

 884 JAUES, 18, 69, 2023

Journal of Al-Azhar University Engineering Sector

Vol. 18, No. 69, October 2023, 884 - 899

A Metaheuristic to Solve the Capacitated Clustering Problem

Banan Nasser AlTuwaim

Department of Computer Science, College of Computer & Information Sciences, Al Imam Mohammad Ibn Saud Islamic

University, Riyadh, Saudi Arabia

*Correspondence: banan2746@gmail.com

Citation:

B. N. AlTuwaim, " A Metaheuristic to

Solve the Capacitated Clustering

Problem", Journal of Al-Azhar

University Engineering Sector, vol.

18, pp. 884 - 899, 2023.

Received: 9 August 2023

Accepted: 23 September 2023

DoI:10.21608/auej.2023.235083.1420

 ABSTRACT

One of the most important combinatorial optimisation problems (COPs) is the capacitated

clustering problem (CCP). This sort of problem involves dividing a set of nodes into a

predefined number of clusters within specific limits (upper and lower); for each node in the

cluster, a pair of nodes is defined that has a benefit value, and the total values of these benefits

in the cluster must be maximised.

The CCP is of a non-deterministic polynomial-time hard (NP-hard) nature. Such problems

cannot be practically solved by exact optimisation algorithms, so we must choose one of the

metaheuristic algorithms to solve them. The CCP has many applications in a variety of

domains.

This paper aims to design a metaheuristic method that solves the CCP, with an artificial bee

colony (ABC) as the metaheuristic algorithm.

The effectiveness of the proposed ABC based algorithm was confirmed through several

computational experiments. The results demonstrate that the proposed algorithm produced

competitive outcomes compared to the state-of-the-art metaheuristics developed for the CCP. Copyright © 2023 by the authors. This

article is an open-access article

distributed under the terms and

conditions of Creative Commons

Attribution-Share Alike 4.0

International Public License (CC BY-

SA 4.0)

KEYWORDS: Capacitated clustering problem (CCP), Local search, Neighbouring

operators, Constraints handling, Artificial bee colony (ABC).

 خوارزمية استرشادية لحل مشكلة التجميع مقيد السعة

 *ويمآل ت بنان ناصر

الإمام محمد بن سعود الإسلامية، الرياض، المملكة العربية السعوديةقسم علوم الحاسب، كلية علوم الحاسب والمعلومات، جامعة

 banan2746@gmail.com الرئيسي:*البريد الاليكتروني للباحث

 الملخص

ن هذا النوع من المشكلات ترتكز على تقسيم مجموعة من الكائنات الى مجموعات منفصلة بحيث تكو مشكلة التجميع مقيد السعه واحد من اهم مسائل الاستمثال التوافقى ،

ازواج الكائنات فى نفس الاوزان الاجمالية لهذه الكائنات ضمن حدود معينة)حد علوى وسفلى(، وفى نفس الوقت يتم تحقيق اقصى قدر من اجمالى اوزان الاضلاع بين

 المجموعة.
لك توجب علينا اختيار احدى هذه المسشكلة تعد مسالة كثيرة الحدود وغير قطعية ومعقدة وبالتالى فان خوارزميات التحسن الدقيقة غير عملية لحل مثل هذه المشكلات لذ

 توجد العديد من التطبيقات لحل مشكلة التجميع مقيد السعة والتى يمكن تطبيقها فى مجالات ومشكلات مختلفة.و خوارزميات الاسترشاد.

ناعى كخوارزمية الهدف الرئيسى من هذا البحث هو تصميم خوارزمية استرشادية فعالة لحل مشكلة التجميع مقيد السعة باستخدام خوارزمية مجتمع النحل الاصط إن

 استرشادية.

وهذة المقارنة تبين ان خوارزمية خوازمية البحث المحلى لها اثر ملموس على قيمة دالة الهدف، وهذا يحدث عند مقارنة النتائج الحسابية مع بعض نتائج الدراسات السابقة،

 النحل الاصطناعى هى خوارزمية منافسىة لخوارزميات الاسترشاد الاخرى بخصوص حل مشكلة التجميع مقيد السعه.

 .مستعمرة النحل الاصطناعية، البحث المحلي، العوامل المجاورة، التعامل مع القيود، سعهال مقيد مشكلة التجمع : الكلمات المفتاحية

mailto:banan2746@gmail.com
mailto:banan2746@gmail.com

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 885 JAUES, 18, 69, 2023

1. INTRODUCTION

The capacitated clustering problem (CCP) is a non-deterministic polynomial-time hard (NP-hard)

combinatorial optimisation problem (COP). The process involves being divided into a set of nodes into a

specific number of clusters, with certain constraints, to maximize the total benefits of the connected pairs of

nodes (edges). The edges in the cluster have specific benefits (distances). In addition, each node has a

specific weight, and the clusters have specific upper and lower weight limits [1].

The objective function sums all the pair benefits in each cluster. In the COP, the aim is to identify

the best solution from a finite set of solutions, regardless of the time it takes to do so. After an in-depth study

and investigation of COPs, we have chosen the CCP because it has many applications in different domains,

like mail delivery, facility location [2]. Also, the CCP has been applied to computational biology, garbage

collection zone design [3]. These applications have been applied in network design, sales force territory

design, pattern recognition, manufacturing, habitat classification, statistical data analysis [2],

telecommunications [3], mobility networks, and vehicle routing, very large-scale integration (VLSI) design

[4].

CCP is a well-known problem, Deng & Bard (2011) mention that the main problem that motivates

them to investigate the CCP is their association with the US Postal Service, which might facilitate planners

at the mail processing and distribution centers. The US Postal Service pursues to recurrent the task of

designing regions to justify the bulk movement of mail which is powered by industrial vehicles [2].

Other applications of CCP is computational biology, specifically the sibling reconstruction problem

(SRP) [5]. The SRP is one of the significant problems in genetic biology [5]. In this form, they proposed a

randomized greedy optimization algorithm. The algorithm has two stages: construction and enhancement.

The constriction stage consists of a randomized greedy perturbation approach and in the enhancement stage,

they use a two-phases of local search with a memory method. The proposed model shows that it is an

effective model by applying biological data sets and compression with the literature.

Martínez- Gavara et al. (2015) mathematically formulated the CCP as follows: ‘given a graph G =

(V, E) where V is a set of nodes n and E is a set of edges, let wi ≥ 0 be the weight of node i ∈ V and let cij

be the benefit of edge (i, j) ∈ E. The CCP is the process of partitioning V into P clusters in a way that the

total weights of the objects in each cluster are within specific capacity limits, L and U, and the total benefits

between the pairs of nodes in the same cluster are maximized. The CCP can be formulated as a quadratic

integer program with binary variables Xik that gives the value 1 if the node i is found in the cluster k and

otherwise gives the value 0.

Therefore, the CCP can be defined as:

Maximise ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘
𝑛
𝑗>𝑖

𝑛−1
𝑖=1

𝑝
𝑘=1 (1.1)

Subject to ∑ 𝑥𝑖𝑘 = 1
𝑝
𝑘=1 𝑖 = 1,2, … , 𝑛 (1.2)

 𝐿 ≤ ∑ 𝑤𝑖𝑥𝑖𝑘 ≤ 𝑈 𝑘 = 1,2, … , 𝑝𝑛
𝑖=1 (1.3)

 𝑥𝑖𝑘 ∈ {0,1} 𝑖 = 1, … , 𝑛 𝑘 = 1, … , 𝑝 (1.4)

The objective function of the CCP is expressed in (1.1) and it leads us to the total benefits of all

node pairs belonging to the related cluster being maximized. The initial set of constraints (1.2) guarantees

the selection of all nodes to a cluster. The following set of constraints (1.3) guarantees that the total weights

of the pairs of nodes that refer to a similar cluster are between L and U.’ Variable definitions are given in

(1.4) [1].

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 886 JAUES, 18, 69, 2023

This paper aims to design and implement the ABC algorithm for solving the CCP. To our knowledge,

there has been no attempt to investigate the application of the ABC to the CCP. We will also study the

outcomes of the ABC algorithm with the outcomes of other algorithms for the same problem and datasets.

The applications of the CCP have been investigated by many researchers. We will mention the main

research according to the most relative to my paper, I will state it according to historical appearance. Firstly,

Mulvey and Beck [6] expanded the uncapacitated clustered problem to the CCP by adding capacity

constraints on each cluster. They solve the CCP problem by a hybrid heuristic-subgradient and primal

heuristic methods. Osman & Christofides [7] proposed a hybrid algorithm of the TS and SA with an

elementary construction heuristic of a λ-interchange generation mechanism. Ahmadi and Osman [8], merged

GRASP and adaptive memory programming (AMP) into their framework. Franga, Zuben and Castro [9]

proposed an adjusted MAX–MIN ant system (MMAS), which was related to evolutionary algorithms.

Likewise, Scheuerer and Wendolsky [10], whose proposed population-based algorithm, known as the scatter

search-based heuristic approach. After that, Deng and Bard [2] suggested to couple GRASP with path

relinking (PR). They used an HWE algorithm and a constrained minimum cut algorithm for the initial

solution. Then, they used the cyclic neighbourhood search (CNS), VND, and randomised VND (RVND)

methods for the LS. Darani, Ahmadi, Eskandari and Yousefikhoshbakht [11] also later proposed a hybrid 3

staged meta-heuristic algorithm (HTMA), containing a sweep algorithm for the initial solution phase, and

an ant colony optimisation (ACO) with two LSs: insert exchange (IE) and swap exchange (SE) algorithms,

for improving the solution to solve the CCP. Lai and Hao [12] proposed an effective IVNS algorithm for

resolving the CCP. The IVNS integrated an extended VND method and a randomised shake procedure to

investigate the search space. Brimberg, Mladenović, Todosijević, and Urošević [13] proposed three

neighbourhood methods and used them within a sequential VND heuristic. The three neighbourhood

operators were insertion, swap and two out−one in 2–1 exchange operators. The same authors extended their

work and proposed two VNS-based heuristics: the first was the same as that which had previously been used

by [14] and [15], and the second was a skewed VNS that added acceptance criteria to grant a skewed move

to ideal regions of the solution in the search space. Zhou, Benlic, Wu and Hao [4] proposed a memetic

algorithm (MA) that merged TS algorithms, which explore the feasible and unfeasible regions of the search

space (denoted as FITS), with a specified cluster-based crossover technique.

The ABC algorithm, proposed by Derviş Karaboğa in 2005 [16], is an optimisation algorithm that

builds on the behaviour of bees foraging for honey in a swarm. In the ABC, which is a population-based

algorithm, the food source illustrates the feasible solutions to the optimisation problem and the amount of

nectar in a food source presents the quality (fitness) of the related solution [17]. The ABC has been applied

successfully to a variety of problems and has recently been used by many researchers.

The algorithm categorizes the bee swarm into three jobs: employee, onlooker and scout bees.

Employee bees are accountable for collecting information about food source locations and their quality and

saving this information in memory. They are also responsible for the LS implementation, using neighbouring

locations of the food source to explore the preferred places for foods in the neighbouring zones of the current

value [16].

Onlooker bees are accountable for determining which food source is the best. The onlooker’s

decision is based on the previous information that was gathered by the employee bees, and they are

responsible for discovering the global optimum [16]. Scout bees are responsible for discovering new areas

that have not yet been discovered by the employee bees, using a random search. Scout bees avoid the search

process for fear of getting trapped in the local optimum [16]. The colony is divided in half between the

onlooker and employed bees. The quality of the solutions is evaluated through the objective function value,

which is associated with each solution. The total number of onlooker or employed bees is equivalent to the

total number of solutions in the population [17].

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 887 JAUES, 18, 69, 2023

The ABC algorithm was originally proposed for multi-modal and multi-variable continuous

optimisation problems and numerical optimisation problems [18]. Many variations of the ABC algorithm

have later been practiced to many types of optimisation problems, like symbolic regressions [19], the

quadratic minimum spanning tree problem [20], the design and operation of assembly lines [21], the leaf-

constrained minimum spanning tree problem [22], image segmentation [23], binary optimisation problems

[24], recurrent neural network designs [25], constrained optimisation problems [26], the development of

routing protocols for wireless sensor networks [27], [28], multi-objective optimisation problems [29], [30],

as cited in [17], and the p-median problem [31], [32], uncapacitated facility location problems [33], [34],

the knapsack problem (KP) [35], [36], the vehicle routing problem (VRP) [37], [38], the job shop scheduling

problem (JSSP) [39], [40], the TSP [41], [42] and clustering problems [43], [44], [45], as cited in [46]. A

complete review of the ABC algorithms and hybrid approaches and applications can be found in [47] and

[48], and a comparative study between the ABC and the GA and PSO, as well as different evaluation

algorithms can be found in [18]. The wide use of the ABC algorithm is attributable to its flexibility,

efficiency, robustness and simplicity. The ABC algorithm is an example of how a natural process can be

modelled to solve optimisation problems [17], [16].

One of the related problems to the CCP is the maximally diverse grouping problem (MDGP).

Martínez-Gavara et al. [1] stated that the MDGP could be considered a unique case of the CCP or a related

problem to which the whole of the nodes has a weight of one unit. The MDGP involves grouping a collection

of objects so that the diversity between the objects in each group is maximized. The diversity between the

objects within the group can be measured as the total distances between the pairs of objects. The problem

aims to maximize the total diversity of all groups when the size of each group is within a specific limit [49].

As was mentioned before, the MDGP is a unique case for which wi = 1 for all nodes i, and the

distance between each pair of nodes (i, j) is the benefit cij. From the CCP formulation above, Gallego et al.

[49] mathematically formulated the MDGP as follows:

Maximise ∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑔𝑥𝑗𝑔
𝑀
𝑗>𝑖

M−1
𝑖=1

𝐺
g=1 (1.5)

Subject to ∑ 𝑥𝑖𝑔 = 1,𝐺
g=1 𝑖 = 1,2, … , M (1.6)

 ∑ 𝑥𝑖𝑔 = 𝑆, g = 1,2, … , G𝑀
𝑖=1 (1.7)

 𝑥𝑖𝑔 ∈ {0,1} 𝑖 = 1, … , M g = 1, … , G (1.8)

Rodriguez et al. [17] suggested an ABC algorithm for the MDGP problem. The proposed framework

starts with an initial solution that is produced by greedy constructive method, then its employees three

different techniques for generating neighborhood. The local search of that algorithm consists of move and

swap operators. The proposed framework has achieved a significant balance among global and local

searches and the experimental outcomes show that the suggested algorithm is competitive with the current

literature of algorithms which address the MDG problem.

2. The application of ABC algorithm to the CCP

In this part, we will explain the different components of the ABC algorithm that were designed to

obtain high-quality solutions for the CCP. Our algorithm was inspired by an algorithm designed by

Rodriguez et al. [17] for the MDGP problem. Figure 1 depicts the ABC algorithm. We will describe the

general framework first and then describe each main component of the framework in detail in the following

parts.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 888 JAUES, 18, 69, 2023

The ABC framework requires six input values and five parameters: instance I represents the dataset

instance, tmax represents the computation time limit, limit represents the maximum number of iterations

before the decision to discard, NP presents the number of populations or food sources, pls presents the

probability of applying the LS to the solutions. qs presents the number of queue swap operators. The

algorithm returned the ideal solution found so far.

Figure 1: Pseudocode of ABC algorithm.

2.1 General Framework of the ABC Algorithm to Solve the CCP

Our ABC algorithm is presented in Figure 1. The framework starts with a population of solutions

produced by the function initialSolution () (Line 2). The function initialSolution () implements a 3-stage

procedure to create an initial populations solution for the CCP. Next, the following phases can be repeated

until the time limit (tmax) is reached [17]:

- The employed bee stage generates new solutions for the employed bees through the

generateNeighbouring() function (Line 9). This method uses one neighbouring operator, which is based

on swaps (see 4.2.3 for details on this function). Next, an LS procedure is applied to the solutions with

a probability pls (Lines 10–11), meaning that not necessarily all of the solutions will be improved by the

LS procedure. At the end of this phase, if the solution is improved after the generateNeighbouring()

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 889 JAUES, 18, 69, 2023

and LS procedures, it is saved (Line 15). In the situation that the solution value is equal to the value of

the BKS, the algorithm will terminate (Lines 16–18) [17].

- The onlooker bee stage generates new solutions for the onlooker bees from the solutions by taking from

the method binaryTournament() (Line 23), which randomly chooses two solutions from the populations

and selects the better one of the two. Next, the generateNeighbouring() function is implemented on the

solutions (Line 24) and the LS procedure is applied to the solutions with a probability pls (Lines 25–26).

At the end of this phase, if the solution is improved, it is saved (Line 30). In the situation that the solution

value is equal to the value of the BKS, the algorithm will terminate (Lines 31–33) [17].

- The scout bee stage selects the discarded solutions for the scouts and exchanges them with solutions

recently produced by the method initialSolution() (Line 39). The decision to discard is taken based on

a parameter value of limit; in other words, solutions that have not changed for specific iterations (within

a certain limit) are excluded. Next, the LS procedure is applied to the solutions with a probability pls

(Lines 40–41) [17].

At the end of the framework and as long the value of the best objective function value does not

reach the value of the BKS, the best objective function value is returned as the best solution value. The

complexity of the ABC algorithm is O(n2).The main component functions of the framework are stated in

the following sections [17].

2.2 Initial Solution Function

The initial solution procedure takes place at the beginning of the framework and in the scout bee

phase (Lines 2 and 39). The initial solution function produces a solution using a 3-stage procedure. It first

assigns nodes randomly to the clusters, then randomly assigns nodes to each cluster sequentially until the

lower bound constraints are met (i.e., assign nodes until the total sum of their weights in the cluster is larger

than or equal to 𝐿). Lastly, it assigns the remaining nodes [13]. The pseudocode of initial solution function

is given in Figure 2.

Function: initial solution

Input: instance I

Output: feasible initial solution

1- Randomly select C nodes according to the cluster number and assign one to each

cluster.

2- Repeat the following steps until 𝑊𝑝 𝐿 for all clusters.

- Randomly select unassigned node n

- Assign node n to cluster C if 𝑊𝑝 𝐿

3- Repeat the following steps until all nodes are assigned.

- Randomly select unassigned node n

- Assign node n to cluster C if 𝑊𝑝 𝑈

Figure 2: Pseudocode of initial solution.

2.3 Generate Neighbouring Function

The generate neighbouring function is used at the beginning of the employed bee stage and the

onlooker bee stage (Lines 9 and 24). The function simply implements N2, but this swap operation is a queue

swap (multiple swaps), not a single swap. This function performs qs randomly swaps to attain a neighbouring

solution [17]. The value of qs is determined as a parameter. The pseudocode of suggested Generate

Neighbouring function is given in Figure 3.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 890 JAUES, 18, 69, 2023

Function: generateNeighbouring ()

Input: instance I, qs

Output: feasible solution

1- Reap until reach the value of qs

- Randomly select a solution.

- Do the swap () if the swap Don’t violate the node weight 𝐿  𝑊𝑝 𝑈.

2- Return the solutions after qs swapping operation.

 Figure 3: Pseudocode of Generate Neighbouring.

2.4 LS Function

The LS procedure takes place after production of novel solutions in the initial solution function and

scout bee phase (Lines 4 and 41) and generation of neighbouring solutions in the employed bee phase and

the onlooker bee phase (Lines 11 and 26). The LS procedure is used with a pls probability value in order to

improve the quality of the solutions [17].

In our framework, LS rejects any infeasible solutions. We depended on the best improvement

strategy, and we will refer to the move neighbouring method as N1 and the move and swap neighbouring

methods as N1+N2. The pseudocode of suggested LS is given in Figure 4.

Algorithm: LS

Function: construction solution

Input: feasible initial solution

Output: optimal solution for the LS

1- Repeat until no neighbouring solutions improve on the current solution.

- If a move violates node weight 𝐿  𝑊𝑝 𝑈, reject this move.

- Do all possible improving moves, move () if 𝐿  𝑊𝑝 𝑈

- Do all possible improving swaps, swap () if 𝐿  𝑊𝑝 𝑈

2- Return the highest objective function value solution

Figure 4: Pseudocode of the LS.

As the initial solution had already been produced by the initial solution procedure, we investigated

the performance of applying two neighbouring operators (N1+N2) because we found that the integration of

such operators had a significant impact on the solution quality in the case of time and objective function

value. The move operators searched through all of the possible neighbouring movements that provided an

increase in the objective function value. The best or the first movement operation to produce an increase in

the fitness function value was made. It executed each possible improving movement until no more

improvements were found, thus producing the local optimum. [17]

The swap operator searched through all of the possible neighbouring swaps that provided a rise in

the objective function value. The best or first swap operation that produced an increase in the fitness function

value was made [17].

The used LS constraint-handling technique will simply reject any infeasible solutions so there would

be no violations at all of the constraints.

3. Experimental Results and Comparisons

On Amazon Web Services (AWS) infrastructure, the suggested algorithms were coded in Java and

executed on a virtual server in Amazon’s Elastic Compute Cloud EC2. The hardware specifications for EC2

were c4.8xlarge type, 36 vCPUs and 60 GB of memory with 10 GB of network performance. The instance

processors were 2.9 GHz Intel Xeon E5-2666 v3 processors.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 891 JAUES, 18, 69, 2023

 To measure the performance of our algorithm, the experiment had a set of ten instances of DB

(introduced by Deng and Bard), which were publicly available.1 The datasets had been used by many

researchers in testing other literature of algorithms (e.g., Lai et al. [13], Deng and Bard [2], … etc.). This

set of ten DBs was based on the problem introduced by Deng and Bard [2] in the situation of the MDGP,

with 𝑛=82 and 𝑝=8. However, in the MDGP, the node weights were equal to 1, so Deng and Bard randomly

generated the node weights with a uniform distribution 𝑈 (0,10) to be suitable for the CCP. The set was

based on 10 instances with 𝑛=82, 𝑝=8, 𝐿=25 and 𝑈=75.

3.1 Parameter Tuning for the ABC Algorithm

The ABC algorithm has four different control parameters: pls, which represents the probability of

applying the LS improvement procedures; qs, which indicates the number of queue swap moves required to

obtain a neighbouring solution; and the limit, which represents the procedure of abandoning solutions that

are not improvements through limited trials and that produces a scout bee phase. The algorithm will also

have some fixed parameters that are NPs and that represent the number of produced solutions. The

computation time limit before the ABC iteration is terminated is indicated by tmax.

We exploited the parameter-tuning for the ABC algorithm through various experiments. In all the

experiments, the NP value was 20 and the tmax value was n  1 (n represents the number of nodes); this stop

condition (time limit) is the same as the stop condition for the benchmark algorithms. The experiments were

applied on a set of capacitated clustering problem library (CCPLIB) benchmark instances (1) given in Tables

1 and 2. The tables report the experimental best results, average values and standard deviations of the twenty

runs. Besides examining the results of the ABC algorithm configured by the different parameter values, in

which the results were also compared to those of the BKS and the TS, GRASP and IVNS. We intended to

decide, by tuning the parameters, which configuration could provide a balance of quality, time and

maximised objective function.

We built twenty-four ABC configurations by examining two instances to avoid overfitting. These

configurations investigated the effects of different values of Pls = {0.5,0.6,0.7,0.8,0.9,1}, qs = {0.1n, 0.2n,

0.3n} and limit = {0.5n, n, 2n}, and the impact of applying the LS1, LS2 and LS3.

The tables provided below outline the performance measures as follow:

1- The best solution value (Best).

2- The average solution value (Average).

3- The average RPD (AvgRPD), which can be calculated as [
𝐵𝐾𝑆−𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐵𝐾𝑆
× 100].

4- The standard deviation (SD).

SD = √
∑(𝒳−𝒳̅)

𝓃

SD = standard deviation of objective values of 20 runs

∑ = sum of.

𝒳= objective values of solution.

𝒳̅= mean of all objective solutions, average of sigma x.

𝓃= number of solutions (Times)

5- The average complete computational time (CTime) in seconds.

1 http://grafo.etsii.urjc.es/optsicom/ccp/

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 892 JAUES, 18, 69, 2023

6- The average time for the final solution to be found for the first time (FTime) in seconds [50].

7- The number of found solutions that are equal to the BKS (#BEST).

Table 1: Parameter-tuning for the instance Sparse82_01.

Table 2: Parameter-tuning for the instance Sparse82_06.

Results of ABC algorithm

Pls qs limit
LS

Type
Best Average SD #BEST RPD CTime FTime

0.5
0.1n 0.5n LS1 1342.17 1339.65 2.67 6/20 0.18% 75.7 72.15

0.6
0.1n 0.5n LS1 1342.17 1340.80 1.35 6/20 0.10% 77.5 73.1

0.7
0.1n 0.5n LS1 1342.17 1340.49 2.80 8/20 0.12% 77.3 71.7

0.8
0.1n 0.5n LS1 1342.17 1340.43 2.25 8/20 0.12% 75.0 70.65

0.9
0.1n 0.5n LS1 1342.17 1341.02 1.99 12/20 0.08% 72.6 69.1

1
0.1n 0.5n LS1 1342.17 1341.40 1.99 15/20 0.05% 65.1 61.6

1
0.2n 0.5n LS1 1342.17 1341.48 1.05 12/20 0.05% 77.9 71.5

1
0.3n 0.5n LS1 1342.17 1340.92 1.54 10/20 0.09% 83.7 79.25

1
0.1n n LS1 1342.17 1340.26 2.56 11/20 0.14% 73.25 67.7

1
0.1n 2n LS1 1342.17 1341.18 1.66 13/20 0.07% 72.55 66.95

Results of ABC algorithm

Pls qs limit
LS

Type
Best Average SD #BEST RPD CTime FTime

0.5
0.1n 0.5n LS1 1354.61 1348.70 5.92

8/20

0.43% 77.5 71

0.6
0.1n 0.5n LS1 1354.61 1349.65 4.58

7/20

0.36% 77.85 70.25

0.7
0.1n 0.5n LS1 1354.61 1351.09 3.15

6/20

0.25% 81.3 74.8

0.8
0.1n 0.5n LS1 1354.61 1352.10 2.57 10/20 0.18% 73.65 68.2

0.9
0.1n 0.5n LS1 1354.61 1352.04 2.35

9/20

0.18% 72.65 66.3

1
0.1n 0.5n LS1 1354.61 1352.05 3.63 12/20 0.18% 61.8 56.35

1
0.2n 0.5n LS1 1354.61 1350.94 2.52

4/20

0.27% 81.45 77

1
0.3n 0.5n LS1 1354.61 1347.63 3.99

2/20

0.51% 85.3 78.8

1
0.1n n LS1 1354.61 1352.93 3.16

15/20

0.12% 60.5 56.15

1
0.1n 2n LS1 1354.61 1351.89 2.32

8/20

0.2% 69.05 63.65

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 893 JAUES, 18, 69, 2023

From the results provided in Tables 1 and 2, we have drawn the following conclusions:

- The Pls parameter had the most significant impact on ABC’s performance. Overall, the best-classified

configuration (the bold row) employed a high value for the Pls parameter because it records the lowest

time. Therefore, the ABC’s behaviour was better when we applied the LS with a higher probability.

- The qs and limit parameters showed that there were no significant variations between the best

configuration and the remaining ones for the selected instances. As a result, the values qs = 0.1n and

limit = 0.5n were fixed.

- The best configuration was found using Pls = 1, qs = 0.1n, limit = 0.5n and LS without violation of all

the remaining experiments.

3.2 Comparison of the ABC Algorithm Results and State-of-the-art Metaheuristics

In this part we will display the results of employing the ABC algorithm to solve the CCP after the

selection process of best parameters values for all of the dataset instances, and we will compare the

performance results of our suggested ABC algorithm with the results of the following benchmark

algorithms: TS, GRASP and IVNS, which were taken from [12].

The source code for these benchmark algorithms was available online and cited in the paper [12].

We were encouraged to retest it on our EC2 instances using the same code, coded in C++, and compare our

results with those of this retested algorithm to get a reasonable comparison between the algorithms. Lai and

colleagues' [12] benchmark algorithms had a stop condition: a time limit of 1.0  n. In our proposed LSs,

we addressed the average complete computational time (CTime) in the twenty runs in seconds, but the

benchmark algorithms addressed the average running time to get the final objective value.

Table 3: The values of best, average and SD objective function values for all instances run twenty times

and average RPD, number best, CTime and Ftime of applying the ABC.

Results of ABC algorithm

Instances pls qs limit Best Average SD #Best Avg RPD CTime FTime

Sparse82_01 1 0.1n 0.5n 1342.17 1341.40 1.99 15/20 0.05% 65.1 61.6

Sparse82_02 1 0.1n 0.5n 1306.64 1302.17 2.86 2/20 0.34% 81.75 78.4

Sparse82_03 1 0.1n 0.5n 1353.94 1351.05 2.43 3/20 0.21% 81.1 78.55

Sparse82_04 1 0.1n 0.5n 1291.22 1286.46 3.31 2/20 0.36% 79.75 76.35

Sparse82_05 1 0.1n 0.5n 1352.35 1351.67 0.71 6/20 0.05% 79.7 74.2

Sparse82_06 1 0.1n 0.5n 1354.61 1352.05 3.63 12/20 0.18% 61.8 56.35

Sparse82_07 1 0.1n 0.5n 1266.94 1264.75 3.42 6/20 0.17% 81.7 79.25

Sparse82_08 1 0.1n 0.5n 1393.02 1393.02 0 20/20 0 65.8 60.3

Sparse82_09 1 0.1n 0.5n 1294.12 1293.57 0.39 6/20 0.04% 81.55 79.05

Sparse82_10 1 0.1n 0.5n 1356.98 1353.30 5.30 1/20 0.27% 81.0 78.5

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 894 JAUES, 18, 69, 2023

Table 4: Best, average and SD objective function values and time average of the TS, GRASP and IVNS

run over twenty times on ten instances.

The experimental results from Table 3 and the comparison of the results of the benchmark

algorithms from Table 4 have led us to the following conclusions:

- In terms of the best solution, the performance of the ABC was equivalent to that of the TS, GRASP and

the IVNS for the following instances: Sparse82_05, Sparse82_06, Sparse82_09 and Sparse82_10. In

the instances Sparse82_01, Sparse82_02 and Sparse82_08, ABC slightly outperformed the TS. In the

instances Sparse82_03 and Sparse82_04, the ABC slightly outperformed GRASP.

- Regarding the average solution, the performance of the ABC was comparable to that of the IVNS for

all instances (the IVNS recorded the BKS for all the instances). In the instances Sparse82_01,

Sparse82_02, Sparse82_04, Sparse82_05 Sparse82_07 and Sparse82_10, GRASP slightly

outperformed the ABC. In the instances Sparse82_03, Sparse82_06, and Sparse82_09, the ABC slightly

outperformed GRASP. In the instance of Sparse82_08, the ABC, the IVNS and GRASP recorded the

same performance results, which also equalled to the BKS value. The TS algorithm recorded the worst

results for all the instances compared to the ABC, GRASP and the IVNS.

- With respect to the average RPD, all values were less than 1.0, meaning that all of the average results

were close to the IVNS values (we compared the average results with the IVNS because it recorded the

best values).

- With respect to FTime, all results were under 80 seconds, meaning that the algorithm recoded the best

solution before approximately 97% of the full time (tmax).

Results of Benchmark Algorithms

Instances

TS or

GRASP or

IVNS

Best Average SD Timeavg

Sparse82_01

TS 1341.46 1321.99 12.43 11.92

GRASP 1342.17 1342.00 0.45 31.47

IVNS 1342.17 1342.17 0 0.29

Sparse82_02

TS 1304.07 1286.35 12.11 10.80

GRASP 1306.64 1304.47 0.61 36.91

IVNS 1306.64 1306.64 0 1.70

Sparse82_03

TS 1353.94 1334.06 13.01 10.67

GRASP 1352.41 1348.17 1.39 36.59

IVNS 1353.94 1353.94 0 0.27

Sparse82_04

TS 1291.22 1272.75 17.70 8.92

GRASP 1289.79 1286.77 1.66 43.17

IVNS 1291.22 1291.22 0 6.48

Sparse82_05

TS 1352.35 1330.77 24.17 10.24

GRASP 1352.35 1352.26 0.22 25.59

IVNS 1352.35 1352.35 0 0.13

Sparse82_06

TS 1354.61 1336.46 20.07 2.97

GRASP 1354.61 1349.38 3.36 39.52

IVNS 1354.61 1354.61 0 0.12

Sparse82_07

TS 1266.94 1236.01 21.41 10.12

GRASP 1266.94 1266.28 0.84 35.94

IVNS 1266.94 1266.94 0 0.82

Sparse82_08

TS 1390.90 1359.68 34.56 2.53

GRASP 1393.02 1393.02 0 0.52

IVNS 1393.02 1393.02 0 0.05

Sparse82_09

TS 1294.12 1277.14 19.05 6.65

GRASP 1294.12 1293.39 0.22 20.62

IVNS 1294.12 1294.12 0 1.02

Sparse82_10

TS 1356.98 1331.81 20.42 12.67

GRASP 1356.98 1356.51 0.10 25.50

IVNS 1356.98 1356.98 0 0.67

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 895 JAUES, 18, 69, 2023

The plots represent the value of the objective functions of ABC and the results of the benchmark

algorithm values in twenty runs for the ten instances. The x-axis presents the test file name, and the y-axis

presents the objective function values. The results of the comparison between the ABC and the benchmark

algorithms are plotted in the following figures:

Figure 5: Best results of the ABC and benchmark algorithms.

Figure 6: Average results of the ABC and benchmarks algorithms.

Conclusion

An effective metaheuristic algorithm has been suggested in this paper for solving the CCP. We can

draw the conclusion that when applying the ABC to solve the CCP as a metaheuristic algorithm, the

experimental results were promising and compared well with other state-of-the-art algorithms in the

literature. By analysing the parameter-tuning, this paper has demonstrated how parameters can affect the

results of a solution in terms of time and quality. This work has clearly developed an effective metaheuristic

algorithm for solving the CCP.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 896 JAUES, 18, 69, 2023

To better understand the implications of these results, future studies could address the application

of the suggested approach on different COPs and investigate the integration of other algorithms (i.e. guided

local search with the ABC to solve the CCP). Future studies could also investigate the applications of the

suggested ABC algorithm for various problems and data sets. I suggest that the violation of LS constraints

handling techniques should be investigated more thoroughly in future research.

Note:

This paper is taken from my thesis (A Metaheuristic to Solve the Capacitated Clustering Problem) done in

May 2020 at (Al Imam Mohammad Ibn Saud Islamic University, College of Computer & Information

Sciences, Department of Computer Science).

References

[1] A. Martínez-Gavara, V. Campos, M. Gallego, M. Laguna, and R. Martí, “Tabu search and GRASP

for the capacitated clustering problem,” Comput. Optim. Appl., vol. 62, no. 2, pp. 589–607, 2015,

doi: 10.1007/s10589-015-9749-1.

[2] Y. Deng and J. F. Bard, “A reactive GRASP with path relinking for capacitated clustering,” J.

Heuristics, vol. 17, no. 2, pp. 119–152, 2011, doi: 10.1007/s10732-010-9129-z. Note: the CCP

application is been mentioned by other authors such as: (Al-Sultan and Khan 1996; Bard and Jarrah

2009; Daganzo 2005; Kaufman and Roussweuw 1990; Laporte et al.1989).

[3] M. Lewis, H. Wang, and G. Kochenberger, “Exact Solutions to the Capacitated Clustering Problem:

A Comparison of Two Models,” Ann. Data Sci., vol. 1, no. 1, pp. 15–23, 2014, doi: 10.1007/s40745-

014-0003-y. Note: the CCP application is been mentioned by other authors such as: (Negeriros and

Palhano, Deng and Bard, and Chou et al.).

[4] Q. Zhou, U. Benlic, Q. Wu, and J. K. Hao, “Heuristic search to the capacitated clustering problem,”

Eur. J. Oper. Res., vol. 273, no. 2, pp. 464–487, 2019, doi: 10.1016/j.ejor.2018.08.043.

[5] C. A. Chou, W. A. Chaovalitwongse, T. Y. Berger-Wolf, B. Dasgupta, and M. V. Ashley,

“Capacitated clustering problem in computational biology: Combinatorial and statistical approach

for sibling reconstruction,” Comput. Oper. Res., vol. 39, no. 3, pp. 609–619, 2012, doi:

10.1016/j.cor.2011.04.017.

[6] J. M. Mulvey and M. P. Beck, “Solving capacitated clustering problems,” Eur. J. Oper. Res., vol. 18,

no. 3, pp. 339–348, 1984, doi: 10.1016/0377-2217(84)90155-3.

[7] I. H. Osman and N. Christofides, “Capacitated clustering problems by hybrid simulated annealing

and tabu search,” Int. Trans. Oper. Res., vol. 1, no. 3, pp. 317–336, 1994, doi: 10.1016/0969-

6016(94)90032-9.

[8] S. Ahmadi and I. H. Osman, “Greedy random adaptive memory programming search for the

capacitated clustering problem,” Eur. J. Oper. Res., vol. 162, no. 1, pp. 30–44, 2005, doi:

10.1016/j.ejor.2003.08.066.

[9] F. O. De França, F. J. Von Zuben, and L. N. De Castro, “A MAX MIN Ant System applied to the

Capacitated Clustering Problem,” Mach. Learn. Signal Process. XIV - Proc. 2004 IEEE Signal

Process. Soc. Work., no. January, pp. 755–764, 2004, doi: 10.1109/mlsp.2004.1423042.

[10] S. Scheuerer and R. Wendolsky, “A scatter search heuristic for the capacitated clustering problem,”

Eur. J. Oper. Res., vol. 169, no. 2, pp. 533–547, 2006, doi: 10.1016/j.ejor.2004.08.014.

[11] N. M. Darani, V. Ahmadi, Z. S. Eskandari, and M. Yousefikhoshbakht, “Solving the Capacitated

Clustering Problem by a Combined Meta-Heuristic Algorithm,” J. Adv. Comput. Res., vol. 4, no. 1,

pp. 89–100, 2013.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 897 JAUES, 18, 69, 2023

[12] X. Lai and J. K. Hao, “Iterated variable neighborhood search for the capacitated clustering problem,”

Eng. Appl. Artif. Intell., vol. 56, pp. 102–120, 2016, doi: 10.1016/j.engappai.2016.08.004.

[13] J. Brimberg, N. Mladenović, R. Todosijević, and D. Urošević, “Variable neighborhood descent for

the capacitated clustering problem,” in International Conference on Discrete Optimization and

Operations Research, 2016, pp. 336–349.

[14] J. Brimberg, N. Mladenović, R. Todosijević, and D. Urošević, “Local and variable neighborhood

searches for solving the capacitated clustering problem,” Springer Optim. Its Appl., vol. 130, pp. 33–

55, 2017, doi: 10.1007/978-3-319-68640-0_3.

[15] X. Lai, J. Hao, X. Lai, J. H. Iterated, X. Lai, and J. Hao, “Iterated variable neighborhood search for

the capacitated clustering problem To cite this version : HAL Id : hal-01412523 Iterated variable

neighborhood search for the capacitated clustering problem,” 2017.

[16] D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Technical report-

tr06, Erciyes university, engineering faculty, computer …, 2005.

[17] F. J. Rodriguez, M. Lozano, C. García-Martínez, and J. D. González-Barrera, “An artificial bee

colony algorithm for the maximally diverse grouping problem,” Inf. Sci. (Ny)., vol. 230, pp. 183–

196, 2013, doi: 10.1016/j.ins.2012.12.020. p.186. Note: I have benefited from the results expression

in this paper.

[18] D. Karaboga and B. Akay, “A comparative study of Artificial Bee Colony algorithm,” Appl. Math.

Comput., vol. 214, no. 1, pp. 108–132, 2009, doi: 10.1016/j.amc.2009.03.090. p.109.

[19] D. Karaboga, C. Ozturk, N. Karaboga, and B. Gorkemli, “Artificial bee colony programming for

symbolic regression,” Inf. Sci. (Ny)., vol. 209, pp. 1–15, 2012.

[20] S. Sundar, “Singh A (2010a) A swarm intelligence approach to the quadratic minimum spanning tree

problem,” Inf Sci, vol. 180.

[21] P. Tapkan, L. Ozbakir, and A. Baykasoglu, “Modeling and solving constrained two-sided assembly

line balancing problem via bee algorithms,” Appl. Soft Comput., vol. 12, no. 11, pp. 3343–3355,

2012.

[22] A. Singh, “An artificial bee colony algorithm for the leaf-constrained minimum spanning tree

problem,” Appl. Soft Comput., vol. 9, no. 2, pp. 625–631, 2009.

[23] M. Ma, J. Liang, M. Guo, Y. Fan, and Y. Yin, “SAR image segmentation based on Artificial Bee

Colony algorithm,” Appl. Soft Comput., vol. 11, no. 8, pp. 5205–5214, 2011.

[24] M. H. Kashan, N. Nahavandi, and A. H. Kashan, “DisABC: A new artificial bee colony algorithm

for binary optimization,” Appl. Soft Comput., vol. 12, no. 1, pp. 342–352, 2012.

[25] T.-J. Hsieh, H.-F. Hsiao, and W.-C. Yeh, “Forecasting stock markets using wavelet transforms and

recurrent neural networks: An integrated system based on artificial bee colony algorithm,” Appl.

Soft Comput., vol. 11, no. 2, pp. 2510–2525, 2011.

[26] D. Karaboga and B. Akay, “A modified artificial bee colony (ABC) algorithm for constrained

optimization problems,” Appl. Soft Comput., vol. 11, no. 3, pp. 3021–3031, 2011.

[27] G. A. Di Caro, M. Farooq, and M. Saleem, “Swarm intelligence based routing protocol for wireless

sensor networks: Survey and future directions,” Inf. Sci., vol. 181, pp. 4597–4624, 2011.

[28] M. Saleem, I. Ullah, and M. Farooq, “BeeSensor: An energy-efficient and scalable routing protocol

for wireless sensor networks,” Inf. Sci. (Ny)., vol. 200, pp. 38–56, 2012.

[29] R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh, “A multi-objective artificial bee

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 898 JAUES, 18, 69, 2023

colony algorithm,” Swarm Evol. Comput., vol. 2, pp. 39–52, 2012.

[30] S. N. Omkar, J. Senthilnath, R. Khandelwal, G. N. Naik, and S. Gopalakrishnan, “Artificial Bee

Colony (ABC) for multi-objective design optimization of composite structures,” Appl. Soft Comput.,

vol. 11, no. 1, pp. 489–499, 2011.

[31] B. Jayalakshmi and A. Singh, “A hybrid artificial bee colony algorithm for the p-median problem

with positive/negative weights,” Opsearch, vol. 54, no. 1, pp. 67–93, 2017.

[32] B. Jayalakshmi and A. Singh, “A swarm intelligence approach for the p-median problem,” Int. J.

Metaheuristics, vol. 5, no. 2, pp. 136–155, 2016.

[33] M. S. Kıran, E. Özceylan, and T. Paksoy, “Artificial bee colony algorithm for solving uncapacitated

facility location problems,” in 25th European Conference on Operational Research, 2012, p. 165.

[34] M. S. Kiran and M. Gündüz, “XOR-based artificial bee colony algorithm for binary optimization,”

Turkish J. Electr. Eng. Comput. Sci., vol. 21, no. Sup. 2, pp. 2307–2328, 2013.

[35] S. Sabet, F. Farokhi, and M. Shokouhifar, “A novel artificial bee colony algorithm for the knapsack

problem,” in 2012 International Symposium on Innovations in Intelligent Systems and Applications,

2012, pp. 1–5.

[36] S. Sundar, A. Singh, and A. Rossi, “An artificial bee colony algorithm for the 0–1 multidimensional

knapsack problem,” in International Conference on Contemporary Computing, 2010, pp. 141–151.

[37] A. S. Bhagade and P. V Puranik, “Artificial bee colony (ABC) algorithm for vehicle routing

optimization problem,” Int. J. Soft Comput. Eng., vol. 2, no. 2, pp. 329–333, 2012.

[38] S. Iqbal, M. Kaykobad, and M. S. Rahman, “Solving the multi-objective vehicle routing problem

with soft time windows with the help of bees,” Swarm Evol. Comput., vol. 24, pp. 50–64, 2015.

[39] A. Rossi, A. Singh, and M. Sevaux, “A metaheuristic for the fixed job scheduling problem under

spread time constraints,” Comput. Oper. Res., vol. 37, no. 6, pp. 1045–1054, 2010.

[40] R. Zhang, S. Song, and C. Wu, “A hybrid artificial bee colony algorithm for the job shop scheduling

problem,” Int. J. Prod. Econ., vol. 141, no. 1, pp. 167–178, 2013.

[41] M. S. Kıran, H. İşcan, and M. Gündüz, “The analysis of discrete artificial bee colony algorithm with

neighborhood operator on traveling salesman problem,” Neural Comput. Appl., vol. 23, no. 1, pp.

9–21, 2013.

[42] H. E. Kocer and M. R. Akca, “An improved artificial bee colony algorithm with local search for

traveling salesman problem,” Cybern. Syst., vol. 45, no. 8, pp. 635–649, 2014.

[43] A. K. Alshamiri, A. Singh, and B. R. Surampudi, “Artificial bee colony algorithm for clustering: an

extreme learning approach,” Soft Comput., vol. 20, no. 8, pp. 3163–3176, 2016.

[44] V. R. Dokku and A. Singh, “An artificial bee colony algorithm for the minimum average routing

path clustering problem in multi-hop underwater sensor networks,” in International Conference on

Computing and Communication Systems, 2011, pp. 212–219.

[45] D. Karaboga and C. Ozturk, “A novel clustering approach : Artificial Bee Colony (ABC)

algorithm,” vol. 11, pp. 652–657, 2011, doi: 10.1016/j.asoc.2009.12.025.

[46] S. S. Choong, L.-P. Wong, and C. P. Lim, “An artificial bee colony algorithm with a modified choice

function for the Traveling Salesman Problem,” Swarm Evol. Comput., vol. 44, pp. 622–635, 2019.

[47] K. Balasubramani and K. Marcus, “A comprehensive review of artificial bee colony algorithm,” Int.

J. Comput. Technol., vol. 5, no. 1, pp. 15–28, 2013.

A METAHEURISTIC TO SOLVE THE CAPACITATED CLUSTERING PROBLEM

 899 JAUES, 18, 69, 2023

[48] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey: artificial bee

colony (ABC) algorithm and applications,” Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, 2014.

[49] M. Gallego, M. Laguna, R. Martí, and A. Duarte, “Tabu search with strategic oscillation for the

maximally diverse grouping problem,” J. Oper. Res. Soc., vol. 64, no. 5, pp. 724–734, 2013, doi:

10.1057/jors.2012.66.

[50] A. Alsheddy, “A two-phase local search algorithm for the ordered clustered travelling salesman

problem,” Int. J. Metaheuristics, vol. 7, no. 1, p. 80, 2018, doi: 10.1504/ijmheur.2018.10012913.

Note: I have benefited from the results expression in this paper.

Footnote:

(1) http://grafo.etsii.urjc.es/optsicom/ccp/

