
Paper: ASAT-15-152-ST 

15
th

 International Conference on 

AEROSPACE SCIENCES & AVIATION TECHNOLOGY, 

ASAT - 15 – May 28 - 30, 2013,  Email:  asat@mtc.edu.eg , 

Military Technical College, Kobry Elkobbah, Cairo, Egypt, 

Tel: +(202) 24025292 –24036138,   Fax: +(202) 22621908  

 

1 

Flutter and Divergence Characteristics of Composite Plate Wing 
 

M. Kassem Abbas
*
, Hany M. Negm

†
, M. Adnan Elshafei

‡
 

 

Abstract: In the present work, an analytical investigation is introduced to determine the 

aeroelastic behavior of unswept, rectangular wings simulated by cantilevered composite 

plates using energy formulation and incompressible aerodynamic theory. Modified higher 

order shear deformation theory is used in the structural formulation. Doublet point method is 

used to solve the subsonic unsteady flow over the proposed rectangular wing. The flutter and 

divergence velocities are obtained using U-g method, which are validated by the analytical, 

finite element, wind tunnel test results available in the literature. The effect of composite fiber 

orientation on natural frequency, flutter and divergence speeds is discussed.  
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1. Introduction 
Aeroelastic phenomena happen due to the interactions of the inertial force, elastic force and 

aerodynamic load. Flutter increases the amplitude of vibration which causes high cyclic 

stresses and failure of the wing. Divergence also may quickly develop into catastrophic 

torsional structural failure. Many researchers introduced several models to investigate flutter 

and divergence phenomena of airplane wings. 

Hollowell et al. [1], 1984, investigated, analytically and verified experimentally, the modeling 

of the aeroelastic behavior of unswept rectangular wings simulated by graphite/epoxy plates 

with various amounts of bending- torsion stiffness coupling. The analytical approach 

incorporated a Rayleigh-Ritz energy formulation and an unsteady, incompressible two-

dimensional aerodynamic theory. Flutter and divergence velocities were obtained using the U-

g method and compared to the results of low speed wind tunnel tests. They concluded that 

wings with negative stiffness coupling exhibit divergence, while positive coupling delayed the 

occurrence of stall flutter. 

Lin et al. [2], 1989, used a 18-degree-of freedom triangular plate finite element. They studied 

the effects of composite fiber angle, orthotropic modulus ratio, sweep angle, and aspect ratio 

on the vibration, flutter, and divergence characteristics of cantilever plates in subsonic flow. 

The stiffness and mass matrices are generated according to the classical lamination theory. 

The unsteady air load is evaluated using lifting surface theory, solved numerically by doublet-

lattice method. Interpolation using a surface spline is employed to interconnect the structural 

nodal and aerodynamic control points. They concluded that effective enhancement of flutter/ 

divergence performance can be attained by varying the orthotropic modulus ratio when an 
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appropriate fiber orientation is selected. They found also that structural tailoring can provide a 

harmonious balance to the sweep angle effect upon the aeroelastic stability characteristics of a 

wing. 

Koo et al. [3], 1994, investigated structural damping effect on the flutter boundary for three 

types of composite wings: rectangular, swept-forward, and swept-back using the finite 

element technique. The unsteady aerodynamic loads on oscillating wings are evaluated by 

doublet point method. The interpolation between the structural and aerodynamic grids is 

accomplished by using surface splines. The effects of fiber orientation on the flutter/ 

divergence characteristics were investigated. They concluded that the structural damping of 

composite materials increases the flutter speeds and decreases the flutter frequencies. 

Wael [4], studied the static and dynamic aeroelastic behavior of composite swept wings using 

a modified approach based on the equivalent plate concept using classical and first order plate 

theories. He made a parametric study to illustrate the effect of wing aspect ratio, taper ratio, 

sweep angle, number of layers, and fiber orientations on the divergence, control reversal, and 

flutter phenomena. He concluded that wing’s divergence speed can be improved by moving 

the principal skin stiffness direction ahead of the wing reference axis. Similarly, flutter 

characteristics of sweep back wings can be improved by moving the principal  skin stiffness 

direction behind the wing reference axis. 

Dunn et al. [5], 1992, investigated the nonlinear stalled aeroelastic behavior of rectangular 

graphite/epoxy cantilevered wings with varying amounts of bending-torsion stiffness 

coupling. A wind-tunnel test was performed to validate the analytical model. 

Livne [6], 1995, used equivalent plate structural modeling and doublet point lifting surface 

unsteady aerodynamics to obtain analytic sensitivities of aeroservoelastic response with 

respect to wing and control surface planform shape parameters. He developed an efficient 

approximation technique for wing shape optimization as a multidisciplinary optimization 

strategy. 

Lu et al. [7], 1992, presented a theoretical analysis of the flutter suppression of oscillating thin 

airfoils using active acoustic excitations in incompressible flow. Closed-form unsteady 

aerodynamic loads induced by a simple harmonic acoustic excitation on a typical section 

model are derived. The flutter boundaries of the typical section were evaluated using both the 

U-g and root locus methods. 

Many methods have been developed for calculating the unsteady pressure distribution on a 

thin finite wing in subsonic flow since Kussner [8], formulated the governing integral 

equation. The methods can be divided into two principal categories, the mode function 

method and the direct element method. Watkins et al. [9], developed the mode function 

method for practical use. Rowe et al. [10], calculated successfully the unsteady pressure 

distribution on wings with control surfaces.  

A typical procedure of the discrete-element method type is the doublet lattice method [11-13]. 

This method is used widely because of its ready applicability to complex wing configurations. 

Although the method yields reasonable results, it contains an inconsistency in the steady-state 

part. It must be calculated with the aid of the vortex lattice method despite the fact that the 

basic equation of doublets is valid even when the flow becomes steady, [11]. 

Ueda et al. [14], developed a simple method for calculating unsteady aerodynamic loads on 

harmonically oscillating thin wings in subsonic flow. Their doublet point method is based on 

a concept of concentrated lift forces. The wing is divided into element surfaces on which the 

lift distribution is represented by single concentrated lift forces. This method is explained and 

applied in the present work. 

Modified higher order shear deformation theory (MHSDT) [15], is used to formulate the 

equation of motion of the composite wing. Unsteady aerodynamic loads on harmonically 

oscillating thin wings in subsonic flow are calculated. The doublet point method is used, 

based on a concept of concentrated lift forces, to solve the subsonic unsteady flow over a 
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rectangular wing. Flutter and divergence velocities are obtained using U-g method and 

compared to the published analytical, finite element, and wind tunnel test results available in 

the literature. 

 

 

2. Structural Formulation 
The wing is idealized by a rectangular cantilevered composite plate with uniform thickness. 

The transverse deflection equation, written in generalized coordinates, is 

        0 3 3, , ,
T

w x y t a x y q t  (1) 

where   3 ,a x y  is the column vector of the Ritz approximation functions that satisfy the 

cantilever plate boundary conditions as given by Kassem et al. [15], 

    2 2 4

3 1 9

3 2 2 3 3 2 4 4 2,
T

x
x x y x x y x ya x x y xy y x yx      (2) 

 

  3q t is the column vector of Ritz coefficients, which are the unknowns of the structural 

problem. Using Hamilton’s principle, the system of equations of motion is obtained as given 

by Kassem et al. [15]: 

        0zM q K q F   (3) 

 

where  K  and  M  are the stiffness and mass matrices,  0zF is the concentrated load vector 

representing  the aerodynamic load distribution on the wing, calculated using doublet point 

method.  q  is the generalized coefficient vector to be determined. 

 

 

3. Unsteady Aerodynamic Formulation (Doublet Point Method) 
The doublet point method is used to calculate the subsonic unsteady aerodynamic forces 

which act on two-dimensional wings. The aerodynamic loads are calculated as concentrated 

loads, which make the concentrated load vector  0zF , the right hand side of the equations of 

motion, Eq.(3). Results obtained by the method can easily be combined with aeroelastic 

analysis to calculate flutter and divergence velocities. 

The pressure distribution on oscillatory lifting surfaces and its corresponding upwash velocity 

distribution are related by the integral equation, [8, 14, 16], 

      0 0

1
, , ,

8
I

S

v x y p K x y d d   


   (4) 

The lifting surface is assumed to lie in the x-y plane (z = 0), where S denotes the region of the 

wing area, and the nondimensional pressure distribution p  is defined by 

 
' '

21
2

p p
p

u

 

 


   (5) 

where 'p  and 'p  are the disturbance pressure on the upper and lower surfaces of the wing, 

respectively. The denominator on the right-hand side of Eq.(5) is the dynamic pressure of the 

uniform flow, and the Kernel function  0 0,K x y  in Eq.(4) can be written as 

    0

0 0
2 2

, , ,
ikx

ikx Me
K x y e B k r X

R X r

  
  

 
 (6) 

Parameters used in the Eq.(6) are defined in Appendix (A), [14]. 
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Since the kernel function  0 0,K x y corresponds to a normal velocity field that is produced by 

a point doublet of the acceleration potential located at  ,  , it is called a doublet point. The 

point  ,x y  is called an upwash point where the normal velocity of the upwash is placed. The 

wing planform is divided into panel segments called element surfaces. Each element surface 

is constructed such that the two side edges are parallel to the uniform flow. We identify the 

individual elements by numbering them from 1 to N, Fig. 1.a. 

 

 
Fig. 1. Aerodynamic elements in doublet point method, [14] 

 

Fig. 1.b shows a focus on the i
th

 element surface. The trapezoid of the element has an area i , 

and width 2 i . Using the 31
4 4
  chord rule for element surfaces, the lift distribution on the 

surface is concentrated at the point  ,i i   on the quarter chord at the midspan of the element 

(i). Thus, the location  ,i i 
 
is the doublet point of the element surface (i). The upwash of 

the three-quarter chord point  ,i ix y  at the midspan is taken as representative of the whole 

upwash distribution on the element surface (i). These assumptions make it possible to 

discretize the integral in Eq.(4) into linear algebraic equations. Instead of Eq.(4), the upwash 

iw  of the i
th

 element can be calculated in a discrete form as [14]: 

Doublet point (ξi, ηi) 

Upwash point (xi, yi) 

x 

y 

1 
2 
3 
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N 
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u∞ 
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      
1

1
, , , , ( 1... )

8

N

I i i j j j i j i j

j

v x y p K x y i N   
 

       (7) 

Eq.(7) can be expressed in a matrix form, as follows: 

      .I pv D c  (8) 

where  Iv  is the induced velocities at the elements’ upwash points  ,i ix y ,  D  is the 

matrix of aerodynamic influence coefficients, and  pc  is the pressure coefficient vector 

which represents the pressure coefficient at each element’s doublet point, Fig. 1.b, defined as 

follows: 

     ,I Ii I i iv v v x y   (9) 

  ,
8

j

ij i j i jD d K x y 



       (10) 

     ,
jp p j jc c p      (11) 

 

The upwash vector  Iv  is calculated for element (i) using the following form, [14]: 

    0 0, ,
iI i i i iv w x y i k w x y

x


 


 (12) 

where  0 ,i iw x y  is the mid-plane (z=0) vertical displacement at the upwash point  ,i ix y  of 

element (i). 

Solving Eq.(8), we can directly obtain the unsteady aerodynamic pressure coefficient 

distribution at the doublet point of each element area. When the reduced frequency k  tends to 

zero the flow becomes steady. The complex lift and moment coefficients can be calculated as 

mentioned in Appendix (B). 

Using the transverse deflection equation, Eq. (1), the induced velocity can be written as, 

 

      

   

    

3

3

3

.

,

,

iI IR IIi i

T

IR i ii

T

II i ii

v v i v q

a
v x y

y

v k a x y

 

 
  

 



 (13) 

The induced velocities of all elements can be written in vector form as, 

 
     

     
3.I IT

IT IR II

v v q

v v i v



 
 (14) 

where the dimensions of the induced velocity vector  Iv  are 1eN  , and the dimensions of 

 IRv  and  IIv  are 9eN  , where eN  is the total number of aerodynamic elements. 

Substituting into Eq.(8), the unsteady aerodynamic pressure coefficient distribution pc  on the 

plate wing can be written as: 

        
1

3.p ITc D v q


  (15) 

The transverse aerodynamic load at element (i) can be obtained by, 

 21

2 iai i pF U S c  (16) 

where   is the air density, U  is the uniform flow speed, and iS  is the area of element (i). The 

transverse load vector of all elements can be written as, 
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     21

2
a pF U S c  (17) 

 S  is a square diagonal matrix consisting of the elements areas. Substituting Eq.(15), 

      2

3

1
.

2
aF U Ar q  (18) 

where  Ar  is a matrix of dimensions 9eN   defined as follows: 

       
1

ITAr S D v


  (19) 

Due to symmetry, the transverse aerodynamic loads applying on the half wing only are taken 

into consideration. Using the energy method, the concentrated load vector in the transverse z-

direction applied at the doublet point of element (i) is, [15]: 

     0 3 ,z zi i ii
F F a    (20) 

where  ,i i   is the coordinates of the doublet point of element (i), Fig. 1.b. The 

concentrated load vector in the transverse z-direction applied at the half wing can be written 

in matrix form as: 

       
2

0 0 3

1

eN

z z ai
i

F F a F


   (21) 

where  3a  is a matrix of dimensions 9 ( 2)eN  including columns of Ritz approximation 

functions, (2), obtained by substituting in column (i) for x and y  with i  and i  of element 

(i) from 1i   to 2eN . Substituting for  aF  from Eq.(18), 

       2

0 3 3

1
.

2
zF U a Ar q  (22) 

This is the final form of the transverse load vector applied on the half wing due to unsteady 

aerodynamics using the doublet point method. It is important to note that the applied 

aerodynamic load is a function of the column vector of Ritz coefficients   3q t , which 

represent the time-dependent transverse deflection of the mid-plane of the cantilever plate. 

Using Eq.(22), the equations of motion of the wing can be written as, 

           2

3 3 3 3

1
.

2
w wM q K q U a Ar q   (23) 

where  wM and  wK are the mass and stiffness sub-matrices corresponding to the transverse 

deflection with dimensions 9 9  taken from the global mass and stiffness matrices derived in 

[15]. 

 

 

4. Flutter Analysis 

Assuming harmonic (sinusoidal) motion,   3q t  can be expressed as, 

    3 3

i tq q e   (24) 

 

Hence 

    2

3 3

i tq q e    (25) 

where  3q  is the amplitude of the column vector of Ritz coefficients,   is the oscillation 

frequency. Define the reduced frequency k ,[17], 
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b

k
U


  (26) 

Substituting from Eq.(24) and Eq.(26), the equation of motion Eq.(23) can be rearranged to 

the form, 

       2

3 3 0w wK q M A q       (27) 

where A    represents the aerodynamic matrix: 

   
2

322
R R

b
A a Ar

k
     (28) 

The flutter analysis can be performed using the U-g method, [17]. The structural damping 

coefficient (g) is introduced in the equations of motion, representing the amount of damping 

that must be added to the structure to attain neutral stability (flutter) at the given velocity, [1]. 

Negative values of structural damping (g) indicate that the structure is stable, while positive 

values indicate instability. Flutter occurs when the structural damping coefficient (g) equals 

zero. From Eq.(27), the following eigenvalue problem can be written, 

 
       

   

2

3

3

1 0

0

w w

w

ig K M A q

Z K B q

      

   

 (29) 

where 

  wB M A         (30) 

 
 

2

1 ig
Z




  (31) 

For a given value of reduced frequency, k, the complex aerodynamic matrix, A   , is 

evaluated using Eq.(28), and together with  wM  and  wK  are placed into Eq.(29), which is 

solved for the complex eigenvalues Z. From these eigenvalues and from given k, the 

frequency ( ), the structural damping coefficient (g), and the corresponding speed (U) are 

determined as flows, 

 
 

 

 

Im1
, ,

Re Re

Z b
g U

Z Z k


     (32) 

 
Fig. 1. U-g and U-ω curves to find flutter speed (Uf) and flutter frequency (ωf) 

g 

U 

Uf 

ω 

U 

ωf 

ω

n 
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A Plot of g  and   vs. U  characterize the flutter stability and frequencies of the wing. The 

  values at 0g  represents the flutter frequency, Fig. 1, [1]. 

 

 

5. Divergence 

The divergence speed (UD) can be calculated directly by neglecting the mass matrix  wM  in 

Eq.(27), and rearranging equations into the form 

    3 0stat wA K q      (33) 

where the static aerodynamic matrix 
statA    has now all real coefficients, and is represented 

by, 

   3
0

1
lim

2
stat R R

k
A a Ar


     (34) 

and the eigenvalue   represents; 

 
2

1

DU
   (35) 

The largest positive eigenvalue   gives the lowest divergence speed DU . 

 
Fig. 1. U-g and U-ω curves to find divergence speed (UD) 

 

 

6. Numerical Results and Discussion 
The aerodynamic and aeroelastic theories are first verified, then a parametric aeroelastic study 

is performed. A MATLAB code for the used doublet point method is developed and verified 

on a rectangular wing in steady and unsteady flow. The pressure distribution, lift coefficient, 

and moment coefficient are calculated and compared with the published data. Then the flutter 

and divergence performance of a rectangular composite plate is calculated and verified with 

the available published data. Finally, the effect of composite fiber orientation on natural 

frequency, flutter and divergence speeds is discussed. 

 

g 

U 

UD 

ω 

U 

ωn 
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6.1. Aerodynamics of Rectangular Wing in Steady flow 
A rectangular wing of aspect ratio AR= 2  in steady flow ( 0k  ) is discussed. The wing 

rotates around its mid-chord with angle of attack (α). The pressure distribution and the lift 

coefficient slopes have been calculated for various numbers of elements as shown in Fig. 1, 

Fig. 2 and Fig. 3. The chord pressure distributions at the location y=0.2 is shown in Fig. 2  for 

three different chordwise numbers of elements Nx. The spanwise number of elements is fixed 

at five. It can be seen from the figure that even a small number of elements gives satisfactory 

results. The convergence with the spanwise number of elements is shown in Fig. 3 with a 

fixed chordwise number of elements. Lift and moment coefficients are calculated as 

mentioned in Appendix (B). 

 

 
Fig. 1. 3-D pressure distribution on a rectangular wing (AR=2, k=0, M=0, Nx=10, Ny=10) 

 

 

 
Fig. 2. Chordwise pressure coefficient slope distribution of a rectangular wing at station 

y=0.2 (AR=2, k=0, M=0, Ny=10) 
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Fig. 3. Spanwise lift coefficient slope distribution of a rectangular wing (AR=2, k=0, 

M=0, Ny=10) 

 

6.2. Aerodynamics of Rectangular Wing in Unsteady Flow 
Rectangular wing of aspect ratio (AR 2) is calculated in unsteady flow. The wing oscillates in 

pitching around its mid-chord with angle of attack (α). The real and imaginary parts of the 

pressure distribution are shown in Fig. 4 and Fig. 5, respectively. The real and imaginary parts 

of the lift coefficient slope 
lc


  span-wise distributions are shown in Fig. 6 and Fig. 7, 

respectively. The real and imaginary parts of the pressure coefficient 
pc


 chordwise 

distributions at the tip and root of the considered wing are shown in Fig. 8 and Fig. 9, 

respectively. Fig. 10 presents the magnitude of the complex lift and moment coefficients LC  

and MC  vs. reduced frequency (k). Fig. 11 presents the phase of the complex lift and moment 

coefficients LC  and MC  vs. reduced frequency. Lift and moment coefficients are calculated 

as mentioned in Appendix (B). All the presented results are compared to the available 

published data, [14]. Good correlation is shown. 

 
Fig. 4. Real part of the pressure distribution on a rectangular wing oscillates in pitching 

motion (AR=2, k=1, M=0, Nx=5, Ny=10) 
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Fig. 5. Imaginary part of the pressure distribution on a rectangular wing oscillates in 

pitching motion (AR=2, k=1, M=0, Nx=5, Ny=10) 

 

 

 

 
Fig. 6. Real part of the lift coefficient slope 

l Rc


 distribution on a rectangular wing 

oscillates in pitching motion (AR=2, k=1, M=0, Nx=5, Ny=10) 
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Fig. 7 Imaginary part of the lift coefficient slope 

l Ic


 distribution on a rectangular wing 

oscillates in pitching motion (AR=2, k=1, M=0, Nx=5, Ny=10) 

 

 

 
Fig. 8. Real part of the pressure coefficient p Rc


 chordwise distribution at the tip and 

root of a rectangular wing oscillates in pitching motion (AR=2, k=1, M=0, Nx=5, Ny=10) 
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Fig. 9. Imaginary part of the pressure coefficient 

Ipc


 chordwise distribution at the tip 

and root of a rectangular wing oscillates in pitching motion (AR=2, k=1, M=0, Nx=5, 

Ny=10) 

 

 

 

 
Fig. 10. The magnitude of the complex lift and moment coefficients LC  and MC of a 

rectangular wing oscillates in pitching motion vs. reduced frequency 
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Fig. 11. The phase of the complex lift and moment coefficients LC  and MC of a 

rectangular wing oscillates in pitching motion vs. reduced frequency 

 

 

6.3. Aeroelastic Performance of Rectangular Composite Plate 
A rectangular cantilevered composite plate is considered as a half-span representation of an 

aircraft wing. The plate has a length of L=12 in (0.3048 m) and a width of 2b=3 in (0.0762 

m), and a thickness of t=0.80410
-3

 m. Six layers of a unidirectional graphite/epoxy tape are 

used to form six different stacking sequence laminates. The material constants of the 

individual layers are given in Table 1, [1]. The cantilevered plates have symmetric lamination 

sequences as follows, [02/90]s, [±45/0]s, [+452/0]s, [–452/0]s, [+302/0]s, [–302/0]s. 

 

 

 

Table 1. Engineering constants of the unidirectional graphite/epoxy tape, [1] 

 

E11 [GPa] 
E22=E33 

[GPa] 
G12 [GPa] 12 

Ply thickness 

tp [m] 

Density 

 [kg/m
3
] 

98 7.9 5.6 0.28 0.13410
-3 

1520 

 

As shown in Table 2, the present model’s natural frequency results have generally good 

agreement with published experimental data, [1], and analytical natural frequencies calculated 

using 5-term Rayleigh-Ritz method. 
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Table 2. Natural frequencies of laminates 
 

Laminate 
Vibration 

mode 

Experimental 

frequency, 

[Hz], [1] 

Ref [1] Present model 

frequency, 

[Hz] 
Δ % 

frequency, 

[Hz], 
Δ % 

[02/90]s 

1B 11.1 10.7 -3.604 11.063 -0.3333 

1T 42 39 -7.143 39.747 -5.3643 

2B 69 67 -2.899 70.093 1.5841 

[±45/0]s 

1B 6.1 5.7 -6.557 5.986 -1.8689 

2B 38 37 -2.632 36.758 -3.2684 

1T 77 69 -10.39 71.708 -6.8727 

[+452/0]s 

[–452/0]s 

1B 4.8 4.6 -4.167 4.004 -16.583 

2B 30 32 6.6667 26.76 -10.8 

1T 51 55 7.8431 56.24 10.275 

[+302/0]s 

[–302/0]s 

1B 6 6 0 6.118 1.9667 

2B 36 41 13.889 37.45 4.0278 

1T 58 60 3.4483 62.98 8.5862 

 

 

The U-g and U-ω diagrams for the used cantilever plates with different stacking sequences are 

shown in Fig. 12 to Fig. 15. Using 9-term Rayleigh-Ritz method and  68 aerodynamic 

Doublet Points, flutter speeds (Uf) and flutter frequencies (ωf) are determined graphically and 

listed in Table 3. Results are compared to experimental data, [1], analytical results calculated 

using 5-term Rayleigh-Ritz method, applying strip theory for the aerodynamic modeling, [1]. 

For further verification, two extra finite element models are considered; 312 FE, using 

Doublet Lattice method for aerodynamic model, [2], and 26 FE, using 68 Doublet Point 

method for aerodynamic model, [3]. The results are accurate for [+452/0]s and [+302/0]s 

cantilever plates, while for other stacking sequences, flutter speeds differ.  It is noticeable 

from Fig. 12 to Fig. 15 that the bending mode is responsible for the flutter phenomenon in the 

plates of [+452/0]s and [+302/0]s stacking sequences, while the torsional mode is responsible 

for the flutter phenomenon in the other plates.  

The divergence speeds (UD) for the used lamination cantilever plates are listed in Table 4. The 

same theories used in flutter validation are applied. The comparison shows a good agreement 

in all stacking sequences. 

 

Table 3. Flutter speed [m/s] and flutter frequencies [Hz] of laminates 

 

 [+452/0]s [–452/0]s [+302/0]s [–302/0]s 

Uf ωf Uf ωf Uf ωf Uf ωf 

Experimental,[1] 28 24 div. div. 27 28 div. div. 

Present model 

Rayleigh-Ritz (9 

terms), Aero (Doublet 

Point) 68 

23.6 21 
div. 

25.1 

div. 

48.1 
25.8 28.9 

div. 

37.7 

div. 

45.2 

Rayleigh-Ritz 5 terms, 

Aero (strip theory), [1] 27.8 28 27.8 27 27.8 31 30 29 

FE 312, Aero 

(Doublet Lattice),[2] 
- - - - 24.9 26.4 - - 

FE 26, Aero  

Doublet Point 68,[3] 
27.6 23.9 - - 27.2 28 - - 
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Fig. 12. The U-g curve and U-frequency curve for a [+45/0]s plate wing 

 
Fig. 13. The U-g curve and U-frequency curve for a [-45/0]s plate wing 

 
Fig. 14. The U-g curve and U-frequency curve for a [+30/0]s plate wing 
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Fig. 15. The U-g curve and U-frequency curve for a [-30/0]s plate wing 

 

Table 4. Divergence speed of laminates 

 

 [02/90]s [±45/0]s [+452/0]s [–452/0]s [+302/0]s [–302/0]s 

Experimental,[1] flutter >32 flutter 12.5 flutter 11.7 

Present model 

Rayleigh-Ritz (9 terms), Aero 

(Doublet Point) 68 
29.13 No div. No div. 9.125 No div. 12.33 

Rayleigh-Ritz (5 terms), Aero 

(strip theory), [1] 
22.3 infinite infinite 9.9 infinite 10.2 

Rayleigh-Ritz (5 terms), Aero 

(modified strip theory), [1] 
25 No div. No div. 11.1 No div. 11.5 

 

 

6.4. Effect of Composite Filament Angle on Flutter and Divergence 
A rectangular cantilevered composite plate is considered as a half-span representation of an 

aircraft wing. The plate has an aspect ratio of (AR=4), a width of (2b=1 m), and a total 

thickness of (t=0.016 m). The material properties of the calculated unidirectional composite 

plate are given in Table 5, [2].The composite fiber angle is varied in the range  

(-90° to 90°). Flutter and divergence speeds (Uf, UD), flutter and natural frequencies (ωf, ωn) 

are calculated, normalized and plotted in Fig. 16 and Fig. 17 , respectively. The obtained 

results have good correlation with those in reference [2]. It is clear that positive fiber angles 

produce divergence-free wings, but the flutter speeds are small relative to negative fiber angle 

wings. Therefore it is difficult to obtain composite tailoring that simultaneously achieves 

high-flutter and high-divergence boundaries. 

 

Table 5. Engineering constants of the unidirectional composite plate, [2] 

 

E11 [GPa] 
E22=E33 

[GPa] 
G12 [GPa] 12 

Ply thickness 

tp [m] 

Density 

 [kg/m
3
] 

32 4 1.6 0.25 0.13410
-3 

1500 
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Fig. 16. Flutter and divergence speeds (Uf, UD) normalized with respect to  

UR=44.67 m/s ( UD at θ=90°) 

 

 
Fig. 17. Flutter and natural frequencies (ωf, ωn) normalized with respect to  

ωR=1.665 rad/sec (1
st
 natural frequency at θ=90°) 

 

 

7. Conclusion 
An analytical investigation is conducted to determine the flutter and divergence behavior of 

unswept, rectangular wings simulated by cantilevered composite plates with energy 

formulation and unsteady incompressible two-dimensional aerodynamic theory. Doublet point 

method was used to solve the subsonic unsteady flow over a rectangular wing. The modified 

higher order plate theory was used with the aerodynamic model to determine aeroelastic 

performance. Flutter and divergence velocities are obtained using the U-g method, and are 

compared to the published analytical, finite element, and wind tunnel test results and found 

reasonable. It is concluded that positive fiber angles produce divergence-free wings, but the 

flutter speeds are small relative to negative fiber angle wings. Therefore it is difficult to obtain 

composite tailoring that simultaneously achieves high-flutter and high-divergence boundaries. 
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Appendix (A) 
Parameters used in the Eq.(6) are defined as follows, [14]: 

0x x    0y y    0| |r y  

(A-1) 
2 2 2

0R x r   
 0

2

x MR
X




  21 M    

 

The function  , ,B k r X  in the Kernel function, Eq.(6), represents an integral function of 

complex values: 

  
 

3 2
2 2

, ,
ikv

X e
B k r X dv

v r





  (A-2) 

The function  , ,B k r X  can be separated into two real functions as 

      , , , , , ,R IB k r X B k r X iB k r X   (A-3) 

Values of these functions can be obtained by the series found in [18] as follows, 

  
 

 
 

 

 
3 2 3 2

2 2 2 2

cos sin
, , , , ,

X X

R I

kv kv
B k r X dv B k r X dv

v r v r
 

 
 

   (A-4) 

These functions can be expressed as 

    
 

    
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2 2
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  
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   
    (A-5) 

    
 

  

2

2

2 1 2
0 0

2
, , 1

4 1 !

n

n

I n

n n

kr
B k r X U k

n n

 



 

  


   (A-6) 

where the term Un is a function of X, and can be calculated with the aid of the recurrence 

formula: 

 
 

   

 

1 2

2
2 2

( 3)
2 ! 2

n

n n

kX krk
U U n

n n n nX r



  
 

 (A-7) 

The initial terms of the recurrence formula Eq.(A-7) are given by, 

 

 
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0
2 2 2 2

1
2 2

2
2 2

2
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 (A-8) 

When an upwash point is downstream of a doublet point, the value of the function RB  should 

be evaluated by [14], 

    
2

2

2

3
, , , , ln ( , 0)

6 2 2

j

R R j

j

k
B k r X B k r X k r X


 



 
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 
 (A-9) 

where   is the Euler’s constant 0.5772  . 
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Appendix (B) 
The complex lift and moment coefficients can be calculated by taking the following 

chordwise summation at span station jy y , [14], 

    
 

,

x x

i i

x x

N N

p i p i m i

i i
l j m jN N

i i

i i

c c x x

C y C y

  

 

 

 

 
 (B-1) 

The total lift and moment coefficients of the wing can be calculated by taking the following 

spanwise summations, 

 

   
,

y yx x
N NN N

l j i m j i

j i j i

L M
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S S

   
    

    

   
 (B-2) 

where S is a total wing area, and mx  the location of the axis around which the moment force 

is calculated. 


