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Abstract: Compressive Sensing (CS) theory is a newly developed theory which combines the 

signal sampling and compression based on the sparsity characteristics of the signal. Applying 

CS theory in radar signal processing may lead to a reduction in sampling rate, complexity, 

power consumption, and cost. On the other hand, performance is a critical point to be 

considered.  

In the present paper, an important question of the worthy of applying CS in the signal 

processing of Linear Frequency Modulated Continuous Wave (LFMCW) radar is considered. 

Two approaches of CS are considered; Nyquist rate based approach, and pseudo random 

based approach. The detection performance of LFMCW radar signal processor using CS 

based approaches is compared to the traditional one which is based on Fast Fourier Transform 

(FFT) through Receiver Operating Characteristics (ROC) curves. Comparative analysis 

between CS approaches and the traditional one regarding the performance and complexity is 

presented. 
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1. Introduction 
LFMCW radar is used to measure both the range and velocity of the target. LFMCW radar 

has the advantages of small size, weight, and simple implementation compared to pulse radar. 

To increase the range resolution (order of centimeter), high signal bandwidth is required and 

consequently, high sampling rate (order of Giga Hertz). The main bottleneck to implement the 

digital LFMCW radar receiver is shown in Figure (1). This is due to the fact that traditional 

Shannon Nyquist sampling is done by sampling at a rate greater than or equal to twice the 

highest frequency in a Signal of Interest (SoI)[1]. Furthermore, if it were possible to acquire 

wideband signals with conventional ADCs, it would cause a loss of data that needs to be 

processed [2, 3]. 
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Figure (1): Block diagram of digital LFMCW radar receiver. 
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An efficient way to deal with these high data rates as well as the large amount of data it 

produces is the emerging field of Compressive Sensing (CS) [2]. CS theory states that, given 

certain circumstances, it is possible to reconstruct a signal sampled at a rate below the Nyquist 

rate [4, 5]. A fundamental difference between CS and classical sampling is the manner in 

which the two frameworks deal with signal recovery. In the Shannon- Nyquist framework, 

signal recovery is achieved through sinc interpolation; a linear process that requires little 

computation and has a simple interpretation. In CS, however, signal recovery is achieved 

using nonlinear and relatively expensive optimization-based or iterative algorithms [6–7]. 

Thus, most of the CS literature has focused on improving the speed and accuracy of this 

process [8]. However, signal recovery is not actually necessary in many signal processing 

applications. Very often we are only interested in solving an inference problem (extracting 

certain information from measurements) or in filtering out information that is not of interest 

before further processing.  

 

In the present paper, the application of various CS theory approaches in the signal processing 

of LFMCW radar is discussed and compared with the traditional one. 

 

The rest of this paper is organized as follows: section 2 gives a survey on the principle of CS 

theory approaches. Section 3 describes the application of different CS approaches in LFMCW 

radar. Performance evaluation of LFMCW radar signal processing using CS approaches 

compared with the classical one is provided in section 4. Finally, the conclusion comes in 

section 5.  

 

 

2. Compressive Sensing(CS) Theory 
Recently, the signal processing/mathematics community has seen a paradigmatic shift in the 

way information is represented, stored, transmitted and recovered [9]. This area is often 

referred to sparse representation and compressive sensing. Prerequisite of compressive 

sensing theory is that signal must be sparse or compressible. Under this prerequisite, 

compressive sensing projects high-dimensional signal into a lower dimensional projection 

signal. The process of compression and reconstruction of signal using compressive sensing 

(CS) theory is shown in Figure (2). 
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Figure (2): Block diagram of compressive sensing 

 

 

The first step in Figure (2) is the sparsity transform of non sparse signal x. Suppose S is one-

dimensional discrete-time signal with finite length and real value, which can be seen as a 

column vector in the space R
N
. Known by the Matrix theory, any signal in the space R

N
 can be 

represented by orthonormal basis {xi} where i from 1 to N
 
with linear form. Orthonormal 

basis {xi} can be rewritten as X=[x1, x2… xN] in the form of Matrix. The spare signal S in the 

space R
N
 can be represented as: 
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i i
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S x


  (1) 

where i is coordinate of signal under the base vector xi, whose specific form is ,i iS x   . 

Equation (1) can be rewritten as: 

 S = X  (2) 

where 1 2[ , ,......, ]T

N    . 

It is clear that  and S are equivalent representations of the same signal, x. In other words, S is 

time domain signal, and  is the representation in the transformation domain.  
 

Suppose K be non-zero number of elements of . If K is smaller than N, it can be shown that 

the signal S is sparse or compressible. Meanwhile, basis vector {xi} is the sparse basis of the 

signal S [10]. 

 

The second step is to get M observation values to ensure that the sparse signal S or 

representation  can be reconstructed. The process of observation is really the projection of 

sparse coefficients onto M row vector {φi} where i from 1 to M of observation 

matrix 1 2[ , ,...., ]T

M    , whose size is M×N.   

 

M observation values can be obtained by inner product between  and observation vector 

{φi}, which can be expressed as ,j jy   , j=1,…, M.  

 

Suppose observation vector 1 2[ , ,...., ]T

My y y y , the relationship between time domain signal 

S and observation vector y is given by[15]: 

 1 T CSy X S X S A S       (3) 

where A
cs

 is the measurement CS matrix. 

 

As the dimension M of observation vector is much smaller than the signal length N, the 

inverse problem of solving equation (3) is an ill-posed problem, and so the sparse signal S or 

sparse coefficients cannot be directly observed by M observation values [15]. 

 

Through sparse signal decomposition in the theory of sparse decomposition algorithm, by 

solving the inverse problem of equation (3), sparse coefficients  can be obtained, and the 

signal S can be obtained. To ensure the convergence of the algorithm, the observation matrix 

in Equation (3) must meet the Restricted Isometry Property (RIP) criteria [11]. Also, If  is 

sufficiently “incoherent,” then the information of S will be embedded in y such that it can be 

perfectly recovered with high probability. Current reconstruction methods use greedy 

algorithms such as Orthogonal Matching Pursuit (OMP) [7], Basis Pursuit (BP) [5, 6], 

Regularized Orthogonal Matching Pursuit (ROMP) [12], Complex Approximate Message 

Passing (CAMP) [13] and the Manhattan_norm,ℓ1 [14].  

 

In the present work, the Manhattan ℓ1_norm, and Complex Approximate Message Passing 

(CAMP) algorithms are considered. These two algorithms represent the earliest and the recent 

algorithms used in literature [13]. 

 

There are two approaches for using CS. The first one is based on sampling the original signal 

with Nyquist rate. The second one is based on sampling the original signal with random 



Paper: ASAT-15-218-AV 

 

 

4 

 

sampling function. In the following subsections, discussion of these two approaches is 

presented.  

 

 

2.1 Nyquist Rate Based CS 
First, to obtain sparse signals, the sparse matrix generation is based on the characteristics of 

the original signal. According to the characteristics of the sinusoidal signal of LFMCW radar, 

sparse atomic database can be created using Fourier transformation [18].  

 

The signal will be acquired with a rate depends on Shannon theory and then transformed by 

Fourier transformation to generate sparse signal. These sparse signals is used to generate a 

compressed vector, ym, after multiplying with measurement matrix, Ф, as shown in Figure (3). 

The original sparse signal can be reconstructed from the compressed measurement using two 

approaches; ℓ1-norm and CAMP algorithms.  
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Figure (3): Measurement matrix and compressed signal generation. 

 

 

2.1.1 ℓ1-norm Reconstruction Algorithm 
In the compressed sensing theory, because the number of observations M is much smaller 

than the signal length N where log( / )M K N K [2], thus we are faced with solving 

indefinite equations. Under the prerequisites that signal S is sparse, the problem of solving 

Equation (3) can be transformed into minimizing ℓ1 norm. The minimization using ℓ1-norm 

method, also known as Least Absolute Values Method (LAVM), not always give unique 

solution and there may be several solutions. Also, the solution of ℓ1-norm method is not 

generally obtained directly, but iteratively. Calculations are made according to Equation (4). 

More details about ℓ1-norm can be found in [16] 

 

 y =
1

min TX S  (4) 

 

2.1.2 CAMP Reconstruction Algorithm  
The Approximate Message Passing (AMP) is an iterative algorithm used for solving Equation 

(3) in the presence of real valued signals and measurements. Recently AMP has been 

extended to the case of signals in the complex domain, resulting in the Complex AMP 

(CAMP).  It is a recently developed sparse signal recovery algorithm that delivers excellent 

recovery performance, exhibits fast convergence at low computational complexity per 

iteration, while requiring low arithmetic precision, compared to ℓ1-norm method [13]. 

The estimated signal is firstly initialized as 
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 z
o
 = y (5) 

where z
o 
is the measurement matrix at certain iteration.  

 

The CAMP algorithm computes the reconstructed signal according to the following equations 

[13]: 

 1 1ˆi i i ix A Z x     (6) 

  average iT x  (7) 

where  ix  is the non sparse estimation of the signal, x, and T is the threshold of the estimated 

non sparse signal.  

 

2.2 Pseudo Random Based CS 
The process of acquiring signals compressively using the random demodulator is shown in 

Figure (4) [17, 18]. The random demodulator scrambles the received signal by mixing it with 

a pseudorandom sequence. The scrambled signal is then sampled at a rate below the Nyquist 

rate of the SoI. The receiver operates with pseudo random method differs from traditional CS 

as it does not reconstruct the received signal, so processing is done directly on the compressed 

samples. This approach avoids the computationally intensive non linear reconstruction 

algorithms and results in less data having to be processed.  
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Figure (4): Random demodulator. 

 

The received wideband signal, x (t), is mixed with a random chipping sequence, Pc (t), 

consisting of pseudorandom (0 or 1) values [19]. 

 

The mixed signal is then summed for tL seconds using an integrate-and-dump circuit, and the 

summed value is sampled using a low rate ADC. The time for which the signal is summed, tL, 

is related to the decimation/sub-sampling factor L by the equation 

 L Nt LT  (8) 

where TN = 1/fN and fN denotes the Nyquist frequency of the received signal. The effective 

sampling rate is thus given by 

 N
S

f
f

L
  (9) 

The resulting sampled signal y(m), is a discrete vector with length M, where: 

 
N

M
L

  (10) 
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3. Compressive Sensing LFMCW Radar 
Traditional LFMCW radar theory assumes that the measured return signal after mixing is a 

sinusoidal signal whose frequency is a function of the distance of targets. The traditional 

processing of this signal depends mainly on applying FFT to extract range information [20]. 

To achieve high range resolution, a wide bandwidth should be used implies high sampling 

rate.  

 

In the present paper, to get the benefit of CS theory in reducing sampling rate and complexity, 

different CS approaches are applied on LFMCW radar signal processing and compared with 

the traditional one as shown in Figure (5). 
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Figure (5): Block diagram of LFMCW radar receiver with applying 

 different CS approaches. 
 

Since the demodulated radar signal is sinusoidal, so, it is not sparse. To apply Nyquist rate CS 

based approaches, it is required to transform this signal into sparse signal. Transforming this 

signal into sparse one is equivalent to obtaining its FFT. Then, the obtained sparse signal 

should be compressed to obtain a measurement vector. This vector is then reconstructed to the 

sparse form again. 

 

If ℓ1-norm algorithm is applied in reconstruction, no improvement in performance is expected 

[13]. On the other hand, extra calculation is imposed. The CAMP reconstruction algorithm is 

expected to give an improvement in the output Signal to Noise Ratio (SNR) compared to 

original signal [13]. Also, less calculations and complexity compared to ℓ1-norm method is 

expected. Applying the pseudo random CS based approach takes place directly on the 

demodulated radar signal. It should lead to a reduction in sampling rate and complexity [18]. 

On the other hand, a reduction in performance is expected. 

 

To validate the previous discussion, it is essential to compare between traditional and CS 

based LFMCW radar signal processing in terms of performance and complexity. The 

detection comparison shall be achieved through the ROC curves. The complexity comparison 

shall be achieved through the time and number of calculations. These comparisons may give 

some guidelines for applying CS in LFMCW radar. 
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4. Simulation Results 
Simulation results are obtained based on Monte-Carlo trials using MATLAB package. 

For the traditional FFT based method or the Nyquist rate based CS approaches, the 

demodulated LFMCW radar signal is assumed to be acquired with the Nyquist rate. The 

number of samples to be processed is assumed to be 512 samples. 

 

For traditional FFT approach, the FFT algorithm is applied on the total 512 samples.  

 

For the Nyquist rate based CS approaches, the transform matrix is generated to be 256X512 

resulting in a measurement vector of 256 samples. 

 

For the pseudo random based CS approach, the pseudo random generator selects 256 random 

samples from the original 512 samples. 

 

The thresholding process is achieved through realizing a Cell- Averaging Constant False 

Alarm Rate (CA-CFAR) processor with total window size of 16 cells [21].  

 

Figure (6) shows the relation between the probabilities of false alarm for Nyquist rate based 

approaches (ℓ1-norm and CAMP), Pseudo random based approach, and traditional FFT-based 

approach at different CFAR threshold gain. The CAMP approach gives the ideal Pfa which is 

zero. This is because that the CAMP algorithm itself contains a threshold function which does 

not permit a false alarm at the output. This leads to a reduction in complexity by omitting the 

CFAR processor for the signal processing if this method is used. 
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Figure (6): The relation between probabilities of false alarm of 

 LFMCW radar receiver using Nyquist-based (ℓ1 norm,CAMP),  

Pseudo random and traditional approaches. 

 

 

Regarding to the detection performance Figures (7),(8), and (9) show the ROC curves for 

range processing using Nyquist rate based approach (ℓ1-norm and CAMP), Pseudo random 

based approach and FFT-based LFMCW approach for single target detection at Pfa of  10
-3

 , 
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10
-4

 and 10
-5

 respectively. With respect to CAMP algorithm, the detection does not depend on 

Pfa of CFAR. It depends only on the SNR of the received signal. Controlling the false alarm 

probability for the CAMP algorithm is achieved by controlling the value of the internal 

threshold of the CAMP algorithm. 

 

It is clear that the detection performance due to applying the CAMP algorithm in LFMCW 

radar is better than the other approaches.  

 

The ℓ1-norm based approach gives the worst detection performance. The pseudo random 

approach gives approximately a lower 10% detection than the traditional FFT. 

 

Regarding to the complexity, the ℓ1-norm approach gives the highest complexity and time of 

calculation. The CAMP approach gives less complexity and time of calculation with respect 

to ℓ1-norm, but still gives more complexity of calculation with respect to the traditional one. 

The pseudo random approach gives the less complexity of calculation with respect to other 

approaches. 

 

From the obtained results, it is not recommended to apply ℓ1-norm based CS approach to 

LFMCW radar since it gives the worst detection and the highest complexity. Using the 

CAMP approach gives the best detection performance with an extra calculation complexity 

which may be compensated for by removing the CFAR processor and by using advanced 

tools in implementation [22]. The pseudo random approach gives a considerable performance 

compared to the traditional one with a reduction in sampling rate and complexity of 

calculation. 

 

Table (1) gives a simple comparison between the discussed approaches with respect to 

detection performance at certain SNR of 10dB and Pfa of 10
-4

.  Table (2) compares between 

the discussed approaches with respect to the complexity of the used algorithms, time of 

calculations (number of iterations) and the used sampling rate. According to these two tables, 

one should compromise between performance and the extra amount of complexity according 

to his/her requirements. 
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Figure (7):  ROC of the Nyquist-based LFMCW radar receiver 

 (ℓ1 norm and CAMP) compared to Pseudo random-based 

 and traditional FFT-based at Pfa=10
-3

. 
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Figure (8):  ROC of the Nyquist-based LFMCW radar receiver 

 (ℓ1 norm and CAMP) compared to Pseudo random-based 

 and traditional FFT-based at Pfa=10
-4

. 
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Figure (9):  ROC of the Nyquist-based LFMCW radar receiver(ℓ1 norm and CAMP) 

compared to Pseudo random-based and traditional FFT-based at Pfa=10
-5

. 

 

 

 

Table (1) Comparison among CS approaches and traditional one in terms of  

detection performance at SNR=10dB and Pfa=10
-4

 
 

Order (high to low) Approach Detection performance (Pd) % 

1 Nyquist rate (CAMP) 79 

2 Traditional 52 

3 Pseudo random 49 

4 Nyquist rate (ℓ1 norm) 30 
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Table (2) Comparison among CS approaches and traditional one in terms of complexity, 

time of calculations (number of iterations) and sampling rate. 
 

Order (low 

to high) 
Approach Complexity Time(iterations) Sampling rate 

1 Pseudo random 

PNG + smoothing 

filter + ADC + 256 

points FFT 

______ fs/2 

2 Traditional 
ADC + 512 points 

FFT 
______ fs 

3 
Nyquist rate 

(CAMP) 

ADC + sparse 

transform + 

reconstruction 

algorithm 

10 fs 

4 
Nyquist rate 

(ℓ1 norm) 

ADC + sparse 

transform + 

reconstruction 

algorithm 

32 fs 

 

 

5. Conclusion 
In this paper, the possibility of applying CS theory in the signal processing of LFMCW radar 

is introduced. Different CS approaches such as the Nyquist rate (ℓ1-norm, CAMP), pseudo 

random based and traditional FFT based approaches have been applied and compared with 

respect to detection performance through ROC curves and complexity of calculations. The 

Nyquist rate based CS (ℓ1-norm) approach has been found to give the worst detection 

performance and the highest calculation complexity. The Nyquist rate based CS (CAMP) 

approach has been found to give the highest detection performance and an extra amount of 

calculations. These extra calculations can be compensated by removing the CFAR processor 

and using advanced implementation tools. The pseudo random approach has been found to 

give a less but good detection performance with respect to the traditional one with the least 

calculation complexity.  

Finally, if performance is considered, the CAMP is the choice. If complexity is considered, 

the pseudo random is the best. 
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