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Abstract: In this research paper, a new approach using the capability of the second generation 

curvelet transform together with the traditional canny operator for edge detection of high-

resolution satellite imagery; the combined technique will be applied on WorldView-2 

imagery. First, the curvelet coefficients will be generated in multi-scales and multi-directions 

using a forward discrete curvelet algorithm. Then, these coefficients will be sorted in each 

scale to generate the edge map using the larger coefficients for the coarser scales. Second, this 

edge map will be the input to the second stage where the three main steps of the traditional 

canny operator, gradient calculation, non-maximal suppression and hysteresis, will be applied. 

The first step results in removing noise, fine edges, from the image aiding the second step for 

better connecting the strong edges without the effect of weak edges coming from the noise. 

 

The percentage of the utilised coefficients in the curvelet transforms step together with the 

weight for each scale are the tuning parameters the user has to adjust to get the desired level 

of edges detected. The results from the proposed approach were compared to the traditional 

canny edge detection algorithm. The results showed very good potentials for detecting 

elongated edges and also for generating more closed objects, which make this method a good 

alternative for the segmentation step for any further object-based classification algorithm.  

 

Keywords: Curvelet transform, canny operator, edge detection, high resolution satellite 

imagery. 

 

 

Introduction 
Second generation curvelet transform provides optimally sparse representations of objects, 

which display smoothness except for discontinuity along the curve with bounded curvature 

(Candes et al., 2006). Some papers have investigated this technique for edge detection in high-

resolution satellite imagery such as IKONOS or QuickBird, and microscopic imagery, (Geback 

and Koumoutsakos, 2009; Guha and Wu, 2010; Hui-qian et al., 2007; Xiao et al., 2008; Zhenghai and 

Jianxiong, 2009) which show  great potentials of using curvelet transform in solving edge 

detection problems.  
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Urban studies, coastal erosion, and agricultural surveys are a few examples where edge 

detection can be utilized. In the past few years, the development of edge detection techniques 

for the analysis of multi-temporal remote sensing imagery has been intensively growing. For 

many years, satellite based remote sensing has been a priceless tool for change detection. No 

other platform can constantly revisit an area, quantify and classify land cover or land use on 

such a broad scale. Satellite imagery are proving to be a cost-effective alternative to aerial 

photography, especially, for the acquisition of Land Cover information(Ouma et al., 2010).  

 

One of the most important characteristics in an image is the features‟ edges, which can be 

described as a discontinuity in the local domain of the image. These discontinuities may 

result as gray, colors and texture variations (Zhenghai and Jianxiong, 2009). Edge detection has 

broad applications in the domain of image processing, computer vision and so on. The 

influence of this process comes from the fact that it is usually lies at the bottom of the 

classification process to serve as a base map for all other coming modules. Consequently, the 

more accurate this process is, the more accurate the whole classification results. 

 

Direct thresholding of the edge map generated from the curvelet transforms was discussed in 

(Elsharkawy et al., 2011; Elsharkawy et al., 2012), for building extraction for high-resolution satellite 

imagery. In this research paper, an implementation of the second generation curvelet 

transform followed by the three main steps for the canny operator, gradient calculation, non-

maximal suppression and hysteresis, for edge detection of high-resolution satellite imagery. 

A comparison with the optimal edge detector operator, Canny, will be done. In the following 

two sections, a brief introduction about Curvelet and Canny operator will be introduced 

followed by the description of the data used and methodology section, then the results and 

analysis section and finally, the conclusions. 

 

 

The Basics of Curvelet Transforms 
Initial introduction of Curvelet transforms technique was originally introduced by Candes and 

Donoho in 1999 as a result of the increasingly demand in the presence of effective multi 

resolution analysis that can overcome the drawbacks of wavelet analysis. The transform was 

designed to represent edges and other singularities along curves much more efficiently than 

traditional transforms, i.e. using many fewer coefficients for a given accuracy of 

reconstruction (Donoho and Duncan, 2000). This transform used a complex series of steps 

involving the ridgelet analysis of the radon transform of an image. However, the performance 

was considered slow. 

 

Later and based on a frequency partition technique, the same authors proposed a considerably 

simpler second-generation curvelet transform. This second generation curvelet transform is 

meant to be simpler to understand and use. It is also faster and less redundant compared to its 

first-generation version(Ma and Plonka, 2009). In the new version of curvelet the ridgelet 

transforms was discarded, thus reducing the amount of redundancy in the transform and 

increasing the speed considerably. Curvelet transform is defined in both continuous and 

digital domain. Moreover, it can be used for multi-dimensional signals. Since the image-

based feature extraction requires only 2D FDCT, The discussion will be focused on only two-

dimensional application and implementation(Candes et al., 2006). 
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 Continuous-Time Curvelet Transforms 
The curvelet representation in two dimensions continuous space, i.e., R

2
, will be through 

spatial variable x, with ω a frequency domain variable, and with r, ɵ polar coordinates in the 

frequency domain. Then, a pair of windows function W(r) and V(t) is introduced, the "radial 

window" and "angular window" respectively. These windows will obey the admissibility 

conditions: 

 

 

 

1 

where j is a radial variable and l is an angular variable. The frequency window in the Fourier 

domain is defined by: 

 

 

 

2 

where   is the integer part of j/2 

 

In the spatial Cartesian domain, the scaling of the radial window introduces an angular 

window with short axis with 2
-j
, and a long axis with 2

-j/2
. Therefore, the effective length and 

width obey the anisotropy scaling relation width ≈ length
2
, and Uj is a polar wedge window, 

as show in Figure 1. 

 

 

Figure 1   Curvelets in Fourier frequency (left) and spatial domain (right) 

(Candes et al., 2006) 

 

In the frequency domain, the curvelet coefficient, with the j scale, the l angle and the 

sequence of translation parameters k = (k1,k2)  Z
2
, is defined as: 
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Figure 1 illustrates the result of partitioning the Fourier plane into radial (concentric circles) 

and angular divisions. The concentric circles are responsible for the decomposition of an 

image into multiple scales, j, while the angular divisions partition the band passed image into 

different angles or orientations l(Zhenghai and Jianxiong, 2009). For instance the light gray 

wedges represent the maximal support of the curvelet function  (3,2,k) and  (3,7,k), while 

the gray wedges represent  (4,3,k) and  (4,8,k) and the dark wedges represent  (5,5,k) and 

 (5,15,k). As a result, defining the scale j and angle l is the proper way to deal with a 

particular wedge. By noticing the spatial domain, Figure 1 right, it was found that each of the 

wedges corresponds to a specific curvelet, shown as ellipses, at a given scale and angle. This 

indicates that the curvelet coefficients for that scale and angle can be determined by the 

inverse FFT of this particular wedge (Guha and Wu, 2010). This is the main idea behind the 

implementation of curvelet transform. As shown in Figure 1, curvelets have a well localized, 

needle-shaped in higher scales, as the wedges are longer and thinner with scale growing (Ma 

and Plonka, 2009).    

 

 

Discrete Curvelet Transform 
Coronae and rotations, as in the continuous-time definition, are not especially adapted to 

Cartesian arrays, so it is convenient to replace these concepts by Cartesian equivalents; here, 

“Cartesian coronae” based on concentric squares (instead of circles) and shears, figure 2.  

 

 

Figure 2   The transition from the continuous-time definition (left) to the discrete-time 

definition(right) (Candes et al., 2006). 

 

The above figure (left) illustrates the basic digital tiling where, the windows ˜Uj` smoothly 

localize the Fourier transform near the sheared wedges obeying the parabolic scaling. The 

shaded region represents one such typical wedge. 

 

Now the Cartesian window  is defined as: 
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where: 
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Φ is defined as the product of low-pass one dimensional windows: 
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And Sɵ is the shear matrix: 
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Hence, the discrete curvelet coefficients are defined as: 

 

 

 

8 

According to (Candes et al., 2006), there are two different digital implementations of FDCT:  

 Curvelets via USFFT (Unequally Spaced Fast Fourier Transform)  

 And Curvelets via Wrapping.  

 

Both the variants are linear and they are taken as input a Cartesian array to provide an output 

of discrete coefficients. The only difference is in the choice of the spatial grid where curvelets 

at each scale and angle are translated. As the FDCT wrapping is the fastest curvelet transform 

currently available (Candes and Donoho, 2005), the wrapping version of curvelet transform, will 

be used in the implementation. The FDCT wrapping algorithm may be summarized as follow: 

 

1. Take FFT of the image 

2. Divide FFT into collection of Digital Corona Tiles as in (Figure 2) 

3. For each corona tile do the following: 

 Translate the tile to the origin as in (Figure 3-a) 

 Wrap the parallelogram shaped support of the tile around a rectangle centered at the 

origin as in (Figure 3-b). 

 Take the Inverse FFT of the wrapped support 

 Add the curvelet array to the collection of curvelet coefficients. 
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(a) 

 

(b) 

Figure 3   Support of wedge before and after wrapping 

 

The values of curvelet coefficients are depending on how they are aligned in the real image. 

One can expect higher coefficients values when the curvelet is accurately aligned with a 

given curve in an image. A very clear explanation is provided in Figure 4. The curvelet 

named „c‟ in the figure is almost perfectly aligned with the curved edge and therefore has a 

higher coefficient value. Curvelets „a‟ and „b‟ will have coefficients close to zero as they are 

quite far from alignment with the curve (Guha and Wu, 2010).  

 

From the previous discussion it is clear that the curvelet transform provide a distinguished 

characteristic for the signals where they are better localized in both frequency and spatial 

domain compared to wavelet or any other transform.  

 

 

Figure 4   Alignment of curvelets along curved edges (Guha and Wu, 2010) 

 

The unique mathematical property to represent curved singularities in a non-adaptive manner 

makes the Curvelet transform as a higher dimensional generalization of wavelets. The main 

advantage of the curvelet transform over wavelet is that the edge discontinuity is better 

approximated by curvelets than wavelets. Curvelets can provide solutions for the limitations 

the wavelet transform suffers from, which can be summarized as follow: 

1. Curved singularity representation,  

2. Limited orientation (Vertical, Horizontal and Diagonal) 

3. And absence of anisotropic element (isotropic scaling)  
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If an image function f is approximated by largest m coefficients as  , then the 

approximation errors are given by: 

 

Fourier transforms 9 

 

Wavelet transforms 10 

 

Curvelet transforms 11 

Canny Edge Detector 
Canny edge detection is an optimal method for step edges’ detection in the spatial domain. 

Canny used three criteria to design his edge detector. First, a reliable detection of edges with 

low probability of missing true edges, and a low probability of detecting false edges must be 

achieved. Second, the detected edges should have a minimum distance to the true location 

along the edge. Third, there should be only one response to a single edge (thin lines for 

edges). 

 

Based on these criteria, the Canny edge detector first smoothes the image to eliminate any 

noise, then it finds the image gradient to highlight regions with high derivatives. The regions 

with high derivatives are tracked by the algorithm to suppress any pixel that is not at the 

maximum (non-maximum suppression). The remaining pixels are further reduced by two 

thresholds T1 and T2. If the magnitude is below T1, it is set to zero (none edge), if the 

magnitude is above T2, it is made an edge. And if the magnitude is between the two 

thresholds, then it is set to zero unless there is a path from this pixel to a pixel with a gradient 

above T2 (Canny, 1986). 

 

Step 1: Gaussian Filtering to Remove Noise 
The first step of canny edge detection is to filter out any noise in the original image before 

trying to locate and detect any edges. The Gaussian filter is used to blur and remove 

unwanted detail and noise. By calculating a suitable 5 X 5 mask, Gaussian smoothing can be 

performed using the standard convolution method. The larger the width of the Gaussian 

mask, the lower the detector's sensitivity to noise. By increasing the standard deviation the 

intensity of the noise is either reduced or blurred. An example of 2D Isotropic Gaussian 

equation is given below: 

 G(x,y) =  12 

Step 2: Gradient Calculation 
After smoothing the image and eliminating the noise, the next step is to find the edge strength 

by taking the gradient of the image –there are many ways and masks to perform the gradient 

calculation. One of these ways is to find the difference between the intensity value of the two 

consecutive pixels in both directions (x and y). When finding edges we are looking for the 

steepest descent as well as the steepest ascent since both represent a high change in the 

intensity of the image. Figure 5 depicts the gradient and orientation process. 
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Figure 5   Illustration of gradient calculation in canny operator 

 

Once we have the gradient value for each pixel we can get the magnitude of the gradient by:  

 

 

13 

The main purpose of doing this is to highlight regions with high spatial derivatives. The 

orientation of the edge can be determined by the next equation: 

 

 

14 

Step 3: Non-Maximal Suppression  
This step works with the magnitude and orientation of the gradient of the pixel under 

consideration and creates one pixel-width edge. However, we need to interpolate the values 

of the pixels found at the neighborhood around the point under analysis. The pixel that has no 

local maximum gradient magnitude is now eliminated and the comparison is made between 

the actual pixel and its neighbors along the direction of the gradient as in Figure 6.  

 

 

Figure 6   Non-maximal suppression procedure  

 

Step 4: Hysteresis  
The problem now is that we may have some pixels that, despite being a local maximum, 

represent noise. At this stage, most of the edge detectors apply a threshold process. The 

threshold is then defined so that each pixel with a value below it is eliminated. Two levels of 

thresholds are selected; high threshold (TH) and low threshold (TL). For a given pixel, if the 

gradient magnitude is below TL, it is unconditionally set to zero.  If the gradient is at least
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TH, the pixel is left alone. And finally, if the gradient is between these two thresholds, then it 

is set to zero unless there is a path from this pixel to a pixel with a gradient above TH. An 

example is in Figure 7. 

 

 

 

 

TL=0.2     TH=0.6  TL=0.4      TH=0.8 

Figure 7   Applying hysteresis to Canny edge map 

(http://www.cs.washington.edu/research/imagedatabase/demo/edge) 

 

Data and Method 
Figure 8, illustrates the proposed algorithm for edge detection using curvelet transforms and 

canny operator with some pre-processing steps. The pre-processing steps involve data fusion 

between the multispectral bands with 2.00 m resolution with the panchromatic band with 0.5 

m resolution. The resulting image will be a multi spectral image with 8-bands. The next step 

is to convert the RGB image to gray level image, Figure 9, using the standard perceptual 

weightings for the three-color components RGB using the following equation 

(http://www.mathworks.com/help/toolbox/wavelet/gs/f4-1013594.html). 

 

 Gray level = 0.2990 * R + 0.5870 * G + 0.1140 * B 15 

The data is worldview-2 imagery, provided by Digital Globe Company for a part of San 

Francisco, USA. The imagery was captured on October, 2011 morning time. Forward second 

generation curvelet transform wrapping algorithm will be applied to the gray level image, 

Figure 9, resulting in generating of the curvelet coefficients in different scales and 

orientations. Number of scales is determined according to the size of the original image, 

following the equation: 

 n=log2(N)-3  16 

where N is the minimum number of the image size and n is the number of the scale levels, i.e. 

for N=512 pixels, the n=6 levels. The coarser level starts from scale number one and gets 

finer as we move to the second , third fourth scales.  

 

http://www.cs.washington.edu/research/imagedatabase/demo/edge
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Figure 8   The proposed edge detection technique using curvelet-canny  

 

 

Figure 9   The grey level image for the area of the study 
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Reconstructing the images from each scale individually shows that coarser scales, first four 

scales, contain the most important information about the image, while finer scales, fifth and 

sixth scales mostly contain noise or very fine details about the image, as in Figure 10. 

Therefore, the main purpose of this step is to suppress the coefficients coming from the finer 

scales, as a result the reconstructed image will be partially free from insignificant 

information, noise and very fine details, to help the next step for better detecting the strong 

edges. Consequently, by arranging the coefficients of each level and taking the most 

significant part of them, this will enhance the edge information that represents the image part 

of interest. Then, the coefficients are reconstructed to get a new image called the edge map 

(Elsharkawy et al., 2011), as shown in Figure 11, where the edge parts are enhanced.  

 

 

 

 

 

Figure 10   The reconstructed images using different scales levels 
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Figure 11   The reconstructed edge map 

 

Table 1 summarizes the total number of coefficient in each scale and the weight of each scale 

level used to reconstruct the edge map. 

 

Table 1 The percentage used in reconstructing the edge map image 
 

Scale No. of total coefficients Percentage used No. of used 

coefficients 

Weight of each 

scale level 

1 625 100% 625 1 

2 8320 100% 8320 1 

3 33488 100% 33488 1 

4 129792 100% 129792 1 

5 510848 1% 5108 0.9 

6 2022976 1% 20229 0.9 

Total 2706049 7.3 % 197562  

 

The reconstructed edge map, Figure 11, will be the input to the next step, which consist of 

gradient calculation, non-maximal suppression and hysteresis. The result from this stage is 

illustrated in Figure 12.  
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Figure 12   Edge detection result using the proposed algorithm  

 

To illustrate the quality of this algorithm the result was compared with the traditional Canny, 

Figure 13. Details of the comparison are given in the next section.  

 

Figure 13   Results with Canny Operator  
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Figure 14   Comparing certain areas in curvelet-canny and canny 
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Results and Discussion 
Comparing the two figures, it was clear that Canny wasn‟t able to siege or block many 

features leaving a lot of open boundaries, and also canny alone, was not able to detect many 

elongated structures, while curvelet-canny approach gave better results regarding more 

detection of elongated structures and more closed boundaries. Figure 14, enlarge some 

snapshots to illustrate these findings. 

 

 

Conclusions 
A curvelet-canny combined approach for edge detection was proposed and applied on high-

resolution satellite imagery data, and repeated using the traditional canny operator, the results 

were promising. The curvelet-canny approach give close or even improved delineation to 

edges compared to Canny. The proposed method was able to detect longer edges and 

generate more closed objects. This method can be used as an alternative for the segmentation 

process, as it gives a closed boundary for almost all main features in the input image, in an 

object-based classification approach.  
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