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Abstract: The solution of inverse kinematics problem of robotic manipulator is a 

fundamental problem in robot control. This paper involves the study of forward and inverse 

kinematics of a robotic manipulator platform with revolute joints. The (Denavit-Hartenberg) 

kinematic model of the prescribed manipulator is presented to robot links and joints. In 

addition inverse kinematics solution has been provided using geometric approach. This 

solution is used to develop a dataset used to train three artificial feed forward neural networks 

(ANN). Each network is used to calculate one joint variable using position and orientation of 

the end effector as an input. Experimental results have shown a good mapping over the 

working area of the robot with smaller RMS error than that reported in the cited literature.  
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Nomenclature 
θ1:  Base angle 

θ2:  Shoulder angle 

θ3:  Elbow angle 

θ4:  Wrist-pitch angle 

φ:  Wrist pitch angle 

ANN:  Artificial neural network 

D-H:  Denavit and Hartenberg notation 

DoF: Degree of freedom 

Exp( ): Exponential function 

Hyp-Tan-Sig: Hyperbolic tangent sigmoid transfer function 

RMS:  Root mean square 

0T
5
: Homogeneous transformation matrix that transform from frame No.5 to frame No.0 

MSE:  Mean square error 

 

 

Introduction 
The robot servo control system requires the reference inputs to be in joint coordinates whereas 

the task is generally stated in terms of Cartesian coordinate system. For efficient control of the 

position and orientation of the robot end-effector to reach its object, the understanding of 

kinematic relationship between the joint coordinate system and the Cartesian coordinate 

system is essential. The kinematics problem of robots is generally categorized into forward 
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kinematics and inverse kinematics problems. For successful task execution in various 

industrial applications like spot welding, precision assembly, packaging, etc., the path 

planning is done at the background or in offline mode in order to determine the Cartesian path 

for robot. The execution of this Cartesian path demands for conversion of Cartesian 

coordinates into joint angle coordinates using inverse kinematics relations. Hence, inverse 

kinematics computations for a serial robot are elemental for design, analysis of workspace for 

path planning, trajectory planning and control and offline programming of robots. This 

conversion is done by mapping Cartesian space of robot into its joint space by using inverse 

kinematics relations. This mapping process is nonlinear due to association of nonlinear 

trigonometric equations and becomes more complex for the robot with complex geometry and 

multi-degree of freedom. Moreover, the associated problems like the coupled nature of 

position and orientation kinematics of the robot, existence of multiple solutions and the 

presence of singularities add to the computational complexities. 

 

Kinematical analysis based solutions are very vital when one wants to perform modeling of 

robotic arm. It turns out to be a difficult task to find the solution through inverse kinematics 

with increase in DoF (Degree of Freedom) of robot. The conventional methods used for 

calculating inverse kinematics of any robot manipulator are: geometric [1, 2], algebraic [3] [4] 

[5] and iterative approaches[6]. While algebraic methods cannot promise closed form 

solutions, geometric methods must be able to produce closed form solutions for the first three 

joints of the manipulator. On the other hand, the iterative methods result in a single solution 

only, and that solution also depends on the starting point. To solve the inverse kinematics 

problem for three different cases of a 3-degrees-of freedom (DoF) manipulator in three 

dimensional spaces, a solution was proposed in [7] using feed-forward neural networks. This 

introduces the fault-tolerant and high-speed advantages of neural networks to the inverse 

kinematics problem. Hierarchical control technique based on the establishment of a non-linear 

mapping between Cartesian and joint coordinates using fuzzy logic was proposed in [8] in 

order to direct each individual joint and control a robotic manipulator. Commercial Microbot 

with 3DoF was utilized to evaluate the proposed method. A novel modular neural network 

system to overcome the discontinuity of the inverse kinematics function was proposed in [9] 

and it consists of a number of expert neural networks. Neural network based three-joint 

robotic manipulator simulation software was developed in [10] for inverse kinematics 

solution of a robotic manipulator. Then a designed neural network was used to solve the 

inverse kinematics problem. An Artificial Neural Network (ANN) based on Bees Algorithm 

using back propagation algorithm was applied in [11] to solve inverse kinematics problems of 

industrial robot manipulator. That in turns used to train multi-layer perceptron neural 

networks in [12] to model the inverse kinematics of an articulated robot manipulator arm. An 

Artificial Neural Network (ANN) based approach for fast inverse kinematics computation and 

effective geometrically bounded singularities prevention of redundant manipulators was 

presented in [13]. A fusion approach to determine inverse kinematics solutions of serial robot 

is presented in [14]. The presented solution makes use of radial basis function neural network 

for prediction incremental joint angles. An adaptive learning strategy using artificial neural 

network has been presented in [15]. 

 

In this study, the inverse kinematics problem is split to two simple ones. The solution using 

three feed forward neural networks is presented. The paper is organized into four main 

sections: the following section is dedicated to identify the robot arm platform used in this 

work; followed by a section that in concern with explanation of forward and inverse 

kinematics of the specified robotic platform. Final section discusses the implementation of the 

proposed neural network. 
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Description of the “ED-7220C” Robotic Manipulator 
The ED-7220C robotic manipulator is presented in Figure 1. It is based on a five joint system 

which is popular in industry. Therefore, the experiments using ED-7220C can be directly 

applied in the real business needs. Each robot joint is driven by a DC servo motor with a 

rotary encoder built-in. The overload sensing and controls are managed by a microprocessor. 

The ED-7220C is designed such that the main driving mechanism, including the timing belt, 

is exposed to the user to offer the visual observation. Also, the robot is designed to maintain 

the holding positions of the grip fingers even though the elbow and shoulder are in 

motion[16]. 

 
Figure 1   ED-7220C robotic manipulator 

 

 

ED-7220C Structure 
All joints are revolute as shown in Figure 2, and with an attached gripper it has six degree of 

freedom. Each joint is restricted by the mechanical rotation its limits are shown below. 

 

Joint Limits (all angles are measured from positive X-axis direction): 

Axis 1: Base Rotation: 310°  

Axis 2: Shoulder Rotation: + 32° / 123° 

Axis 3: Elbow Rotation:  + 190° / -75° 

Axis 4: Wrist Pitch: ± 125° 

Axis 5: Wrist Roll Unlimited (electrically 570°) 

 

Maximum Gripper Opening: 65 mm without rubber pads 55 mm (2.6") with rubber pads. The 

length of the links and the degree of rotation of the joints determine the robot’s work 

envelope. Figure 3 shows the dimensions and reach of the ED-7220C. The base of the robot is 

normally fixed to a stationary work surface. It may, however, be attached to a slide base, 

resulting in an extended working range. 
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                                (a) Links                                                (b) Joints 

 

Figure 2   Robot arm links and joints 
 

 

 

                                Top view                                                 Side view 
 

Figure 3   The working envelop 

 

 

Kinematic Model of ED-7220C 
 

Forward Kinematics 
Kinematic modeling of the robot arm can be made simple by using Denavit and Hartenberg 

(D-H) notation. The frame assignment and joint-link parameters for ED-7220C robot 

manipulator are shown in Figure 4 and Figure 5, respectively. 

 

Table 1 states the corresponding D-H parameters for the robot. 

 

 

 



Paper: ASAT-15-087-CT 

 

 

5 

Table 1   Symbolic D-H parameters for ED-7220C 
 

Joint  Ɵ D a α  

1  Ɵ1 d1 a1 π/2  

2  Ɵ2 0 a2 0  

3  Ɵ3 0 a3 0  

4  Ɵ4 0 0 π/2  

5  Ɵ5 d5 0 0  
 

 

 

Figure 4   Representation of the robot arm showing joint frames 

Figure 5   Robot links notation 

 

Once the D-H coordinate system has been established for each link as shown in Figure 4 and 

Figure 5, a homogeneous transformation matrix can be developed. 

 
5 1 2 3 4 5

0 0 1 2 3 4T T T T T T
 (1) 

Substituting for (d1, a1, a2, a3, d5) by (360, 20, 220, 220, 150), this may lead to: 
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(3) 

 

Hereby; one can use these equations to locate the end-effector position and orientation. 

 

 

Inverse kinematics 
To solve for the inverse kinematics, equations have to be found for the five joint variables in 

terms of the position (X, Y, and Z), and the orientation (roll (φ), pitch (θ)), of the end-effector.  

From Figure 6, the value for the first joint is: 

 
1

1

Y
Tan

X
   
  

   (4) 

 
 

Figure 6   Kinematical model with elbow triangle 
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If the manipulator arm is placed with all links in a vertical position, roll of the end-effector 

represents a rotation around the Z axis, as does rotation around the waist. Thus, the value of 

the last joint angle is: 

 5 1   
 (5) 

Similarly, pitch can be considered to be a rotation about the X axis, giving: 

 4 
 (6) 

If we consider the triangle formed by the second and third links as shown in  

Figure 6, the following relationships can be obtained: 

 

1

1

1

1

    if 
2

    if 0

X
r

Cos

Y
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Sin
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 (7) 
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 (8) 

 

2

2

    for elbow up configuration

    for elbow down configuration

  

  

 

   (9) 

 

3

3

   for elbow up configuration

   for elbow down configuration

  

  

 

   (10) 

To calculate the inverse kinematics for certain position, there will be more than one 

configuration. Assuming that the Cartesian coordinates of desired position are (376, 0, 718)’ 

with end effector pitch angle ‘θ4 = 0º’, this leads to two possible configurations as shown in 

Figure 7. In upper elbow configuration, the solution is (0, 40, and 80) º for (θ1, θ2, θ3) 

respectively, where for lower configuration, the solution is (0, 80, and 40) º for (θ1, θ2, θ3) 

respectively. 
 

 

Proposed Neural Networks for the Inverse Kinematics of ED-7220C  
To simplify the problem of creating artificial neural network (ANN) that transform from 

Cartesian space into joint space (performing inverse kinematics of ED-7220C), an attempt is 

done to split the big problem into two small problems. First, consider the robot to be planar, 

as shown in Figure 8(a), and get shoulder angle (θ2) and elbow angel (θ3), then, getting base 

angle (θ1) would be easy, as presented in Figure 8(b). That means there are three ANNs each 

used to produce a specific angle of the robot. 
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Figure 7   Representation of two possible configurations 

 

 

Regarding first two ANNs that generates (θ2, θ3), the inputs of the ANNs will be the (R, Z-

axis) coordinates and the wrist pitch angle (θ4), so there will be totally three inputs to the 

ANN and one output. The last ANN is responsible of generating the base angle (θ1), and this 

network has only two inputs (X, Y-axis) coordinates. 

 

 

Constructing Training Data Set 
A Matlab

®
 code has been developed to cover the most volume of the robotic working space 

with resolution of (2 mm) for (R, Z-axis) as shown in Figure 8(a), and 5 degrees for (θ4). The 

total available points after rejecting points that violates robotic arm constrains, reached (1 231 

401) point. θ2, θ3 is then generated by feeding the recorded points to the inverse kinematics 

equations described above (refer section  0). Then I/O pairs are created between the Cartesian 

space (I/Ps) and the joints space. These pairs are stored in a separate data file in order to be 

called in the training process. 

 

The same procedure is done to generate a data set that contains training data of the third ANN 

that produces (θ1).  Where I/Ps are X, Y-axis with resolution of (5 mm) and the O/P is θ1. The 

total number of pairs is (45 167) pair. These pairs have been saved also in separate file. 

 

As discussed before, in section  0 above, there are only two possible configurations to reach 

certain point in allowable working space, the two possible configurations are elbow up or 

elbow down configuration. Only elbow up configuration is used in creating the training set to 

train the networks. That is because: this type of configuration is widely popular in 

manipulation process. 
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Figure 8   Inverse kinematics problem is divided into two smaller problems 

 

 

ANN Construction 
As mentioned before, three ANNs have been constructed to calculate (θ2, θ3, and θ1). The first 

two ANN are responsible for generating (θ2, θ3) are the same in structure. Each has one input 

layer, two hidden layers, and one output layer. Regarding the input layer, it is responsible for 

preparing the inputs to be fed to first hidden layer. This can be done by passing the inputs to a 

preprocess function, this function normalize inputs to fall in range of (-1, 1) this is useful in 

training the network. The number of neurons in the first and second hidden layers will be 

optimized during training based on the minimum square error. The output layer contains one 

neuron in order to generate single output as shown in Figure 9 and Figure 10.  

 

As shown in Figure 9, the neurons in hidden layers have hyperbolic tangent sigmoid transfer 

function, while the output layer has only one neuron with linear transfer function.  

Regarding the third ANN (the ANN that produces the values of θ1), it has two hidden layer 

and the number of neurons will be optimized during training based on the minimum square 

error. The output layer contains one neuron. The neurons in the hidden layers have hyperbolic 

tangent sigmoid transfer function (T), while the output layer has only one neuron with linear 

transfer function (L). 

 

 

The ANNs is fully connected with weighted connections, and there are biases in each layer. 

As shown in Figure 9 and Figure 10, there is a bias ‘b’ connected to each neuron, this bias has 

a value that is summed to the product of inputs ‘p’ by weights ‘w’, the result is then fed to 

transfer function ‘f’’ of its corresponding neuron as shown in eq. (11) to produce its output ‘a’ 

that may be considered an input to the next layer. The values of these weights and biases 

change in the learning process. 
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Figure 9   Detailed representation of ANN that generates (θ2, θ3) 

 

 
Figure 10   Detailed representation of ANN that generates (θ1) 
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 ( )a f wp b   (11) 

It’s notably that the number of layers and neurons in each layer is chosen experimentally 

according to some rules of thumb. 

 

 

ANN Learning 
In order to let the ANN learn the inverse kinematics of ED-7220C, the data set created 

previously should be used. The saved file has relatively large data, and if this amount of data 

pairs is used, this will consume relatively long time. So the solution was to reduce the amount 

of data used without reducing the distribution of the points that cover the working envelop of 

the robot. One pair of 30 pairs has been chosen to form the new data set, so the total amount 

used to train the ANN is (41 047) pairs, these pairs also were filtered from configurations 

those violate robots’ geometric constrains; this is done using Matlab code presented in the 

following chart, Figure 11. 

 

 

 
 

 

Figure 11   Flow chart of creating the dataset 

 

Start

Initialize the values of the inputs

Substitute in Inverse Kinematics 

equations and get robot angles

If

the angles violates the robot 

constrains

Reject this combination

Yes 

Save this combinationNo 

Goto Next step

End of Loop

No 

EndYes 



Paper: ASAT-15-087-CT 

 

 

12 

Neural network training can be made more efficient if certain preprocessing steps on the 

network inputs and targets are performed. They become part of the network object, so that 

whenever the network is used, the data coming into the network is preprocessed in the same 

way. In multilayer networks, sigmoid transfer functions are generally used in the hidden 

layers. These functions become essentially saturated when the net input is greater than three 

(exp (−3) = 0.05). If this happens at the beginning of the training process, the gradients will be 

very small, and the network training will be very slow. In the first layer of the network, the 

net input is a product of the input times the weight plus the bias. If the input is very large, then 

the weight must be very small in order to prevent the transfer function from becoming 

saturated. It is standard practice to normalize the inputs before applying them to the network. 

 

Generally, the normalization step is applied to both the input vectors and the target vectors in 

the data set. In this way, the network output always falls into a normalized range. The network 

output can then be reverse transformed from the final layer 

 

The dataset isn’t totally used to train the ANN, but 70% only used for that, 15% is used for 

validation procedure, and the final 15% is used for testing the ANN. Segmentation of the data 

is done randomly. 

 

Nguyen-Widrow [17] algorithm is used to initialize the network weights and biases. It 

generates random initial weight and bias values for a layer so that the active regions of the 

layer's neurons are distributed approximately evenly over the input space. 

 

Mean square error function is used as performance function (e.g. cost function). Many 

training algorithms were tested to train the ANN, experimental results shows that Levenberg-

Marquardt optimization algorithm provides relatively very good results with relatively short 

training time. 

 

The Marquardt algorithm for nonlinear least squares is incorporated into the back propagation 

algorithm for training feed forward neural networks. The algorithm is tested on several 

function approximation problems, and is compared with a conjugate gradient algorithm and a 

variable learning rate algorithm. It is found that the Marquardt algorithm is much more 

efficient than either of the other techniques when the network contains no more than a few 

hundred weights [18]. 

 

The error surface of a nonlinear network (such as proposed networks) is more complex than 

the error surface of a linear network. The problem is that nonlinear transfer functions in 

multilayer networks introduce many local minima in the error surface. As gradient descent is 

performed on the error surface, depending on the initial starting conditions, it is possible for 

the network solution to become trapped in one of these local minima. Settling in a local 

minimum can be good or bad depending on how close the local minimum is to the global 

minimum and how low an error is required. One should be cautioned that although a 

multilayer back-propagation network with enough neurons can implement just about any 

function, back-propagation does not always find the correct weights for the optimum solution. 

One might want to reinitialize the network and retrain several times to obtain better solution.  

 

Networks are sensitive to the number of neurons in their hidden layers. Too few neurons can 

lead to under-fitting. Too many neurons can contribute to over-fitting, in which all training 

points are well fitted, but the fitting curve oscillates wildly between these points. At any case, 

one should try to fit the function with minimum No. of layers those have also minimum No. 

of neurons, and increase the No. of neurons incrementally till reaching some sort of saturation 
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(network performance doesn’t improve at same rate), at which, it’s time to increase the No. of 

hidden layers, and so on. Finally, comparison between results should be established, regarding 

the performance of ANN compared to its size and computation time.  

 

Its notable to mention the machine used in calculating time needed for each neural network to 

calculate its output, is Intel® Core™ 2 Due CPU T7300 @ 2.00 GHz with 2.5 GB RAM, 

while the operating system type is 32-bit. 

MATLAB® (2012b) with its Neural Network Toolbox is used in this study. 

 

 

Results 
After training several neural networks with different characteristics such as No. of layers, No. 

of neurons in each layer, transfer function of each layer and also applying different training 

algorithms, it was found the prescribed neural networks with their structure, Figure 12 and 

Figure 13,  and training algorithms have high performance, as presented in Tables 2-5, with 

less calculation time related to other tested networks.  

 

 

 

 
 

Figure 12   Simple representation of ANN that generates (θ2, θ3) 

 

 

 
 

Figure 13   Simple representation of ANN that generates (θ1) 

 

 

 

Table 2   Results of trained networks that calculate Ɵ1 
 

No. of Hidden Layers 1 2 2 2 2 

No. of Neurons 5 5,5 10,5 15,10 20,10 

Transfer Function* T,T T,T,T T,T,L T,T,L T,T,L 

Mean Square Error 389.7 0.1475
 

5.67×10
-5

 0.0072 1.3×10
-4

 

Computation time [sec] 0.0318 0.0348 0.0345 0.0346 0.0348 
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Table 3   Some trained networks that calculate Ɵ2 
 

No. of Hidden Layers 1 1 2 2 2 

No. of Neurons 10 40 20,10 25,10 25,15 

Transfer Function*  T,L T,T T,T,L T,T,L T,T,T 

Mean Square Error 711 0.959 3.82 1.245×10
-4

 0.0218 

Computation time [sec] 0.0316 0.0322 0.0341 0.0346 0.0350 

 

 

 

Table 4   Some trained networks that calculate Ɵ3 
 

No. of Hidden Layers 1 1 2 2 2 

No. of Neurons 20 40 25,10 25,15 35,25 

Transfer Function* T,T T,T T,T,L T,T,T T,T,T 

Mean Square Error 2.41 0.74 5.69×10
-5

 0.0132 0.007 

Computation time [sec] 0.0310 0.0320 0.0348 0.0350 0.0378 

* T: Hyperbolic Tangent,  L: Pure Linear   

 

 

 

Table 5   Error statistics for proposed ANN 
 

 Ɵ1 Ɵ2 Ɵ3 

Maximum error 0.2454 0.5094 0.4955 

Minimum error -0.3151 -0.4281 -0.4975 

Mean Square Error 5.6684×10
-05

 1.2447×10
-04

 5.6964×10
-05

 

Root Mean Square Error 0.0075 0.0112 0.0075 

Mean Absolute Error 0.0045 0.0061 0.0034 

Mean Percentage of Absolute Error 0.0478% 0.0093% 0.0161% 

* All units in degrees. 

 

 

 

Figures (14-16) show the validation performance of the networks that produce (θ1, θ2, and θ3 

respectively) and the epoch that contains best performance while training. As depicted in 

figures, the Mean Square Error is almost under 10
-3

 degree, which indicates good learning 

performance compared to results discussed in literature, where minimum RMS error reached, 

was 0.02 degree in [14], minimum absolute error percentage reached, was 0.47% in [15], and 

the minimum RMS was 0.22 degrees in [19]. 

 

Figures (17-19) represent the error histogram for the proposed (θ1, θ2, and θ3 respectively) 

networks. As presented in figures, the error histogram is composed of 20 bars showing the 

value of most repeated error. It also shows that error margins are almost between (-0.5, 0.5) 

degrees. That indicates that the percentage of absolute error is below 0.65%.  
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Figure 14   Validation performance for θ1 (MSE in degrees) 

 

 

 
Figure 15   Validation performance for θ2 (MSE in degrees) 

 

 

 

Figure 16   Validation performance for θ3 (MSE in degrees) 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

10
-4

10
-2

10
0

10
2

10
4

Best Validation Performance is 7.5253e-05 at epoch 4524

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e

)

4556 Epochs

 

 

Train

Validation

Test

Best

0 0.5 1 1.5 2 2.5

x 10
4

10
-4

10
-2

10
0

10
2

10
4

Best Validation Performance is 9.7788e-05 at epoch 21800

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e

)

26800 Epochs

 

 

Train

Validation

Test

Best

0 0.5 1 1.5 2 2.5

x 10
4

10
-4

10
-2

10
0

10
2

10
4

Best Validation Performance is 7.2312e-05 at epoch 20903

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e

)

25903 Epochs

 

 

Train

Validation

Test

Best



Paper: ASAT-15-087-CT 

 

 

16 

 

 

 
Figure 17   Error histogram for θ1 (error in degrees) 

 

 

 

 
Figure 18   Error histogram for θ2 (error in degrees) 

 

 

 

 
Figure 19   Error histogram for θ3 (error in degrees) 
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Conclusion 
Inverse kinematics of robotic manipulators is a non-trivial problem which has been addressed 

in recent publications [9-15, 19]. This paper focus on reducing the RMS error of generated 

robotic joint angles, this is accomplished by creating multiple ANNs; each one is dedicated to 

generate certain angle. 

 

In this paper, it was suggested to split the inverse kinematic problem into two simple 

problems and solved by applying neural networks. Feasibility of using multilayer feed 

forward artificial neural network to model the inverse kinematics of ED-7220C is 

demonstrated. The data set is created using the inverse kinematics equations. Three ANNs are 

created, Number of hidden layers and also number of neurons in each hidden layer was 

chosen experimentally. After several experiments, hyperbolic tangent transfer function and 

L.M training algorithm shows satisfactory results compared to training time. The comparison 

between results achieved with the presented ANN and other stated studies in literature, 

indicates the former has lower level of RMS error. The proposed model showed that the ANN 

is a well generalized and it results a better error (RMS error is reduced by at least 90%) as 

compared to earlier studies [14, 15, 19]. 
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