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Abstract:  Both high quality and high-bit-rate transmission’ are critical demands for recent 

mobile communication system. In this multipath environment OFDM has been proven as an 

attractive technique. As errors can still occur in the received data; channel coding is a key 

component is these systems. Since its reintroduction, Low-Density Parity-Check (LDPC) 

codes have gained much attention in the field of coding theory. Several researches have been 

carried out regarding concatenating the LDPC with other codes. This work introduces the use 

of serial concatenation of Reed-Solomon and LDPC. Two schemes of such concatenation will 

be investigated.  The first one uses hard decision decoding of Reed-Solomon code while the 

other one will get use of the reliability output of the LDPC decoder to be fed to Chase-II soft-

decision algorithm to decode the outer Reed-Solomon code.    
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1. Introduction 
Higher rates communication is an everlasting demand for today’s civilization. Channel coding 

is one major player to achieve this goal. Many milestones have been seen in this road which 

boarded by Claude Shannon theory. One interesting milestone appeared in this road is the 

Low-Density Parity-Check (LDPC) codes which have attracted much attention in the field of 

coding theory [1], [2]. It has a performance very close to the Shannon limit with practical 

decoding complexity like Turbo codes [3], [4]. Meanwhile, OFDM has been proven a good 

technique for the high-bit-rate data transmission in a multipath environment that causes inter 

symbol interference (ISI). The wide signal bandwidth is divided into many narrow subbands 

that are transmitted in parallel subchannel. Moreover, a guard interval is added to mitigate the 

ISI such that when each subchannel is taken into consideration, it apparently undergoes flat 

fading [5]. In spite the fact that OFDM randomizes the burst errors caused by fading, many 

OFDM symbols can be distorted in case of deep fades. Increasing the guard interval and the 

number of subcarriers are known as a typical solution to tackle these problems. 

The significant coding gain improvement of Coded OFDM over OFDM has encouraged many 

researchers to study the performance of Coded-OFDM over different channels. LDPC was 

one channel code that shows better performance for OFDM systems [6]-[9]. In [6], the 

performance of LDPC-OFDM system over AWGN and known frequency selective fading 

channel is investigated while in [7] an investigation of LDPC-OFDM for fixed wireless 
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application is presented. The performance of high data rate multiband OFDM systems over 

1Gbps using different forms of LDPC code is evaluated in [8]. In [9] flexible LDPC code is 

designed and optimized for OFDM system in aeronautical channel. 

Motivated by the success of LDPC over OFDM system; a new research trend has been 

started. It focuses on concatenating LDPC codes with an outer code. Reed-Solomon code is a 

strong candidate for concatenation. This is because its superior performance to correct burst 

errors which are quite often to occur during deep fades. There have been many forms of this 

concatenation between Reed-Solomon and LDPC code. In [10] an algebraic method for 

constructing regular LDPC codes based on Reed-Solomon codes was used. In [11], a quasi-

cyclic LDPC (QCLDPC) codes based on a two-dimensional Reed-Solomon codes gives good 

performance with the sum-product algorithm (SPA). The work in [12], [13] develop a parallel 

concatenation of Reed-Solomon and LDPC with size matched to 10GBASE-T Ethernet. This 

scheme was able to lower the error floor to below 10
-14

.   

This paper introduces a serial concatenation of Reed-Solomon codes with two decoding 

approaches. The first decoding process will use the hard output of the LDPC code and 

decoding of Reed-Solomon will be carried out using Berlekamp-Massey algorithm [14]. The 

second approach will get use reliability measure of the output from LDPC decoder and then 

uses Chase-II soft decision algorithm [15] to decode the binary equivalent Reed-Solomon 

code. 

The paper is organized as follows. The system model will be illustrated in section 2. In 

section 3 Reed-Solomon code are will be explained and its hard decision decoding algorithm. 

Chase-II algorithm for binary equivalent Reed-Solomon will be adapted in section 4. Section 

5 will show the details of the sum-product algorithm for decoding LDPC code. Serial 

concatenation between Reed-Solomon and LDPC will be introduced in section 6. Simulations 

results which validate the proposed approach are shown in the section 7. Conclusions are 

figured out in section 8. 

 

 

2. Coded OFDM System Model 
In this section the system model and design parameters for the proposed COFDM scheme are 

presented. In Fig. 1 a block diagram of a COFDM transceiver is shown. The total available 

channel bandwidth B is divided into a number of subcarriers N, each having a bandwidth B/N. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1   Block diagram of the coded-OFDM transceiver. 

 

The data of a specific user, after the application of channel coding, is used to modulate the N 

subcarriers by using binary PSK (BPSK). After the subcarrier modulation, the transmit signal 

is produced by first applying inverse fast Fourier transform (IFFT) to the modulated 

subcarriers and extending the IFFT output by a precursor signal of T samples, which equals 
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the last GIN  samples of the IFFT output and is termed cyclic prefix (CP). The resulting signal 

constitutes an OFDM symbol and is transmitted through the wireless multipath channel. At 

the receiver side, the first GIN  samples of the received signal RT are discarded, an operation 

denoted CP removal. Then FFT is applied to the remaining signal. Then data demodulation at 

each subcarrier takes place, and fed into the channel decoder. 

 

The pilot symbols are inserted into the modulated symbols transmitted over CN  carriers in 

parallel. The multicarrier modulation is implemented using the inverse fast Fourier transform 

(IFFT). The baseband signal at the output of the IFFT block can be expressed as: 

 
1

2 /

0

( ) (1/ ) ( )
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





     (1) 

for  0,1,..., 1Cn N   where n  represents the time index and k is the subcarrier index. A 

guard interval is inserted between consecutive OFDM blocks to prevent ISI and is chosen to 

be larger than the expected delay spread. By inserting the cyclically extended part of OFDM 

block into the guard interval, it helps to maintain the orthogonality between different 

subcarriers and eliminates intercarrier interference. The transmitted OFDM symbols after 

inserting the guard interval is given by: 
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where N is the number of symbols in the block of OFDM, gN  is the number of symbols in the 

guard interval. The total length of an OFDM block is  g CN N . The channel model used in 

this system is a tapped delay line model with time-varying coefficients and fixed tap spacing 

sT , where sT  is the time sampling. The channel is assumed to be a wide-sense-stationary 

uncorrelated scattering (WSSUS) Rayleigh fading channel ( )h n . After the transmitted signal 

( )t

ix n  passes through the channel, the received signal can be written as:  

 ( ) ( ) ( ) ( )t t

i i iy n x n h n w n    (3) 

where   is used for circular convolution, and ( )w n  is a zero-mean AWGN with variance 2

w . 

After discarding the guard interval symbols, the received signal in the frequency domain is 

obtained by using FFT and can be written as:  
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where ( )iy n  denotes the received signal after removing the guard interval, ( )iH k is DFT of 

( )ih n ,  and ( )iW k is the DFT of ( )w n . The above equations can be also expressed in a matrix-

vector model, which will facilitate later analysis. First, let some basic vector will be defined. 

Note that we omit subscript i for notational simplicity. The transmitted signal in frequency 

domain and time domain can be written respectively as:  

 

      
T

0  1   1CX X X N    X  (5) 

      
T

0  1   1Cx x x N    x   (6) 
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where [.]
T
 denotes transpose. Normally, X  is used to express frequency domain signal, x is 

for time domain signal. Their relationship can be written as:  

 

 H
x = F X  (7) 

where F denotes the FFT transform matrix, and    
1/2

1/ exp 2 / .C CN j mn N F where n  is 

number of column, and m is number of row. Similarly, the received signals can be expressed 

by:  

      
T

0  1   1CY Y Y N    Y   (8)  

      
T

y 0  y 1   y 1CN    y  (9) 

 

and their relationship is:  

 

 H
y = F Y  (10) 

 

if the channel frequency response is denoted by:  

 

      
T

0  1   1CH H H N    H  (11) 

      
T

0  1   1Ch h h N    h  (12) 

 

Then (4) can be rewritten as: 

  

 Y = H X+ W  (13) 

where denotes the Hadamard product of the vector X  and H . 

 

 

3. Reed Solomon Code 
Reed-Solomon codes have many attractive features. They are Maximum distance separable 

(MDS) codes which means that they have the lowest number of redundancy for same code-

rate amongst all other block codes. Nonetheless, Reed-Solomon codes can correct burst errors 

of length determined by the code parameters.  For these reasons, Reed-Solomon codes are 

widely used in the applications of communication and data storages. RS codes can be denoted 

by ( ,RSN K ), where RSN and K represent the length of a block and the length of the 

information symbols, respectively. It can correct up to ( ) / 2RSt N K    symbols [14]. 

Reed-Solomon codes are the special subclass of q
m
-ary BCH codes with s=1. The generator 

polynomial g(x) of t-error-correcting RS codes has roots that are (dmin-1) consecutive powers 

of a primitive element , and is represented by 

    
2

1

t
i

i

g X x 


   (14) 

The parameters of the RS codes are shown in Table 1. 

 

Table 1. Parameters of RS Codes 

Block length  n=q
m

-1 

Number of parity check digits n-k = 2t 

Minimum distance dmin = 2t+1 
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Fig. 2   Reed Solomon decoder architecture 

 

The received polynomial R(x) can be decomposed as: 

 R(x) = C(x) + E(x) (15) 

Let E(x) = E0 + E1x + …+ En-1x
n-1

 be the expansion of the error polynomial. Assume that 

there are at most s errors. Let j1, j2, …, js denote the positions of the errors. The error locations 

can be defined as: 

The error Location Xi can be defined as ij

iX   and the error magnitude Yi is defined as 

ij
E where both Xi and Yi are elements of GF(q). The first step in decoding a received message 

R(x) is to compute its syndromes. The syndromes are defined as:  

The syndrome sl, for 1 l  s, of the received message is the polynomial R(x) evaluated at l
, 

i.e., sl= R(l
). 

Since C(l
) =0, we have sl = R(l

) = E(l
) for 1 l  2s. Thus, 

  
1 1

i
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ljl l

l i i i

i i

s E Y Y X 
 

     (16) 

and the syndrome polynomial can be defined as: 

  
1

i

i

i

s z s z




  (17) 

Having computed the syndromes, the error locator and error magnitude polynomials have to 

be solved. The error locator polynomial (z) can be defined as: 

    
1

1
s

i

i

z X z


   (18) 

While the error magnitude polynomial (z) can be defined as: 

R(x): received codeword 

C(x): corrected codeword 

Syndrome Calculator 
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The equation which relates the three polynomials s(z), (z), and (z) is called the key 

equation: 

        2 11 mod ss z z z z     (20) 

Two widely used methods to compute (z) and (z) are; the extended Euclidean algorithm 

and the Berlekamp-Massey algorithm. Having solved for (z), the Chein search algorithm is 

used to compute the error locations Xi. Finally, Forney’s formula gives the error magnitudes 

as follows: 

    1 1

1

1
s

l l j l

j
j l

X Y X X  




   (21) 

As the solution for the error polynomial E(x) has been found, the codeword C(x) can be 

computed as: C(x) = R(x) - E(x), and the decoding is complete. 

 

4. Soft-Decision Decoding of Reed-Solomon Using Chase-II Algorithm 
Although Reed-Solomon codes are mainly non-binary codes; they can be used for binary data 

since every element in GF(2
m
) can be represented uniquely by a binary m-tuple, called an m-

bit symbol. Suppose a Reed-Solomon ( ,RSN K ) code with symbols from GF(2
m
) is used for 

encoding binary data. A message of Km bits is first divided into K groups each of m-bits. 

Each m-bits is regarded as a symbol in GF(2
m
). The K symbols are then encoded into N-

symbols codeword base on the Reed-Solomon encoding algorithm. By this way we have got a 

binary codeword encoded by what is called the binary equivalent Reed-Solomon code. This 

allows the use of soft decision decoding algorithms used for binary BCH codes to be used for 

soft-decision decoding of Reed-Solomon codes. In this work the sub-optimal Maximum 

Likelihood decoding (MLD) algorithm, Chase-II, will be used for Reed-Solomon decoding 

using the soft-output from the inner LDPC decoder. 

Consider the transmission of codeword vector X encoded using a linear block code C with 

parameters (n, k, dmin) where n is the code length, k is the number of information bits, and dmin 

is the minimum distance, on a Gaussian channel using BPSK, i.e. 0  -1 and 1   +1. At the 

receiver the received sequence Y = (y1, …, yl, …,yn) at the output of the Gaussian channel for a 

transmitted codeword X = (x1, …, xl, …, xn) is given by 

 Y = X + G (22) 

where components gl of G = (g1, …, gl, …, gn) are additive white Gaussian noise (AWGN) 

samples of standard deviation . For binary symmetric channel elements of Y are quantized to 

0 and 1. This is equivalent to deciding which one of the two logical values was transmitted. In 

other words, no information is passed about the reliability of the hard decision. Better results 

can be expected when the quantized analogue received signal is passed directly to the 

decoder. In that case, the demodulator will generate the reliability sequence r=(r1, …, rl, …, 

rn) from Y. 

The reliability of the component yj can be defined using the log-likelihood ratio (LLR) of 

decision yj 

 
 
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Pr 1| 2
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Pr 1|

j j

j j j

j j

x y
y r y

x y 

    
           

 (23) 

If we consider a stationary channel, we can normalize the LLR with respect to constant 2/2
, 

and the reliability of yj is then given by |yj|. To find the optimum decision D = (d1, …, dl, …, 

dn) corresponding to the transmitted codeword X, one has to search through all the codewords 
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of a given block code. The Maximum Likelihood (ML) codeword is the closest to the 

received sequence Y as follows:   

  
1

min  | |   .  
n

H i

j

j

D r Y C


 
  

 
  (24) 

where  1 ,..., ,...,i i i i

l nC c c c  is the i
th

 codeword of C and Y
H
= (y1

H
, y2

H
 …, yn

H
) is the hard 

decision decoded sequence of R and xj defined as: 

 
j0 0

        
1 0

H

j

j

r
y

r


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
 (25) 

For an (n, k, dmin) block code, MLD searches all the 2
K
 codewords to find the ML codeword, 

D. Altho0ugh, optimum performance can be achieved by using MLD, this type of decoding 

algorithm is associated with a prohibitive complexity increasing exponentially with k. Chase 

[15] presented a sub-optimum decoding algorithm, which uses channel reliability information 

to limit the associated complexity. This algorithm generates a set of several candidate 

codewords by using hard-decision decoding and chooses the most likely one among them. 

The basic procedure of the Chase algorithm is subsequently explained: 

1. Make hard decision on each symbol in the received sequence to produce vector Y
H
. 

2. Sort the received bits in an ascending order according to the their reliabilities. 

3. Determine the positions of the P = dmin/2 Least Reliable Bits using reliability.    

4. Deliberately generate exhaustive patterns of errors, E, as all possible combinations of 

1’s and 0’s in the positions of LRBs. 

5. Form test sequences Z=E+Y
H
 and algebraically decode each sequence created in this 

manner. 

6. Compute the correlation metric D for each of the codewords in Z to the received 

sequence, and then choose the codeword with the minimum distance. 

 

The Chase algorithm [15] can be applied with a different number of test patterns. The number 

of test patterns considered are 
min / 2

n

d

 
 
   

 for the Chase-I algorithm, min /2
2

d    for the Chase-II 

algorithm, and min( / 2) 1d     for the Chase-III algorithm. Due to a large number of error 

patterns to be tested, Chase-1 algorithm is of little interest in practice. In addition, Chase-III 

algorithm improvement at practical bit error rates (BER’s) is not significant. It is of interest 

only for large minimum distance codes since the number of test patterns grows only linearly 

with the minimum distance of the code. The Chase-II algorithm meets most of the 

requirements of Reed-Solomon since it offers a good tradeoff between performance and 

complexity.  

 

5. Low Density Parity Check Code 
LDPC codes are linear block codes defined by a very sparse parity-check matrix LDPCH . A 

code with rate /R K N  is defined by the number of input bits K in a block and the number 

of output bits N. Matrix LDPCH is required to be full rank, with dimensions ,M N  where 

.M N K    Regular LDPC codes are defined by a constant row weight of rw and a column 

weight of cw , where cw M  and    /  r cw w N M [10]. Therefore, LDPCH has a small number 
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(density) of ones, giving the code its name. If the number of one’s per column or row is not 

constant, then the code is an irregular code [11]. In this paper, we consider regular LDPC 

codes. In order to avoid low-weight codeword we ensure that no two columns in the LDPCH  

matrix overlap in more than one non-zero bit position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Relation between the check nodes and bit nodes 

 

The encoding of LDPC codes is the same as that of common block codes. But it has a special 

decoding method, an iterative probability algorithm known as the sum-product or belief 

propagation. At each iteration of the decoding, each bit node gets probability message from 

all the check nodes connected to it, and sends messages back to these check nodes after 

processing, The similar procedure is applied to each check node, which will receive messages 

from the connected bit nodes and transfer the processed messages back to these bit nodes. 

In Figure 3, ( )M l denotes the set of check nodes that are connected to the bit node l , i.e., 

positions of “1”s in the thl  column of the parity-check matrix. ( )rL m denotes the set of bits 

that participates in the thm parity-check equation, i.e., the positions of “1”s in the thm  row of 

the parity-check matrix. ( ) \N m l represents the set ( )rL m with the thl  bit excluded and 

( ) \M l m represents the set ( )M l  with the thm check excluded. 
i

l mq  Where i = 0, 1, denotes the probability information that the bit node l sends to the check 

node m , indicated as ( )lP x i . 

While i

m lr   denotes the probability information that the thm  check node gathers for the thl  bit 

being i . In other words i

m lr   is the likelihood information for lx i  from the thm  parity-check 

equation, when the probabilities for other bits are designated by the i

l mq   so, i

m lr   can be 

considered as the “extrinsic” information for the thl bit node from the thm check node. The “a 

posteriori probability” (APP) for a bit is calculated by gathering all the extrinsic information 

from the check nodes that connected to it. This can be obtained by the iterative belief 

propagation procedure. For binary codes, the sum-product algorithm can be performed more 

efficiently in Log domain, where the probabilities are equivalently characterized by the log-

likelihood ratios (LLRs):
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a. Initialization 

Each bit node l is assigned an a priori LLR. ( )lL p . In case of equi-probable inputs on the 

channel with BPSK. 

 
( | 1)

( ) log
( | 1)

l l
l

l l

P y x
L p

P y x

 


 
 (26)  

where x , y represent the transmitted bit and received bit respectively, for every position 

( , )m l  such that ( )LDPC mlH = 1, where ( )LDPC mlH  represents the element of the thm  row and the 

thl  column in the parity-check matrix, ( )l mL q   and ( )m lL r   are initialized as: 

 ( ) ( )l m lL q L P   (27) 

 ( ) 0m lL r    (28) 

b. Checks to Bits 

Each check node m gathers all the incoming information ( )l mL q  ’s, and updates the belief on 

the bit n  based on the information from all other bits connected to the check node m . 

 1

( )\

( ) 2 tanh tanh( ( ) / 2)
r

m l l m

l L m l

L r L q

 



 
   

 
  (29) 

c. Bits to checks 
Each bit node n propagates its probability to all the check nodes that connect to it 

 '

' ( )\

( ) ( ) ( )l m l m l
m M l m

L q L P L r 


     (30) 

 

d. Check Stop Criterion 
The decoder obtains the total a posteriori probability for the bit l by summing the information 

from all the check nodes that connect to the bit l . 

 
( )

( ) ( ) ( )l l m l

m M l

L q L P L r 



    (31) 

Hard decision is made on the ( )lL q , and the resulting decoded input vector is checked against 

the parity-check matrix LDPCH . If 0LDPC H y , the decoder stops and outputs input vector. 

Otherwise, it repeats the steps b, c and d until 0LDPC H y , or a maximum number of iteration 

is set to stop the iteration. 

 

 

6. Serial Concatenation of LDPC Codes and RS Codes 
Concatenation of codes is a very useful technique, which leads to the construction of very 

efficient codes by using two or more constituent codes of relatively small size and 

complexity. There are essentially two ways of concatenating codes: traditionally, by using the 

so-called serial concatenation and more recently, by using the parallel concatenated structure 

of the first turbo coding schemes. Both concatenation techniques allow the use of iterative 

decoding [3], with a price of more delay time of the decoder processing, especially in serial 

concatenation.  

In this work serial concatenation of codes is introduced between RS codes and LDPC codes a 

message block of mK binary bits are first encoded by an outer Reed-Solomon ( RSN , K )code, 

which generates a codeword of m RSN  bits that are then encoded by the inner code 

LDPC( LDPCN , j , n ), which generates a codeword of LDPCN  bits.  
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Fig. 3   Simple block diagram explain the concatenation of RS and GLDPC 

 

Since delay is a major problem in serial concatenation, it was worth considering two decoding 

schemes in this work. The first scheme relays on a hard decision output of ( )lL q from the 

inner LDPC code, to be used by Reed-Solomon codes in a Hard-In-Hard-Output fashion. The 

second scheme, shown in Fig. 3, will relay on soft ( )lL q output from the inner LDPC code to 

be used by Reed-Solomon codes in a Soft-In-Hard-Output fashion. Comparing the 

performance of both schemes will be presented in the following section. These two schemes 

avoid the excess delay introduced in iterative decoding of serial concatenation since both 

codes 

 

 

7. Simulation Results 
In this section, the performance of the proposed serial concatenation schemes that uses RS 

(63, 55) as an outer code the regular (6,3) LDPC as an inner code will be introduced. 

Simulation of both schemes will be carried out using an OFDM system over a mobile fading 

channel. The simulation foundation assumes the Rayleigh fading channel, the maximum delay 

spread is around 800 ns, the minimum coherence bandwidth approximately equals 1.25 MHz, 

CN = 64, then the bandwidth of a single subcarrier become 78.125 kHz. Furthermore, with 

respect to the characteristics of the channel, if tx  is chosen to consist of gN = 6 symbols, 

since the duration of the guard interval equals 1.2 ms, which is larger than the maximum 

delay spread. We have chosen the guard interval to be greater than the maximum delay spread 

in order to avoid inter-symbol interference. These channel parameters match a LEO satellite 

channel model [16].  

The output encoded data from RS-LDPC will be of size 756 bits, where an outer RS (63, 55) 

over GF (2
6
), and an inner LDPC (756, 2, 15) code are used. The overall code rate is 0.4666. 

The binary equivalent Reed-Solomon encoder accepts 55x6=330 bits as input and outputs 

63x6=378 binary bits. The inner LDPC encoder uses a parity check matrix of size 378×756 

which results in an encoded bit stream of length 756 bits.  

This transmitted vector is transmitted using OFDM modulation over the used channel and 

after reception the noisy received 756 bit stream will enter the LDPC decoder. The LDPC 

decoder uses the Sum–Product Algorithm [8] which can output either a soft or hard decision 

values. The number of iteration for both decoding scheme is set to 4.  

In the first decoding scheme Reed-Solomon decoder is a Hard-Input-Hard-Output that accepts 

378 bits and it uses Berlekamp–Massey Algorithm to decode them into 330 recovered 

received bits. In the second decoding scheme Reed-Solomon works in Soft-Input-Hard-

Output mode. It uses the Chase-II algorithm with number of least reliable bits equals 3 that 

results in 8 test error patterns. Although this number can be increased; but it will be associated 

with exponential complexity.  

 

( )lL q
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decoder 
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Fig. 6   Comparison between two decoding schemes 

 

Figure 6 shows the BER performance of the two decoding schemes using OFDM modulation 

over a Raleigh fading channel. It is clear that soft decision decoding, even with a limited 

number of test error patterns, gives significant improvement over hard decision decoding of 

Reed-Solomon Codes. At BER=10
-5

, soft decision decoding can achieve a coding gain of      

1-dB. Although more coding gain can be obtained by either increasing the soft-decision 

decoding capability of Chase-II algorithm or increase the number of iteration of LDPC 

decoder, but one has to consider the added complexity to the system.  

 

 

8. Conclusions 
LDPC codes are attractive channel codes especially for OFDM. Concatenation with LDPC 

can improve the performance of these systems. Because of their superior performance in 

correcting burst errors, Reed Solomon codes have been concatenated with LDPC codes. In 

this work a serial concatenation, which is far simpler to implement than parallel 

concatenation,  between an outer Reed Solomon code and an inner LDPC code has been 

presented. Two decoding schemes have been investigated for decoding Reed-Solomon codes. 

Soft-decision decoding of Reed Solomon code using Chase-II algorithm has resulted in 1-dB 

coding gain compared with the first decoding scheme based on hard-decision decoding. 

Further coding gain of the second decoding scheme is possible either by increasing the 

number of test error patterns of Chase-II algorithm or by increasing the number of decoding 

iterations of the LDPC code. However, one must consider the excess produced delay due to 

the nature of serial concatenation. 
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