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Abstract: Generally, physical phenomena are represented in the form of explicit 

mathematical expressions that stem from basic governing equations. However, in many cases, 

having these expressions may not be achieved and a considerable part of our knowledge relies 

on abstract numbers produced via lab experiments or computer simulations. In the absence of 

explicit relations for the variables of the physical phenomena, surrogates emerge as a reliable 

alternative. Surrogates have evolved in the recent years and gained the attention of researchers 

and, in the field of aerodynamics; surrogates have been widely used in multiple applications. 

In the present paper, surrogates are implemented in a new application namely, the relation 

between the design of a 10% diamond airfoil and its aerodynamic coefficients. Kriging 

interpolation and polynomial regression surrogates are constructed based on data taken from 

CFD simulations of the turbulent, Mach 2, zero-incidence flow about 104 airfoil samples 

representing almost all possible designs of that airfoil. 

The constructed surrogates are proved to incorporate the CFD data with a high accuracy. They 

also yield useful visual representations of the physical phenomena in hand and generate 

simple mathematical expressions for these phenomena as well. 

 

Keywords: Supersonic airfoils, aerodynamic coefficients, surrogates 

 

I. Introduction 

In contrast to subsonic and transonic airfoils, the supersonic airfoils are characterized by a 

sharp leading edge. This key design feature is intended to generate a straight, attached shock 

wave ahead of the airfoil much weaker than the detached bow shock wave generated ahead of 

airfoils with blunt leading edges. Downstream of the leading edge, the flow over the airfoil 

subsequently expands as it passes through a series of expansion waves. The typical flow 

pattern around a symmetric diamond-shaped airfoil at zero incidence is illustrated in Fig. 1. 

 

 

 

 
 

Figure 1. A typical flow pattern around a symmetric diamond-shaped airfoil at zero 

incidence 
 

The flow pattern becomes more sophisticated as the complexity of the airfoil design 

increases, in cases of non-symmetric airfoils and/or at incidence. In all cases, the local flow 

direction is parallel to the airfoil surface whereas the local flow properties depend on the 

strengths of the shock waves and expansion fans. As a consequence, at given freestream Mach 

number,   , and incidence angle, the aerodynamic coefficients of the airfoil are solely 

dictated by its design. 
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The aerodynamic coefficients of supersonic airfoils can be estimated using two 

approaches namely, the exact shock-expansion theory and the linearized supersonic flow 

theory. The shock-expansion theory [1] is an exact theory that is derived from the 

fundamental governing equations of inviscid compressible flow. It is based on a stepwise 

treatment of the supersonic flow over a body of arbitrary shape as a set of shock waves and 

expansion fans. By treating each of them separately, the flow properties over the entire airfoil 

can be estimated for known freestream flow properties. In contrast, the linearized supersonic 

flow theory [2] stems from the linear theory dealing with bodies that generate small 

disturbances in the flow. The linearized theory provides very simple closed-form equations 

that are used to estimate the flow properties over the entire airfoil.   

 However, both the exact shock-expansion and the linearized theories assume that the 

flow is potential. Hence, they can’t predict the skin friction drag on the airfoil. More 

importantly, they fail to deal with situations where the flow separates on the airfoil surface. 

The only way to account for such aspects is to simulate the flow around the airfoil using 

computational fluid dynamics (CFD) techniques. In CFD simulation, the governing equations 

(depending on the nature and regime of flow) are solved numerically in a discretized domain 

around the airfoil to yield the flow properties over the airfoil surfaces. Nonetheless, CFD 

simulations are more time-consuming and resource-demanding when compared to both 

theories since they involve the activities of domain generation, discretization, and inspection, 

model selection and validation, and post-processing. In fact, CFD simulations may seem to be 

impractically expensive as far as simple aerodynamic problems are concerned. 

Surrogates (also known as surrogate models, response surface models, metamodels, or 

models of the models) have emerged as a compromise solution in the fields involving 

expensive CFD simulations. The concept of surrogates is simple. In the absence of explicit 

mathematical expression of a given physical phenomenon, surrogates provide an alternative 

representation of the functional relations between independent and dependent parameters of 

that phenomenon. In practice, data (representing the physical phenomenon) are manipulated 

by some means to yield explicit mathematical expressions that can be used in lieu of the 

underlying physical relations. These data represent the inputs-output functional relations and, 

hence, inherently convey the underlying physical phenomena. These data, known as the 

training samples, can be originally extracted from diverse sources such as experimental 

measurements and samples, CFD simulations, etc..   

In the literature, there exist a considerable number of surrogates however, they can be 

classified into two broad categories depending on the way they incorporate the data used in 

their construction. Surrogates can have either regression or interpolation structure. In the 

regression structure, the surrogate model is simply fitted among the available data whereas in 

the interpolation structure, the surrogate model actually passes through all the available data. 

In the present study, two well-known surrogates, each representing a category, are 

implemented.  

Polynomial regression surrogate is a parametric regression surrogate. It was originally 

tailored for physical experiments in which the output is characterized by random errors and 

later introduced to computer-based experiments by Montgomery and Evans [3] to account for 

the random numerical errors. In this method, the surrogate is represented by a polynomial plus 

an error:  

 yŷ                               (1) 

where   represents the random error. The approximation polynomial can have any order 

however, in most engineering applications, researchers used polynomials of the first order 

(linear): 
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and second order (quadratic): 
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o  and  ji,ij   are called the intercept and the interaction coefficients, respectively. The 

polynomial coefficients are estimated via minimizing the sum of squares of the deviations of 

predicted values from the original data. 

Polynomial regression metamodels have been implemented in a wide range of 

aerodynamic applications including helicopter rotor blades [4], launch vehicle wing [5], 

NASA rotor67 [6], high-speed civil transport [7], flying wings [8], transonic airfoils [9], and 

predicting the aerodynamic coefficients of cranked wings [10]. 

Kriging is a non-parametric interpolating surrogate. It was originally introduced by D. 

G. Krige (and was named after him) in the field of geology to predict the concentration 

patterns of mineral resources in a field using samples [11]. Later, Kriging was developed and 

made popular in computer-based experiments by Sacks et al. [12]. The mathematical 

expression of Kriging metamodel comprises two parts, a mean (trend) function and localized 

deviations (pulls) from the mean at the training samples 

     xzxfxŷ                      (4) 

The mean function is a linear regression (of arbitrary order) of the training samples 

representing the trend of the response based on the available data. In common engineering 

problems, the mean takes the form of a constant or a first-order polynomial. The second term 

in Eqn. (2.10) has a form of a Gaussian stochastic function with a correlation structure based 

on the generalized distances among training samples; the spatial correlation function,  dscf  

of the Euclidian distance among samples, d . Generally,  dscf  can have many forms; 

typically linear, cubic, or exponential. The exponential correlation function has the most 

flexible structure that can handle phenomena with variable complexity. It is expressed as: 

  )dexp(dscf p  .        (5) 

The value of power, p , varies from 1 to 2. The spatial correlation function is referred 

to as exponential, general exponential, or Gaussian if the value of the power is 1p  , 

2p1  , and 2p  , respectively.  

The most characteristic feature of the Kriging metamodel is the large number of 

undetermined parameters namely, the mean, the model variance, and the parameters p  and 

, the latter can have the same value for all parameters or different values for different 

parameters [13]. They should be carefully “tuned” to ensure the "best fit" of the model to the 

available training samples.  

In the literature, Kriging surrogate was widely used in many aerodynamic applications 

including transonic airfoils [14], multi-element airfoils [15], flow control jets [16], engine 

nacelle [17], spiked hypersonic vehicles [18], HSCT and oblique wing body (OWB) designs 

[19], and  supersonic projectiles [20]. 

 

The objective of the present study is to examine the concept of representing the 

aerodynamic coefficients of a supersonic diamond airfoil using surrogate models. Focus is 

made on lift and drag coefficients at zero incidence for 10% thick diamond airfoils of 

different designs. The paper is organized as follows. The case study and methodology are 

explained in detail in the next section. Presentation and discussion of the main results follow 

and the paper finalizes with the main conclusions. 
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II. Case study and Methodology 

II.1. Case study 

A non-symmetric diamond-shaped airfoil of a unit chord,    , representing the section 

of a unit-span wing, is considered. The maximum thickness of both the upper and lower 

surfaces are fixed and equal to    of the chord whereas the locations of the maximum 

thickness per chord on both surfaces,    and   , are variable and different, Fig. 2.  

 

  

  

 

   

 

 

Figure 2. Geometry of the test case 

 

The airfoil is exposed to a supersonic freestream of Mach,     , at zero incidence. The 

values of    and    should be high enough to ensure that an attached shock wave is generated 

on surfaces (1) and (2), respectively. For the value of the freestream Mach number considered 

here and due to similarity, both    and    should be at least 0.137 of the airfoil chord length.  

 

II.2. Design of experiments 

By varying the values of    and   , different designs can be attained. Consequently, the 

design space in concern is two-dimensional with    and    as the coordinates. They are varied 

independently from their corresponding minimum values up to   with 100 intermediate steps. 

A full factorial sampling would generate 10000 distinct designs that would be extremely 

computationally expensive. Thus, Latin hypercube sampling (LHS) [21] is adopted. LHS has 

the advantage of producing a space-filling sampling with a reduced number of samples. The 

two design parameters are first normalized to the range [0,1] such that the value of 0 refers to 

the minimum allowable value of    and    mentioned above namely, 0.137 of the airfoil 

chord. Then, 100 values for each design parameter are selected such that none of the samples 

have the same values for    and   . Four samples are manually added at the “corners” of the 

design space to ensure that the extreme designs are included in the study. The locations of the 

104 samples in the 2D design space are shown in Fig. 3. 

 

 
Figure 3. Design of the CFD experiments 
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II.3. Setting the CFD simulations 

Computational domain and boundary conditions 

For each airfoil design, a 2D computational domain is constructed; a sample is shown 

in Fig. 4a. The domain shape and extents are designed so as to incorporate the shock waves 

and expansion fans that are generated on the airfoil and to make the computational grid more 

aligned with these features.   

   

 
 
 
 

 
 
 

 

                            (a)   (b)    (c) 

Figure 4 Details of the computational domain around a sample airfoil  

Definitions of the boundary conditions are as follows. The upstream boundary is set as 

pressure farfield where the flow pressure, static temperature, Mach number, and direction are 

defined. The downstream end of the domain is set as pressure outlet where the flow total 

temperature is defined. The computational domain is then divided into multiple blocks, Fig. 

4b, that are discretized using a structured grid, Fig. 4c. The grid resolution is increased at the 

leading and trailing edges of the airfoil and the junctions of airfoil surfaces as illustrated in the 

close-ups in Fig. 4c. 

 

Grid sensitivity check 

Three grids of different resolutions are constructed on a sample airfoil to make sure 

that the simulation results are independent of the spatial discretization.    and    of the tested 

airfoil are 0.7 and 0.3 of the chord, respectively. Table 1 summarizes the metrics of the grids 

and the corresponding values of total drag coefficient.    

 

Table 1 Results of the grid sensitivity check 

 Grid metrics  
 Cell height at wall Cell count Drag coefficient  

Coarse grid  0.001 28000 0.0278 
Medium grid  0.0001 28000 0.0277 

Fine grid 0.0001 53000 0.02778 

 

The medium and fine grids yield almost the same value of drag coefficient; the 

difference is only 0.8 drag counts. The medium grid would indeed be less computationally 
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expensive however, the fine grid metrics were adopted in the simulations since the simulation 

budget was affordable. 

  

CFD code validation 

To validate the CFD code, one case from the theoretical investigation of Ivey et al. [1] 

(based on the exact shock-expansion theory) is reproduced numerically. The validation case is 

a symmetric diamond-shaped airfoil of equal leading and trailing-edge angles of    placed at 

   incidence in a Mach 4 freestream. The metrics of the fine grid were utilized in the 

simulations. Table 2 holds a comparison between the theoretical and calculated values of local 

pressure coefficients and Mach numbers on the four surfaces of the airfoil. The accuracy of 

calculations of the code is assumed acceptable. CFD simulations are conducted for each of 

104 airfoil designs using the validated CFD model based on the validated grid. 

 

Table 2 Validation results for the calculation code 

 Local pressure coefficient Local Mach number 
 Theory [1] CFD Theory [1] CFD 

Forward windward 0.0416 0.042 3.7 3.69 
Rearward windward 0.0188 0.019 3.84 3.82 

Forward leeward -0.0169 -0.0163 4.16 4.142 
Rearward leeward -0.0308 -0.0306 4.33 4.299 

 

 

 

II.4. Surrogate models 

Upon completion of all CFD simulation cases, the aerodynamic coefficients for all 

airfoil designs are estimated. Based on these high-fidelity values, surrogates are constructed 

for each aerodynamic performance criteria namely, lift and drag coefficients.  

Six types of Kriging surrogates as well as two types of polynomial regression 

surrogates are examined in the present work. These surrogates are listed in the Table below. 

for easier referencing, each surrogate type is given a special designation that is used in the 

remainder of the paper. 

 

Table 3 Description of surrogates 

Surrogate 

Designation 

Description Mathematical representation 

GEX0 Kriging surrogate with a 

constant mean and a 

general exponential 

correlation  

  oLU l,lf  

  )dexp(dscf p  , 2p1  

GEX1 Kriging surrogate with a 

first-order mean and a 

general exponential 

correlation 

  L2U1oLU lll,lf   

  )dexp(dscf p  , 2p1  

EX0 Kriging surrogate with a 

constant mean and an 

exponential correlation 

  oLU l,lf  

  )dexp(dscf   

EX1 Kriging surrogate with a 

first-order mean and an 

exponential correlation 

  L2U1oLU lll,lf   

  )dexp(dscf   

GU0 Kriging surrogate with a 

constant mean and a 
  oLU l,lf  
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Gaussian correlation   )dexp(dscf 2  

GU1 Kriging surrogate with a 

first-order mean and a 

Gaussian correlation 

  L2U1oLU lll,lf   

  )dexp(dscf 2  

PR1 Polynomial regression 

surrogate of the first order  
L2U1o llŷ   

PR2 Polynomial regression 

surrogate of the second 

order 

2
L5

2
U4LU2L2U1o llllllŷ   

 

III. Results and Discussion 

III.1. The typical flowfield structures 

Indeed, the flowfield features would change from each of the 104 airfoil design to 

another depending on values of    and   . Since this is not the scope of the present study, 

focus is made on four airfoil designs that yield the extreme values for both lift and drag 

coefficient. The flowfield features around these designs are illustrated in Figure 5 where the 

contours of the flow pressure coefficients are plotted.   

 

 
(a) Model with minimum drag coefficient 

 
(b) Model with maximum drag coefficient 

Shock 

wave 

Expansio

n fan 
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(c) Model with minimum lift coefficient 

 
(d) Model with maximum lift coefficient 

Figure 5 Flow pressure contours around models with extreme lift and drag coefficients 

 

Indeed, the controlling flow features are the shock waves and expansion fans. The 

strength of these two features dictate the local pressure values over the airfoil surfaces and is, 

in the same time, governed by the surfaces’ dimensions.    

 For the freestream conditions investigated here, the airfoil that yields the minimum 

drag is characterized by a symmetric design;          , Fig. 5a. This design implies that 

the shock wave and expansion fan strength on both upper and lower surfaces are such that the 

local pressure coefficients on the forward surfaces are equal (and opposite in sign) to those on 

the rearward surfaces. Overall, the drag coefficient is minimized and is owed mainly to the 

skin friction drag on the airfoil surfaces. In contrast, drag attains a maximum value for the 

airfoil at which the shock waves ahead of the leading edge are as strong as possible. This 

occurs for the design with                 , Fig. 5b. Since the forward surfaces are the 

shortest, the subsequent expansion ahead of the rearward surfaces is strong, too. The overall 

effect is that the drag is maximized. 

At zero incidence, lift is minimized for all symmetric airfoil designs such as those 

shown in Fig. 5a to c. Symmetry of airfoil designs (about the chord line) yields identical 

shock waves and expansion fans of the same respective strengths on the upper and lower 

surfaces of the airfoil. The resulting similarity of the local floe pressure values produces no 

lift on the airfoil. Finally, the airfoil in Fig. 5d produces the highest lift among the 104 

samples investigated. Despite that pressure over the upper forward surface is higher than that 

over the lower, the combined effect of pressure along with surfaces dimensions and 

inclinations yields the maximum lift coefficient. 
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III.2. Surrogate assessment 

A major precaution of using surrogates is that they introduce a degree of uncertainty to 

the predicted response [22]. Hence, it is crucial to examine their quality before using them as 

an alternative model. Evaluating the residual errors at the training samples can be useful. 

However, this can only be applied to regression surrogates; interpolation surrogates would 

give zero residual error at the training samples. In addition, it is more appropriate to assess the 

accuracy of prediction or the generalization error estimation of the surrogate. Generally, this 

is done by comparing the surrogate responses at new (untried) samples, the test samples, with 

their high fidelity model counterparts. The error at these new samples is measured by a 

number of error metrics such as the mean square error, the root mean square error, the mean 

absolute error, or the maximum absolute error. To select the test samples, there are two 

approaches namely, split sample and cross-validation [23].  

In the split sample approach, the available samples are split into two sets, training and 

test sample sets. The former is exclusively used to construct the surrogate whereas the latter is 

exclusively used to assess its accuracy. The error at the test samples is measured by a number 

of error metrics such as the root mean square error (RMSE), the maximum absolute error 

(MAE), and the maximum error (MAXE). On the other hand, in the cross-validation 

approach, all the available samples are used in constructing the surrogate. Next, the samples 

are divided into k  subsets of roughly equal sizes ( k -fold cross-validation). Then, the 

surrogate is constructed k  times. In each time, one of the k  subsets is omitted from the 

training process and is used as test set (this approach is also known as leave- k -out cross-

validation. In the cross-validation approach, the surrogate accuracy is measured by the mean 

square error (MSE). 

In the present study, both surrogate assessment techniques are implemented. In the 

split-sample techniques, the original set containing the 104 airfoil designs is split into two 

groups; the training set containing 84 samples, and the test set containing 20 samples. The 

locations for samples in the two sets in the design spaces are illustrated in Fig. 6 below. 

    

 
Figure 6 Locations of training and test samples in the design space  

 

The results of surrogate assessment are summarized in Fig.7a and b for lift and drag 

coefficients, respectively.  It can be clearly inferred that the exponential Kriging surrogate 

with a first-order mean (EX1) yields the most accurate representation of the CFD data for 

both lift and drag coefficients. This may indicate that the trend of these coefficient is response 
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to the variations in    and    is a more linear than a parabolic. In addition, despite their 

simplicity, second-order polynomial regression surrogates can provide a fairly-accurate 

representation of the data. This is more pronounced in the lift coefficient surrogate.  

 
(a) 

 
(b) 

Figure 7 Measures of assessment for (a) lift coefficient surrogates, and (b) drag 

coefficient surrogates 

 

III.3. Representation and significance of the surrogates structures 

One significant feature of a surrogate is that it provides an explicit mathematical 

representation of the functional relation between parameters and response that can infer the 

underlying physics. In addition, a surrogate provides a visual (graphical) representation of the 

physical relation between parameters and response. These aspects are hard, sometimes 

impossible, to attain using solely the row data (numbers) originally used to construct the 

surrogate. These features are addressed in the present section. Focus is made on two 

surrogates that yield the highest accuracy namely, the exponential Kriging with first-order 

trend and the second-order polynomial regression. Here, all 104 airfoil designs are utilized to 

construct the surrogates i.e., training samples for the surrogates. 
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Lift coefficient surrogates 

The carpet curves shown Figure 8 are the graphical representation of the lift 

coefficient surrogates. The CFD values of the 104 samples used in surrogate construction are 

shown as solid dots.   

 
(a) Exponential Kriging with first-order trend 

 
(b) Second-order polynomial regression 

Figure 8 Graphical representation of the lift surrogates 

 

From the graphical form of the surrogate, the response surface, the relations between 

design parameters and output can be inferred. For instance, it is clear that lift is maximized at 

extreme (both low and high) values of   ; intermediate values reduce the lift. In contrast, 

extreme values of    reduce the lift while intermediate values increase it.     

Since the freestream is at zero incidence, airfoil samples can yield positive and 

negative lift coefficients. Moreover, the interpolation nature of the Kriging surrogate and the 
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regression nature of the polynomial surrogate are clear. While Kriging surrogate passes by all 

training samples, polynomial regression surrogate fits itself among them. This makes the 

polynomial surrogate smoother but less accurate. However, the significant advantage of 

polynomial regression surrogates is that they yield simple mathematical representation of the 

parameters-response relation. For instance, the mathematical formulation of PR2 lift 

surrogate is: 

 

                                              
          

           (6) 

 

Despite its simplicity, a lot about the design-response relations for the airfoil lift 

coefficient can be inferred from the above formula. For instance: 

- The positive value of    (       ) and the negative value of    (       ) indicate that the 

lift increases as    increases and    decreases. Physically, this is owed to the increase in shock 

wave strength and hence, the rise in flow pressure over the lower surface as    decreases. The 

opposite is true for the shock wave ahead of the upper surface. The overall effect is the 

increase in lift coefficient. 

- The absolute values of    and    are very close to each other. This indicates that    and    
have almost the same level of dominance in the value of lift coefficient. 

- Comparing the values of    (       ) and    (      ) indicates that   -   relation is more 

linear whereas the   -   relation is more nonlinear. 

 

Drag coefficient surrogates 

Similarly, the graphical representations of the drag coefficient surrogates are shown in 

Fig. 9. Drag reaches maximum values for very small values of    and   . As    and    increase 

towards their intermediate values, drag decreases almost monotonically. It reaches its 

minimum value nearly at the middle of the design space which is interpreted as a nearly-

symmetric airfoil. Drag then increases steeply as    and    increase towards their maximum 

values. 

  The mathematical expression of the second-order polynomial regression surrogate is: 

 

                                            
          

  

 

Examining the above equation indicates that: 

-    and    have almost the same level of dominance with respect to the drag coefficient. 

- Drag acting on the airfoil increases as both     and    decrease and vice versa.  

- Drag is relatively more linear with respect to    is relatively more nonlinear with respect to 

   . This is also inferred from the form of the carpet curves in Fig. 9. 
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(a) Exponential Kriging with first-order trend 

 

 
(b) Second-order polynomial regression 

Figure 9 Graphical representation of the drag surrogates 

 

IV. Conclusions 

Surrogates, based on data originally taken form lab or computer experiments, yield 

mathematical expressions and visual representations in lieu of theoretical equations. These 

alternative models  have recently emerged, evolved, and been implemented in various 

applications. In the present paper, surrogate shave been used in a new application namely, 

dependence of diamond airfoil aerodynamic coefficients in its geometry. Kriging and 

polynomial regression surrogates were constructed and assessed based on data taken from 

CFD simulations of the flow around airfoils of different designs. The concept was 

successfully validated and the features of surrogates were addressed. The same framework 

established in the paper can be applied to other freestream conditions and  airfoil designs. 
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Surrogates constructed in the present work can be further utilized in design optimization 

studies of the supersonic airfoils.   
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