Therefore, this method which is another contribution of this 

paper, is very important as it saves the researcher's time in finding the accurate results of the 

problem in a very short time. 
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VIII. Discussion and Conclusion 
In this paper we summarized our research work and its visible deliverable are the complete 

formulas that have been derived for the electromagnetic fields generated by a vertical 

magnetic dipole embedded in sea (the three-layered media) with planar interfaces. The 

observation point is located in air, seawater, and ground, respectively. Moreover, the distinct 

physical meanings of the derived fields in each of the three regions are discussed separately. 

Numerical calculations of the field components are performed and illustrated.  

This paper also contributes to the analysis of the EMFs which is based on this method, as it 

depends on the use of some integral identities and the identification of the stationary phase 

point of the integrand to evaluate SI rapidly. This was illustrated by showing the form 

solutions of the far-fields were first expanded, and then with the help of the complex image 

theory [12], closed form expressions of the far-field in the three regions were obtained simply. 

It is necessary to note that, the slowly varying part in SI has no singularities at the stationary 

phase point. The results of this work agreed to a great extent with the conventional stationary 

phase method or saddle -point method, but it is quicker and it can be easily used to calculate 

the far – fields for similar problems. 

The results obtained are useful in many engineering applications such as underwater 

communication, mine communication, radar and geophysics exploring.  It can also be used in 

developing fast and simple interpretation tools for estimating the earth structure and other 

remote sensing applications. 
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