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 ABSTRACT   

 
One of the most important combinatorial optimisation problems (COPs) is the capacitated 

clustering problem (CCP). This sort of problem involves dividing a set of nodes into a 

predefined number of clusters within specific limits (upper and lower); for each node in the 

cluster, a pair of nodes is defined that has a benefit value, and the total values of these benefits 

in the cluster must be maximised.  

The CCP is of a non-deterministic polynomial-time hard (NP-hard) nature. Such problems 

cannot be practically solved by exact optimisation algorithms, so we must choose one of the 

metaheuristic algorithms to solve them. The CCP has many applications in a variety of 

domains. 

This paper aims to design a metaheuristic method that solves the CCP, with an artificial bee 

colony (ABC) as the metaheuristic algorithm. 

The effectiveness of the proposed ABC based algorithm was confirmed through several 

computational experiments. The results demonstrate that the proposed algorithm produced 

competitive outcomes compared to the state-of-the-art metaheuristics developed for the CCP. Copyright © 2023 by the authors. This 

article is an open-access article 

distributed under the terms and 

conditions of Creative Commons 

Attribution-Share Alike 4.0 

International Public License (CC BY-

SA 4.0) 

 

KEYWORDS: Capacitated clustering problem (CCP), Local search, Neighbouring 

operators, Constraints handling, Artificial bee colony (ABC). 

 

 خوارزمية استرشادية لحل مشكلة التجميع مقيد السعة 

  *ويمآل ت بنان ناصر 

الإمام محمد بن سعود الإسلامية، الرياض، المملكة العربية السعوديةقسم علوم الحاسب، كلية علوم الحاسب والمعلومات، جامعة   

 banan2746@gmail.com  الرئيسي:*البريد الاليكتروني للباحث 

  الملخص

ن هذا النوع من المشكلات ترتكز على تقسيم مجموعة من الكائنات الى مجموعات منفصلة بحيث تكو مشكلة التجميع مقيد السعه واحد من اهم مسائل الاستمثال التوافقى ،

ازواج الكائنات فى نفس   الاوزان الاجمالية لهذه الكائنات ضمن حدود معينة )حد علوى وسفلى( ، وفى نفس الوقت يتم تحقيق اقصى قدر من اجمالى اوزان الاضلاع بين

 المجموعة.
لك توجب علينا اختيار احدى  هذه المسشكلة تعد مسالة كثيرة الحدود وغير قطعية ومعقدة وبالتالى فان خوارزميات التحسن الدقيقة غير عملية لحل مثل هذه المشكلات لذ

   توجد العديد من التطبيقات لحل مشكلة التجميع مقيد السعة والتى يمكن تطبيقها فى مجالات ومشكلات مختلفة.و خوارزميات الاسترشاد.

ناعى كخوارزمية  الهدف الرئيسى من هذا البحث هو تصميم خوارزمية استرشادية فعالة لحل مشكلة التجميع مقيد السعة باستخدام خوارزمية مجتمع النحل الاصط إن

 استرشادية.

وهذة المقارنة تبين ان خوارزمية  خوازمية البحث المحلى لها اثر ملموس على قيمة دالة الهدف، وهذا يحدث عند مقارنة النتائج الحسابية مع بعض نتائج الدراسات السابقة، 

 النحل الاصطناعى هى خوارزمية منافسىة لخوارزميات الاسترشاد الاخرى بخصوص حل مشكلة التجميع مقيد السعه. 

 .مستعمرة النحل الاصطناعية، البحث المحلي، العوامل المجاورة، التعامل مع القيود، سعهال  مقيد مشكلة التجمع :  الكلمات المفتاحية 
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1. INTRODUCTION 

The capacitated clustering problem (CCP) is a non-deterministic polynomial-time hard (NP-hard) 

combinatorial optimisation problem (COP). The process involves being divided into a set of nodes into a 

specific number of clusters, with certain constraints, to maximize the total benefits of the connected pairs of 

nodes (edges). The edges in the cluster have specific benefits (distances). In addition, each node has a 

specific weight, and the clusters have specific upper and lower weight limits [1]. 

The objective function sums all the pair benefits in each cluster. In the COP, the aim is to identify 

the best solution from a finite set of solutions, regardless of the time it takes to do so. After an in-depth study 

and investigation of COPs, we have chosen the CCP because it has many applications in different domains, 

like mail delivery, facility location [2]. Also, the CCP has been applied to computational biology, garbage 

collection zone design [3]. These applications have been applied in network design, sales force territory 

design, pattern recognition, manufacturing, habitat classification, statistical data analysis [2], 

telecommunications [3], mobility networks, and vehicle routing, very large-scale integration (VLSI) design 

[4]. 

CCP is a well-known problem, Deng & Bard (2011) mention that the main problem that motivates 

them to investigate the CCP is their association with the US Postal Service, which might facilitate planners 

at the mail processing and distribution centers. The US Postal Service pursues to recurrent the task of 

designing regions to justify the bulk movement of mail which is powered by industrial vehicles [2].  

Other applications of CCP is computational biology, specifically the sibling reconstruction problem 

(SRP) [5]. The SRP is one of the significant problems in genetic biology [5]. In this form, they proposed a 

randomized greedy optimization algorithm. The algorithm has two stages: construction and enhancement. 

The constriction stage consists of a randomized greedy perturbation approach and in the enhancement stage, 

they use a two-phases of local search with a memory method. The proposed model shows that it is an 

effective model by applying biological data sets and compression with the literature.  

Martínez- Gavara et al. (2015) mathematically formulated the CCP as follows: ‘given a graph G = 

(V, E) where V is a set of nodes n and E is a set of edges, let wi ≥ 0 be the weight of node i ∈ V and let cij 

be the benefit of edge (i, j) ∈ E. The CCP is the process of partitioning V into P clusters in a way that the 

total weights of the objects in each cluster are within specific capacity limits, L and U, and the total benefits 

between the pairs of nodes in the same cluster are maximized. The CCP can be formulated as a quadratic 

integer program with binary variables Xik that gives the value 1 if the node i is found in the cluster k and 

otherwise gives the value 0.  

Therefore, the CCP can be defined as: 

Maximise  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘
𝑛
𝑗>𝑖

𝑛−1
𝑖=1

𝑝
𝑘=1  (1.1) 

Subject to  ∑ 𝑥𝑖𝑘 = 1
𝑝
𝑘=1    𝑖 = 1,2, … , 𝑛 (1.2) 

      𝐿 ≤ ∑ 𝑤𝑖𝑥𝑖𝑘 ≤ 𝑈 𝑘 = 1,2, … , 𝑝𝑛
𝑖=1  (1.3) 

      𝑥𝑖𝑘 ∈ {0,1}   𝑖 = 1, … , 𝑛 𝑘 = 1, … , 𝑝 (1.4) 

The objective function of the CCP is expressed in (1.1) and it leads us to the total benefits of all 

node pairs belonging to the related cluster being maximized. The initial set of constraints (1.2) guarantees 

the selection of all nodes to a cluster. The following set of constraints (1.3) guarantees that the total weights 

of the pairs of nodes that refer to a similar cluster are between L and U.’ Variable definitions are given in 

(1.4) [1]. 
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This paper aims to design and implement the ABC algorithm for solving the CCP. To our knowledge, 

there has been no attempt to investigate the application of the ABC to the CCP. We will also study the 

outcomes of the ABC algorithm with the outcomes of other algorithms for the same problem and datasets.  

The applications of the CCP have been investigated by many researchers. We will mention the main 

research according to the most relative to my paper, I will state it according to historical appearance. Firstly, 

Mulvey and Beck [6] expanded the uncapacitated clustered problem to the CCP by adding capacity 

constraints on each cluster. They solve the CCP problem by a hybrid heuristic-subgradient and primal 

heuristic methods. Osman & Christofides [7] proposed a hybrid algorithm of the TS and SA with an 

elementary construction heuristic of a λ-interchange generation mechanism. Ahmadi and Osman [8], merged 

GRASP and adaptive memory programming (AMP) into their framework. Franga, Zuben and Castro [9] 

proposed an adjusted MAX–MIN ant system (MMAS), which was related to evolutionary algorithms. 

Likewise, Scheuerer and Wendolsky [10], whose proposed population-based algorithm, known as the scatter 

search-based heuristic approach. After that, Deng and Bard [2] suggested to couple GRASP with path 

relinking (PR). They used an HWE algorithm and a constrained minimum cut algorithm for the initial 

solution. Then, they used the cyclic neighbourhood search (CNS), VND, and randomised VND (RVND) 

methods for the LS. Darani, Ahmadi, Eskandari and Yousefikhoshbakht [11] also later proposed a hybrid 3 

staged meta-heuristic algorithm (HTMA), containing a sweep algorithm for the initial solution phase, and 

an ant colony optimisation (ACO) with two LSs: insert exchange (IE) and swap exchange (SE) algorithms, 

for improving the solution to solve the CCP. Lai and Hao [12] proposed an effective IVNS algorithm for 

resolving the CCP. The IVNS integrated an extended VND method and a randomised shake procedure to 

investigate the search space. Brimberg, Mladenović, Todosijević, and Urošević [13] proposed three 

neighbourhood methods and used them within a sequential VND heuristic. The three neighbourhood 

operators were insertion, swap and two out−one in 2–1 exchange operators. The same authors extended their 

work and proposed two VNS-based heuristics: the first was the same as that which had previously been used 

by [14] and [15], and the second was a skewed VNS that added acceptance criteria to grant a skewed move 

to ideal regions of the solution in the search space. Zhou, Benlic, Wu and Hao [4] proposed a memetic 

algorithm (MA) that merged TS algorithms, which explore the feasible and unfeasible regions of the search 

space (denoted as FITS), with a specified cluster-based crossover technique. 

The ABC algorithm, proposed by Derviş Karaboğa in 2005 [16], is an optimisation algorithm that 

builds on the behaviour of bees foraging for honey in a swarm. In the ABC, which is a population-based 

algorithm, the food source illustrates the feasible solutions to the optimisation problem and the amount of 

nectar in a food source presents the quality (fitness) of the related solution [17]. The ABC has been applied 

successfully to a variety of problems and has recently been used by many researchers.  

The algorithm categorizes the bee swarm into three jobs: employee, onlooker and scout bees. 

Employee bees are accountable for collecting information about food source locations and their quality and 

saving this information in memory. They are also responsible for the LS implementation, using neighbouring 

locations of the food source to explore the preferred places for foods in the neighbouring zones of the current 

value [16]. 

Onlooker bees are accountable for determining which food source is the best. The onlooker’s 

decision is based on the previous information that was gathered by the employee bees, and they are 

responsible for discovering the global optimum [16]. Scout bees are responsible for discovering new areas 

that have not yet been discovered by the employee bees, using a random search. Scout bees avoid the search 

process for fear of getting trapped in the local optimum [16]. The colony is divided in half between the 

onlooker and employed bees. The quality of the solutions is evaluated through the objective function value, 

which is associated with each solution. The total number of onlooker or employed bees is equivalent to the 

total number of solutions in the population [17]. 
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The ABC algorithm was originally proposed for multi-modal and multi-variable continuous 

optimisation problems and numerical optimisation problems [18]. Many variations of the ABC algorithm 

have later been practiced to many types of optimisation problems, like symbolic regressions [19], the 

quadratic minimum spanning tree problem [20], the design and operation of assembly lines [21], the leaf-

constrained minimum spanning tree problem [22], image segmentation [23], binary optimisation problems 

[24], recurrent neural network designs [25], constrained optimisation problems [26], the development of 

routing protocols for wireless sensor networks [27], [28], multi-objective optimisation problems [29], [30], 

as cited in [17], and the p-median problem [31], [32], uncapacitated facility location problems [33], [34], 

the knapsack problem (KP) [35], [36], the vehicle routing problem (VRP) [37], [38], the job shop scheduling 

problem (JSSP) [39], [40], the TSP [41], [42] and clustering problems [43], [44], [45], as cited in [46]. A 

complete review of the ABC algorithms and hybrid approaches and applications can be found in [47] and 

[48], and a comparative study between the ABC and the GA and PSO, as well as different evaluation 

algorithms can be found in [18]. The wide use of the ABC algorithm is attributable to its flexibility, 

efficiency, robustness and simplicity. The ABC algorithm is an example of how a natural process can be 

modelled to solve optimisation problems [17], [16].  

One of the related problems to the CCP is the maximally diverse grouping problem (MDGP). 

Martínez-Gavara et al. [1] stated that the MDGP could be considered a unique case of the CCP or a related 

problem to which the whole of the nodes has a weight of one unit. The MDGP involves grouping a collection 

of objects so that the diversity between the objects in each group is maximized. The diversity between the 

objects within the group can be measured as the total distances between the pairs of objects. The problem 

aims to maximize the total diversity of all groups when the size of each group is within a specific limit [49].  

 

As was mentioned before, the MDGP is a unique case for which wi = 1 for all nodes i, and the 

distance between each pair of nodes (i, j) is the benefit cij. From the CCP formulation above, Gallego et al. 

[49] mathematically formulated the MDGP as follows: 

Maximise  ∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑔𝑥𝑗𝑔
𝑀
𝑗>𝑖

M−1
𝑖=1

𝐺
g=1  (1.5) 

Subject to  ∑ 𝑥𝑖𝑔 = 1,𝐺
g=1   𝑖 = 1,2, … , M (1.6) 

      ∑ 𝑥𝑖𝑔 = 𝑆,   g = 1,2, … , G𝑀
𝑖=1  (1.7) 

      𝑥𝑖𝑔 ∈ {0,1}   𝑖 = 1, … , M g = 1, … , G (1.8) 

Rodriguez et al. [17] suggested an ABC algorithm for the MDGP problem. The proposed framework 

starts with an initial solution that is produced by greedy constructive method, then its employees three 

different techniques for generating neighborhood. The local search of that algorithm consists of move and 

swap operators. The proposed framework has achieved a significant balance among global and local 

searches and the experimental outcomes show that the suggested algorithm is competitive with the current 

literature of algorithms which address the MDG problem. 

 

2. The application of ABC algorithm to the CCP  

In this part, we will explain the different components of the ABC algorithm that were designed to 

obtain high-quality solutions for the CCP. Our algorithm was inspired by an algorithm designed by 

Rodriguez et al. [17] for the MDGP problem. Figure 1 depicts the ABC algorithm. We will describe the 

general framework first and then describe each main component of the framework in detail in the following 

parts. 
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The ABC framework requires six input values and five parameters: instance I represents the dataset 

instance, tmax represents the computation time limit, limit represents the maximum number of iterations 

before the decision to discard, NP presents the number of populations or food sources, pls presents the 

probability of applying the LS to the solutions. qs presents the number of queue swap operators. The 

algorithm returned the ideal solution found so far.  

 

Figure 1: Pseudocode of ABC algorithm. 

2.1 General Framework of the ABC Algorithm to Solve the CCP 

 

Our ABC algorithm is presented in Figure 1. The framework starts with a population of solutions 

produced by the function initialSolution  ( ) (Line 2). The function initialSolution  ( ) implements a 3-stage 

procedure to create an initial populations solution for the CCP. Next, the following phases can be repeated 

until the time limit (tmax) is reached [17]: 

- The employed bee stage generates new solutions for the employed bees through the 

generateNeighbouring( ) function (Line 9). This method uses one neighbouring operator, which is based 

on swaps (see 4.2.3 for details on this function). Next, an LS procedure is applied to the solutions with 

a probability pls (Lines 10–11), meaning that not necessarily all of the solutions will be improved by the 

LS procedure. At the end of this phase, if the solution is improved after the generateNeighbouring( ) 



A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM 

       889   JAUES, 18, 69, 2023 

and LS procedures, it is saved (Line 15). In the situation that the solution value is equal to the value of 

the BKS, the algorithm will terminate (Lines 16–18) [17].  

- The onlooker bee stage generates new solutions for the onlooker bees from the solutions by taking from 

the method binaryTournament( ) (Line 23), which randomly chooses two solutions from the populations 

and selects the better one of the two. Next, the generateNeighbouring( ) function is implemented on the 

solutions (Line 24) and the LS procedure is applied to the solutions with a probability pls (Lines 25–26). 

At the end of this phase, if the solution is improved, it is saved (Line 30). In the situation that the solution 

value is equal to the value of the BKS, the algorithm will terminate (Lines 31–33) [17].  

- The scout bee stage selects the discarded solutions for the scouts and exchanges them with solutions 

recently produced by the method initialSolution( ) (Line 39). The decision to discard is taken based on 

a parameter value of limit; in other words, solutions that have not changed for specific iterations (within 

a certain limit) are excluded. Next, the LS procedure is applied to the solutions with a probability pls 

(Lines 40–41) [17]. 

At the end of the framework and as long the value of the best objective function value does not 

reach the value of the BKS, the best objective function value is returned as the best solution value. The 

complexity of the ABC algorithm is O(n2).The main component functions of the framework are stated in 

the following sections [17].  

2.2 Initial Solution Function 

 

The initial solution procedure takes place at the beginning of the framework and in the scout bee 

phase (Lines 2 and 39). The initial solution function produces a solution using a 3-stage procedure. It first 

assigns nodes randomly to the clusters, then randomly assigns nodes to each cluster sequentially until the 

lower bound constraints are met (i.e., assign nodes until the total sum of their weights in the cluster is larger 

than or equal to 𝐿). Lastly, it assigns the remaining nodes [13]. The pseudocode of initial solution function 

is given in Figure 2.  

Function: initial solution  

Input: instance I  

Output: feasible initial solution   

1- Randomly select C nodes according to the cluster number and assign one to each 

cluster.  

2- Repeat the following steps until 𝑊𝑝 𝐿 for all clusters.  

- Randomly select unassigned node n  

- Assign node n to cluster C if 𝑊𝑝 𝐿 

3- Repeat the following steps until all nodes are assigned.  

- Randomly select unassigned node n  

- Assign node n to cluster C if 𝑊𝑝 𝑈 

Figure 2: Pseudocode of initial solution. 

2.3 Generate Neighbouring Function  

 

The generate neighbouring function is used at the beginning of the employed bee stage and the 

onlooker bee stage (Lines 9 and 24). The function simply implements N2, but this swap operation is a queue 

swap (multiple swaps), not a single swap. This function performs qs randomly swaps to attain a neighbouring 

solution [17]. The value of qs is determined as a parameter. The pseudocode of suggested Generate 

Neighbouring function is given in Figure 3. 
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Function: generateNeighbouring ( ) 

Input: instance I, qs 

Output: feasible solution   

1- Reap until reach the value of qs 

- Randomly select a solution. 

- Do the swap () if the swap Don’t violate the node weight 𝐿  𝑊𝑝 𝑈. 

2- Return the solutions after qs swapping operation. 

 Figure 3: Pseudocode of Generate Neighbouring. 

2.4 LS Function  

 

The LS procedure takes place after production of novel solutions in the initial solution function and 

scout bee phase (Lines 4 and 41) and generation of neighbouring solutions in the employed bee phase and 

the onlooker bee phase (Lines 11 and 26). The LS procedure is used with a pls probability value in order to 

improve the quality of the solutions [17].  

In our framework, LS rejects any infeasible solutions. We depended on the best improvement 

strategy, and we will refer to the move neighbouring method as N1 and the move and swap neighbouring 

methods as N1+N2. The pseudocode of suggested LS is given in Figure 4. 

Algorithm: LS  

Function: construction solution  

Input: feasible initial solution  

Output: optimal solution for the LS 

1- Repeat until no neighbouring solutions improve on the current solution.  

- If a move violates node weight 𝐿  𝑊𝑝 𝑈, reject this move. 

- Do all possible improving moves, move ( ) if 𝐿  𝑊𝑝 𝑈  

- Do all possible improving swaps, swap ( ) if 𝐿  𝑊𝑝 𝑈 

2- Return the highest objective function value solution  

Figure 4: Pseudocode of the LS. 

As the initial solution had already been produced by the initial solution procedure, we investigated 

the performance of applying two neighbouring operators (N1+N2) because we found that the integration of 

such operators had a significant impact on the solution quality in the case of time and objective function 

value. The move operators searched through all of the possible neighbouring movements that provided an 

increase in the objective function value. The best or the first movement operation to produce an increase in 

the fitness function value was made. It executed each possible improving movement until no more 

improvements were found, thus producing the local optimum. [17] 

The swap operator searched through all of the possible neighbouring swaps that provided a rise in 

the objective function value. The best or first swap operation that produced an increase in the fitness function 

value was made [17]. 

The used LS constraint-handling technique will simply reject any infeasible solutions so there would 

be no violations at all of the constraints. 

3. Experimental Results and Comparisons 

On Amazon Web Services (AWS) infrastructure, the suggested algorithms were coded in Java and 

executed on a virtual server in Amazon’s Elastic Compute Cloud EC2. The hardware specifications for EC2 

were c4.8xlarge type, 36 vCPUs and 60 GB of memory with 10 GB of network performance. The instance 

processors were 2.9 GHz Intel Xeon E5-2666 v3 processors. 
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 To measure the performance of our algorithm, the experiment had a set of ten instances of DB 

(introduced by Deng and Bard), which were publicly available.1 The datasets had been used by many 

researchers in testing other literature of algorithms (e.g., Lai et al. [13], Deng and Bard [2], … etc.). This 

set of ten DBs was based on the problem introduced by Deng and Bard [2] in the situation of the MDGP, 

with 𝑛=82 and 𝑝=8. However, in the MDGP, the node weights were equal to 1, so Deng and Bard randomly 

generated the node weights with a uniform distribution 𝑈 (0,10) to be suitable for the CCP. The set was 

based on 10 instances with 𝑛=82, 𝑝=8, 𝐿=25 and 𝑈=75. 

3.1 Parameter Tuning for the ABC Algorithm 

The ABC algorithm has four different control parameters: pls, which represents the probability of 

applying the LS improvement procedures; qs, which indicates the number of queue swap moves required to 

obtain a neighbouring solution; and the limit, which represents the procedure of abandoning solutions that 

are not improvements through limited trials and that produces a scout bee phase. The algorithm will also 

have some fixed parameters that are NPs and that represent the number of produced solutions. The 

computation time limit before the ABC iteration is terminated is indicated by tmax. 

We exploited the parameter-tuning for the ABC algorithm through various experiments. In all the 

experiments, the NP value was 20 and the tmax value was n  1 (n represents the number of nodes); this stop 

condition (time limit) is the same as the stop condition for the benchmark algorithms. The experiments were 

applied on a set of capacitated clustering problem library (CCPLIB) benchmark instances (1) given in Tables 

1 and 2. The tables report the experimental best results, average values and standard deviations of the twenty 

runs. Besides examining the results of the ABC algorithm configured by the different parameter values, in 

which the results were also compared to those of the BKS and the TS, GRASP and IVNS. We intended to 

decide, by tuning the parameters, which configuration could provide a balance of quality, time and 

maximised objective function. 

We built twenty-four ABC configurations by examining two instances to avoid overfitting. These 

configurations investigated the effects of different values of Pls = {0.5,0.6,0.7,0.8,0.9,1}, qs = {0.1n, 0.2n, 

0.3n} and limit = {0.5n, n, 2n}, and the impact of applying the LS1, LS2 and LS3. 

The tables provided below outline the performance measures as follow:  

1- The best solution value (Best). 

2- The average solution value (Average). 

3- The average RPD (AvgRPD), which can be calculated as [ 
𝐵𝐾𝑆−𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝐾𝑆
× 100]. 

4- The standard deviation (SD). 

SD = √
∑(𝒳−𝒳̅)

𝓃
  

SD = standard deviation of objective values of 20 runs 

∑ = sum of.  

𝒳= objective values of solution.  

𝒳̅= mean of all objective solutions, average of sigma x. 

𝓃= number of solutions (Times)  

5- The average complete computational time (CTime) in seconds. 

 

1 http://grafo.etsii.urjc.es/optsicom/ccp/ 
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6- The average time for the final solution to be found for the first time (FTime) in seconds [50]. 

7- The number of found solutions that are equal to the BKS (#BEST). 

Table 1: Parameter-tuning for the instance Sparse82_01. 

Table 2: Parameter-tuning for the instance Sparse82_06. 

 

 

 

 

Results of ABC algorithm 

Pls qs limit 
LS 

Type 
Best Average SD #BEST RPD CTime FTime 

 

0.5 
0.1n 0.5n LS1 1342.17 1339.65 2.67 6/20 0.18% 75.7 72.15 

 

0.6 
0.1n 0.5n LS1 1342.17 1340.80 1.35 6/20 0.10% 77.5 73.1 

 

0.7 
0.1n 0.5n LS1 1342.17 1340.49 2.80 8/20 0.12% 77.3 71.7 

 

0.8 
0.1n 0.5n LS1 1342.17 1340.43 2.25 8/20 0.12% 75.0 70.65 

 

0.9 
0.1n 0.5n LS1 1342.17 1341.02 1.99 12/20 0.08% 72.6 69.1 

 

1 
0.1n 0.5n LS1 1342.17 1341.40 1.99 15/20 0.05% 65.1 61.6 

 

1 
0.2n 0.5n LS1 1342.17 1341.48 1.05 12/20 0.05% 77.9 71.5 

 

1 
0.3n 0.5n LS1 1342.17 1340.92 1.54 10/20 0.09% 83.7 79.25 

 

1 
0.1n n LS1 1342.17 1340.26 2.56 11/20 0.14% 73.25 67.7 

 

1 
0.1n 2n LS1 1342.17 1341.18 1.66 13/20 0.07% 72.55 66.95 

Results of ABC algorithm 

Pls qs limit 
LS 

Type 
Best Average SD #BEST RPD CTime  FTime  

 

0.5 
0.1n 0.5n LS1 1354.61 1348.70 5.92 

8/20 

 
0.43% 77.5 71 

 

0.6 
0.1n 0.5n LS1 1354.61 1349.65 4.58 

7/20 

 
0.36% 77.85 70.25 

 

0.7 
0.1n 0.5n LS1 1354.61 1351.09 3.15 

6/20 

 
0.25% 81.3 74.8 

 

0.8 
0.1n 0.5n LS1 1354.61 1352.10 2.57 10/20 0.18% 73.65 68.2 

 

0.9 
0.1n 0.5n LS1 1354.61 1352.04 2.35 

9/20 

 
0.18% 72.65 66.3 

 

1 
0.1n 0.5n LS1 1354.61 1352.05 3.63 12/20 0.18% 61.8 56.35 

 

1 
0.2n 0.5n LS1 1354.61 1350.94 2.52 

4/20 

 
0.27% 81.45 77 

 

1 
0.3n 0.5n LS1 1354.61 1347.63 3.99 

2/20 

 
0.51% 85.3 78.8 

 

1 
0.1n n LS1 1354.61 1352.93 3.16 

15/20 

 
0.12% 60.5 56.15 

 

1 
0.1n 2n LS1 1354.61 1351.89 2.32 

8/20 

 
0.2% 69.05 63.65 
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From the results provided in Tables 1 and 2, we have drawn the following conclusions: 

- The Pls parameter had the most significant impact on ABC’s performance. Overall, the best-classified 

configuration (the bold row) employed a high value for the Pls parameter because it records the lowest 

time. Therefore, the ABC’s behaviour was better when we applied the LS with a higher probability. 

- The qs and limit parameters showed that there were no significant variations between the best 

configuration and the remaining ones for the selected instances. As a result, the values qs = 0.1n and 

limit = 0.5n were fixed. 

- The best configuration was found using Pls = 1, qs = 0.1n, limit = 0.5n and LS without violation of all 

the remaining experiments. 

3.2 Comparison of the ABC Algorithm Results and State-of-the-art Metaheuristics 

 

In this part we will display the results of employing the ABC algorithm to solve the CCP after the 

selection process of best parameters values for all of the dataset instances, and we will compare the 

performance results of our suggested ABC algorithm with the results of the following benchmark 

algorithms: TS, GRASP and IVNS, which were taken from [12].  

The source code for these benchmark algorithms was available online and cited in the paper [12]. 

We were encouraged to retest it on our EC2 instances using the same code, coded in C++, and compare our 

results with those of this retested algorithm to get a reasonable comparison between the algorithms. Lai and 

colleagues' [12] benchmark algorithms had a stop condition: a time limit of 1.0  n. In our proposed LSs, 

we addressed the average complete computational time (CTime) in the twenty runs in seconds, but the 

benchmark algorithms addressed the average running time to get the final objective value.  

 

Table 3: The values of best, average and SD objective function values for all instances run twenty times 

and average RPD, number best, CTime and Ftime of applying the ABC. 

  

 

 

 

 

 

 

 

Results of ABC algorithm  

Instances pls qs limit Best Average SD #Best Avg RPD CTime  FTime  

Sparse82_01 1 0.1n 0.5n 1342.17 1341.40 1.99 15/20 0.05% 65.1 61.6 

Sparse82_02 1 0.1n 0.5n 1306.64 1302.17 2.86 2/20 0.34% 81.75 78.4 

Sparse82_03 1 0.1n 0.5n 1353.94 1351.05 2.43 3/20 0.21% 81.1 78.55 

Sparse82_04 1 0.1n 0.5n 1291.22 1286.46 3.31 2/20 0.36% 79.75 76.35 

Sparse82_05 1 0.1n 0.5n 1352.35 1351.67 0.71 6/20 0.05% 79.7 74.2 

Sparse82_06 1 0.1n 0.5n 1354.61 1352.05 3.63 12/20 0.18% 61.8 56.35 

Sparse82_07 1 0.1n 0.5n 1266.94 1264.75 3.42 6/20 0.17% 81.7 79.25 

Sparse82_08 1 0.1n 0.5n 1393.02 1393.02 0 20/20 0 65.8 60.3 

Sparse82_09 1 0.1n 0.5n 1294.12 1293.57 0.39 6/20 0.04% 81.55 79.05 

Sparse82_10 1 0.1n 0.5n 1356.98 1353.30 5.30 1/20 0.27% 81.0 78.5 
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Table 4: Best, average and SD objective function values and time average of the TS, GRASP and IVNS 

run over twenty times on ten instances. 

The experimental results from Table 3 and the comparison of the results of the benchmark 

algorithms from Table 4 have led us to the following conclusions:  

- In terms of the best solution, the performance of the ABC was equivalent to that of the TS, GRASP and 

the IVNS for the following instances: Sparse82_05, Sparse82_06, Sparse82_09 and Sparse82_10. In 

the instances Sparse82_01, Sparse82_02 and Sparse82_08, ABC slightly outperformed the TS. In the 

instances Sparse82_03 and Sparse82_04, the ABC slightly outperformed GRASP. 

- Regarding the average solution, the performance of the ABC was comparable to that of the IVNS for 

all instances (the IVNS recorded the BKS for all the instances). In the instances Sparse82_01, 

Sparse82_02, Sparse82_04, Sparse82_05 Sparse82_07 and Sparse82_10, GRASP slightly 

outperformed the ABC. In the instances Sparse82_03, Sparse82_06, and Sparse82_09, the ABC slightly 

outperformed GRASP. In the instance of Sparse82_08, the ABC, the IVNS and GRASP recorded the 

same performance results, which also equalled to the BKS value. The TS algorithm recorded the worst 

results for all the instances compared to the ABC, GRASP and the IVNS.  

- With respect to the average RPD, all values were less than 1.0, meaning that all of the average results 

were close to the IVNS values (we compared the average results with the IVNS because it recorded the 

best values). 

- With respect to FTime, all results were under 80 seconds, meaning that the algorithm recoded the best 

solution before approximately 97% of the full time (tmax). 

Results of Benchmark Algorithms 

Instances 

TS or 

GRASP or 

IVNS 

Best Average SD Timeavg  

Sparse82_01 

TS 1341.46 1321.99 12.43 11.92 

GRASP 1342.17 1342.00 0.45 31.47 

IVNS 1342.17 1342.17 0 0.29 

Sparse82_02 

TS 1304.07 1286.35 12.11 10.80 

GRASP 1306.64 1304.47 0.61 36.91 

IVNS 1306.64 1306.64 0 1.70 

Sparse82_03 

TS 1353.94 1334.06 13.01 10.67 

GRASP 1352.41 1348.17 1.39 36.59 

IVNS 1353.94 1353.94 0 0.27 

Sparse82_04 

TS 1291.22 1272.75 17.70 8.92 

GRASP 1289.79 1286.77 1.66 43.17 

IVNS 1291.22 1291.22 0 6.48 

Sparse82_05 

TS 1352.35 1330.77 24.17 10.24 

GRASP 1352.35 1352.26 0.22 25.59 

IVNS 1352.35 1352.35 0 0.13 

Sparse82_06 

TS 1354.61 1336.46 20.07 2.97 

GRASP 1354.61 1349.38 3.36 39.52 

IVNS 1354.61 1354.61 0 0.12 

Sparse82_07 

TS 1266.94 1236.01 21.41 10.12 

GRASP 1266.94 1266.28 0.84 35.94 

IVNS 1266.94 1266.94 0 0.82 

Sparse82_08 

TS 1390.90 1359.68 34.56 2.53 

GRASP 1393.02 1393.02 0 0.52 

IVNS 1393.02 1393.02 0 0.05 

Sparse82_09 

TS 1294.12 1277.14 19.05 6.65 

GRASP 1294.12 1293.39 0.22 20.62 

IVNS 1294.12 1294.12 0 1.02 

Sparse82_10 

TS 1356.98 1331.81 20.42 12.67 

GRASP 1356.98 1356.51 0.10 25.50 

IVNS 1356.98 1356.98 0 0.67 
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The plots represent the value of the objective functions of ABC and the results of the benchmark 

algorithm values in twenty runs for the ten instances. The x-axis presents the test file name, and the y-axis 

presents the objective function values. The results of the comparison between the ABC and the benchmark 

algorithms are plotted in the following figures: 

 

 

Figure 5: Best results of the ABC and benchmark algorithms. 

 

 

Figure 6: Average results of the ABC and benchmarks algorithms. 

Conclusion  

An effective metaheuristic algorithm has been suggested in this paper for solving the CCP. We can 

draw the conclusion that when applying the ABC to solve the CCP as a metaheuristic algorithm, the 

experimental results were promising and compared well with other state-of-the-art algorithms in the 

literature. By analysing the parameter-tuning, this paper has demonstrated how parameters can affect the 

results of a solution in terms of time and quality. This work has clearly developed an effective metaheuristic 

algorithm for solving the CCP. 
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To better understand the implications of these results, future studies could address the application 

of the suggested approach on different COPs and investigate the integration of other algorithms (i.e. guided 

local search with the ABC to solve the CCP). Future studies could also investigate the applications of the 

suggested ABC algorithm for various problems and data sets. I suggest that the violation of LS constraints 

handling techniques should be investigated more thoroughly in future research.  

Note: 

This paper is taken from my thesis (A Metaheuristic to Solve the Capacitated Clustering Problem) done in 

May 2020 at (Al Imam Mohammad Ibn Saud Islamic University, College of Computer & Information 

Sciences, Department of Computer Science). 
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