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ABSTRACT    

Chemobrain is a critical life-threatening condition that cancer patients can face during or after chemotherapy. It 

affects many aspects of the patient‘s cognitive ability and it appears as a defect in the cancer survivor‘s memory or 

concentration. The learning capacity, attention, and executive function can also be influenced. The majority of the 

time, it manifests subtly and causes momentary, short-term effects. However, a variety of chemotherapeutic drugs 

adversely affect the quality of life of patients.  Continuous, long-term cognitive adverse effects in specific 

circumstances can emerge from the chemotherapy regimen whether prescribed as monotherapy or as an element in 

therapeutic plans. This review is deliberated to highlight the mechanisms behind the pathophysiology of 

chemobrain, with a concentration on the cytotoxic agent ‗‘methotrexate‘‘(MTX), which has been revealed to be 

involved in arduous neurotoxicity. MTX is considered a folate antagonist. It was initially employed for treating 

different cancer types as well as several anti-inflammatory and/ or immunological disorders. This review is 

deliberated to highlight the potential pathways responsible for MTX neurotoxicity. Furthermore, the evaluation of 

the cognitive impairment, detected either in human or in animal models after chemotherapy, is one of the main 

topics of interest adopted in this article. The likely pharmacotherapeutic interventions and different behavioral tests 

are also discussed. 
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1. Chemobrain (chemotherapy-induced 

cognitive impairment) 

Cytotoxic chemotherapy will remain a 

cornerstone in contemporary oncology 

treatments. As survivability rates expand, after-

treatment well-being is of high concern. 

Chemotherapeutic drugs administered 

systematically can cause toxic consequences in 

healthy organs, leaving patients struggling with 

innumerable side effects [1]. Chemobrain or 

chemotherapy-induced cognitive impairment 

(CICI) can be defined as the presence of 

cognitive decline linked to various anti-neoplastic 

agents, irrespective of the type or site of the 

tumor or whether or not metastasis to the brain is 

present. In 1980, it was the first time to detect 

chemobrain when patients having different types 

of cancers had noticeably low scores in 

evaluations testing different mental and cognitive 

abilities during or post chemotherapy [2]. 

Symptoms of CICI include memory problems, 

lag in processing speed, incapability to focus, and 

language disturbances [3]. Recently, there has 

been growing evidence that there is an elevated 

occurrence of cognitive dysfunction in cancer 
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survivors due to antineoplastic drugs given to 

treat different solid tumors, principally breast, 

lung, ovarian, and prostate malignancies [4]. 

Patients suffering from breast cancer who take 

auxiliary chemotherapy were reported to be one 

of the specially stated categories of patients 

facing a permanent decline in cognitive functions 

(decrease in comprehending new information and 

decreased recalling new information, decrease in 

cognitive control and response time). 

Consequently, it is not abnormal for patients to 

want to converse about "chemobrain" as a 

probable adverse effect of auxiliary 

chemotherapy and to consider it when deciding 

whether to take this potentially life-maintaining 

treatment or not [5]. CICI can be described as the 

deterioration of patients‘ capacity to acquire 

knowledge, concentrate, or make decisions. The 

majority of the time, it manifests subtly and 

causes momentary, short-term effects [5]. In 

contrast, a variety of chemotherapeutic drugs 

typically exert continuous, long-term cognitive 

side effects in specific circumstances whether 

given alone or as a part of the treatment regimen, 

further adversely influencing the quality of life 

(QOL) of patients suffering from solid tumor 

cancer [6]. 

2. Pathogenesis of Chemotherapy-Induced 

Cognitive Impairment  

Its etiology is most likely complex, including 

interrelated mechanisms that affect patients' 

cognitive function and central nervous systems 

(CNS) directly or indirectly.  

Lengthy cognitive impairment in cancer 

patients can be remarkably predicted and 

determined by genetic factors. It has been 

documented that in comparison with individuals 

with other APOE alleles, survivors from different 

cancer types possessing the allele e4 of 

apolipoprotein E (APOEe4) are at higher risk of 

developing more noticeable intellectual 

impairment [7].  Common chemotherapeutic 

drugs are impotent to significantly pass the 

blood-brain barrier (BBB). The BBB's structure 

can be altered by genetic variation in its 

transporters, letting minute doses of 

chemotherapy pass to the neural tissues. Patients 

with genes linked to either less effective DNA 

repair pathways or genes for multidrug-

resistance-1 (MDR 1) that codes for the protein 

P-glycoprotein, are thought to be the most 

susceptible to developing side effects of drugs 

that may include CICI [8]. It has been shown that 

even minimal quantities of chemotherapeutic 

agents are noxious to brain parts linked to 

cognition, involving the death of different cells 

and decreased cell multiplication [9]. The BBB 

can be penetrated by some commonly used 

conventional chemotherapies, such as 

methotrexate (MTX). By leading to harmful 

events to microglia, oligodendrocytes, and 

neuronal axons, after demyelination, variations in 

water content and levels of neurotransmitters, 

these antineoplastic agents can trigger a direct 

neurotoxic effect on the CNS, possibly causing 

cognitive dysfunction [10, 11]. Hormonal 

changes owing to chemotherapy-induced 

menopause can also have a negative impact on 

patients' cognitive function due to the decline in 

estrogen hormones which have neuroprotective 

effects. In addition, because of lower levels of 

testosterone and estrogen, people receiving 

hormonal therapy either male with prostate 

cancer or female with breast cancer, may suffer 

from cognitive impairment [7]. The importance 

of estrogens in maintaining telomere length, in 

antioxidative influence, and the protective effects 

on neurons are highlighted in several trials, 

which state that decreased levels of these 

hormones as a consequence of a hormonal 

treatment plan can cause chemobrain even when 

administered as mono-therapeutic regimen 

devoid of chemotherapy. From the side, oxidative 

stress can play a role in chemobrain. It can cause 

DNA damage that affects the CNS [7]. Oxidative 
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stress is a disturbed balance in the generation of 

reactive oxygen species, which comprises free 

radicals and peroxides. Particularly, exposure to 

exogenous toxins results in the production of free 

radicals. As an alternative, certain free radicals 

form naturally during endogenous metabolism to 

combat germs and viruses [12]. Chemotherapy 

can reduce antioxidant power and cause point 

mutations in the DNA of the mitochondria, thus 

causing cognitive impairment [7].  Cancer-related 

anemia (CRA) is another known side effect of 

cancer and/or chemotherapy. By lowering 

cerebral oxygenation, CRA has been related to a 

variety of devastating manifestations, including 

cognitive decline, decreased visual memory, and 

difficulties with executive function tasks. This 

has a profoundly negative impact on the quality 

of life for cancer patients [13, 14]. Lastly, 

immunological dysregulation evolving from 

chemotherapy or the cancer itself may play a role 

in the pathophysiology of CICI. This 

dysregulation may produce inflammatory 

cytokines such as interleukin (IL)-1, IL-6, and 

tumor necrosis factor-alpha that can pass the 

BBB [15].  

3. Risk Factors Affecting CICI 

A person who has survived cancer may also 

be more susceptible to developing CICI if they 

are older, have a history of head trauma, have 

other neurological conditions, have 

developmental abnormalities, or have micro 

metastasized brain tumors, especially if they have 

lung cancer. Demographic traits like intelligence 

quotient and educational attainment may 

potentially make a person more susceptible to 

CICI [16].  

4. Physiological disturbances enhancing 

Chemotherapy-Induced Cognitive 

Impairment  

In reaction to chemotherapy, some 

mechanisms are involved in the induced 

cognitive decline as well as the neurotoxicity of 

the hippocampus. From these mechanisms, BBB 

disturbance, high levels of reactive oxygen 

species, and mitochondrial defects can be stated. 

In addition, increment of pro-inflammatory 

cytokines, reduction in anti-inflammatory 

cytokines, and impaired integrity of white matter 

are from the detected pathways [17]. The 

hippocampus is particularly vulnerable to injury 

caused by systemic injection of several 

chemotherapeutic drugs, either directly or 

indirectly. Following chemotherapy, decreased 

hippocampal volumes can be linked to many 

pathologic alterations. Notably, in response to 

various kinds of chemotherapeutic medications, 

abnormalities in neural architecture, involving 

decreased branching of the dendrites and the 

spine density, have been seen in the 

hippocampus, implicating the dentate gyrus. The 

neuronal mechanism most commonly studied to 

be impacted by chemotherapy is hippocampal 

neurogenesis [18]. 

5. Methotrexate 

5.1. Overview 

MTX is an anti-metabolite that was initially 

introduced for treating different types of 

malignancies [19] and is additionally employed 

in non-malignant diseases like inflammatory or 

immunity-related problems. It is nowadays 

employed for treating resistant rheumatoid 

arthritis [20]. MTX stands as the most studied 

drug linked with chemobrain and neurotoxicity. It 

acts as a folate analog, blocking DNA replication 

by inhibiting purine and pyrimidine synthesis 

[21]. Pharmacological therapies have been 

observed to have a relatively responsive effect on 

the neurotoxicity and cognitive impairment 

induced by MTX. Many side effects can cause 

cancer patients receiving MTX such as nausea, 

fever, fatigue, and cirrhosis. In addition, 

increased risk of infection, GI bleeding, 

pancreatitis, and alopecia are often seen with 
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MTX administration. Unfortunately, aplastic 

anemia, teratogenesis, interstitial pneumonitis, 

and renal impairment can present also a great risk 

for those patients.  

5.2. Intracellular metabolism of MTX 

5.2.1. Polyglutamatation of MTX  

According to several studies in tumor cell 

lines [22], MTX binds to two to five 

polyglutamate groups to be converted to 

polyglutamate forms. Due to this 

polyglutamylation, MTX does not pass across the 

cell membrane in considerable amounts which 

expands its intracellular half-life [23]. The chain 

length of the polyglutamate straightaway controls 

the holding of its forms. High amounts of 

unbound MTX-Glu4 and nearly all MTX-Glu5 

stay not less than 24 h after the elimination of the 

drug in the extracellular domain, when in fact an 

outstanding portion of MTX-Glu2 and MTX-

Glu3 is discarded from the cell [23]. The 

development of the polyglutamate forms of MTX 

contributes to its cytotoxic and selective power. 

The inhibition of dihydrofolate reductase is not 

the only characteristic feature of those 

polyglutamated derivatives. They possess an 

increased affinity for some enzymes which are 

folate-dependent like thymidylate synthase, 5-

amino- imidazole-4-carboxamide ribonucleotide 

transformylase, and the triple complex of 

enzymes that interconvert various forms of 

reduced folates [24]. Using ATP as its energy 

source, the enzyme folypolyglutamyl synthetase, 

which takes charge of MTX conversion, 

catalyzes the introduction of glutamate in gamma 

linkage to the end carboxyl group of the 

neighboring folyl glutamate. The enzyme‘s 

activity, initially detected in red blood cells and 

later in the human hepatocytes, was found to 

change among cancer cell lines. It was 

hypothesized that compromised polyglutamation 

is considered a mechanism of cancer 

refractoriness to MTX, together with 

dihydrofolate reductase enzyme (DHFR) gene 

duplication [23]. 

5.2.2. Hydroxy-methotrexate (7-OH-MTX)  

It involves the hydroxylation of MTX by 

hepatic aldehyde oxidase at the pterine ring, 

especially at the 7-position of this ring to form 7-

OH-MTX. This reaction serves as a major 

detoxification pathway [26]. 

5.2.3. Diamino-2,4-N-10-methylpteroic acid 

(DAMPA)  

In a living context, a carboxypeptidase of the 

gut bacterial normal flora rapidly converts MTX 

to DAMPA. About 5% of the intraperitoneally 

injected MTX in mice is converted to DAMPA 

through metabolism. Since MTX is a more 

powerful DHFR inhibitor than the latter and its 

hydroxy-modified version, 7-OH-DAMPA, it is 

feasible that this conversion represents xenobiotic 

detoxification [27]. 

5.3. Methotrexate neurotoxicity 

One of the negative effects of using MTX is 

neurotoxicity, which varies depending on the 

dosage, method, and frequency of administration. 

High dosage, intrathecal injection, and young age 

all raise the likelihood of occurrence. Although 

the likely multi-factorial processes for 

neurotoxicity aren't completely understood yet, 

they are believed to exist [27]. The literature 

suggests that there may be a direct neuronal 

injury or a change in the folate homeostasis in the 

CNS. The following circumstance occurs: 

Homocysteine amounts in the blood rise as a 

result of MTX's suppression of the hydro folate 

reductase, which influences the homocysteine 

quantities. In such a manner, not only does this 

substance arouse a direct effect of toxicity for the 

endothelium, but also its metabolism will act as 

an agonist of the NMDA receptor, likely 

emerging from this condition the neurological 

findings related to the neurotoxicity [27].  
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Additionally, the release of adenosine from the 

fibroblast and the endothelium is a possible 

neurological lesion. Nowadays, it is documented 

that there is a genetic variation related to 

neurogenesis that could lead to the neurotoxicity 

sensibility induced by MTX.  

Trimethoprim/sulfamethoxazole, acetylsalicylic 

acid, nitric oxide, non-steroidal anti-

inflammatory drugs, penicillin, and proton pump 

inhibitors can delay MTX clearance and increase 

the risk of its neurotoxicity; therefore, they must 

be evaded before and after the introduction of 

high doses of MTX [28]. 

5.4. Clinical Symptoms of MTX neurotoxicity  

5.4.1. Acute Neurotoxicity  

It appears shortly after high-dose (61 g/m
2
) 

MTX infusion, drowsiness, confusion, tiredness, 

and seizures may develop [29]. 

Acute(chemical)arachnoiditis may be associated 

with intrathecal MTX. This condition happens in 

5-40% of patients, commonly 2-4 h after the dose 

administration, and persists for a maximum of 72 

h. The most usual manifestations of arachnoiditis 

manifest as headache, GIT disturbances, back 

pain, elevated temperature, and vertigo [29]. The 

acute neurotoxicity is most probably linked to the 

administered dose and the culminating MTX 

levels in the cerebrospinal fluid. 

5.4.2. Subacute Neurotoxicity  

An encephalopathy that includes 

hemiparesis, ataxia, speech impairment, seizures, 

disorientation, and emotional abnormalities may 

develop days to weeks after exposure to MTX 

[30]. 'Stroke-like syndrome' is the term used to 

describe these symptoms. Following 48-72 h, 

patients typically recover spontaneously, and 

additional MTX treatments do not enhance the 

chance of this syndrome recurring. Significant 

myelopathy may result from intrathecal MTX, 

which may then cause symptoms such as leg 

discomfort, sensory abnormalities, paraplegia, 

and bladder control problems. No obvious 

vascular abnormalities or inflammation are found 

in pathologic studies. Highly intensive short-

treatment sequences or long-term progressive 

treatment are regarded as endangering parts for 

subacute toxicity [31].  

5.4.3. Chronic Neurotoxicity  

After MTX therapy, this type of 

neurotoxicity may emerge months or years later. 

Leukoencephalopathy is the most significant 

syndrome in this phase. It presents with a myriad 

of symptoms such as confusion, drowsiness, or 

anger. Additionally, dementia, and disturbance in 

speech or vision may also appear. In more drastic 

conditions, quadriparesis or coma may take 

place. Unfortunately, death can also be a 

consequence of this neurotoxicity [34]. In 

contrast, partial recuperation or stabilization is 

probable, mainly in younger age [35]. 

Leukoencephalopathy mainly involves the white 

matter [36], particularly the periventricular areas 

and the centrum semi-oval. Demyelination 

happens in this phase as well as necrosis of the 

white matter, astrocytosis, and axonal defect [34]. 

Intracerebral calcifications and mineralizing 

microangiopathy have been identified. Cellular 

events comprising inflammation have not been 

detected [32-34]. 

5.5. Resistance to MTX  

The emergence of resistance against MTX 

abides as one of the main barriers to the extent of 

clinical effectiveness of this molecule. It can 

happen due to various mechanisms, involving 

expression of mdr1, altered transport, variation of 

the target enzyme DHFR so that the affinity for 

MTX is declined [38], overproduction of DHFR, 

and lower cellular ability to convert MTX to 

polyglutamate [22].  

5.6. Effects of MTX on different pathways 

5.6.1. Effect of MTX on apoptosis 



comprehensive review on methotrexate‐induced chemobrain 407 

Apoptosis is a regulated way of cell death, 

which is essential in maintaining tissue 

homeostasis, additionally, it represents a 

technique by which destroyed, infected, or 

neoplastic cells are constantly removed without 

the induction of inflammation [39]. Indeed, one 

of the principal inducers of apoptosis is the 

disturbance in the oxidative state [40]. Not only 

can oxidative stress, caused by various stimuli, 

provoke apoptosis [41], but also antioxidants can 

protect the cell against apoptosis even when it is 

induced by stimuli that don‘t cause a direct 

oxidative effect [42]. Apoptosis constitutes a 

regulated form of cell death. It begins with 

certain unique signals and is affected by genes 

responsible for both cellular survival and death. 

Hamster ovarian cells were the first targets where 

MTX-induced apoptosis was studied [43]. MTX 

was reported to exert its anti-inflammatory effect 

by enhancing apoptosis in inflammatory cells like 

lymphocytes. It was also detected in a recent 

study [44] that the inhibition of the conversion of 

BH2 dihydrobiopterin (BH2) to tetrahydro pterin 

(BH4) is mediated by MTX which stops the 

action of the DHFR enzyme. The decrease in 

BH4 leads to a change in the cellular response to 

apoptosis. Consequently, a deep need for 

focusing on the effect of MTX on reducing the 

reduction of BH2 to BH4 has recently emerged. 

The death receptor and different pathways 

involving the mitochondria are the main ways by 

which MTX elevates the cellular sensitivity 

towards apoptosis. High apoptotic sensitivity 

depends on the elevated expression of Jun-N-

terminal kinase (JNK) and its target genes. JNK 

stimulation is regulated by ROS, which we 

suggest is triggered by MTX-dependent 

exhaustion of BH4 levels, separating eNOS from 

NO formation, and leading to the excessive 

presence of ROS. Apoptosis could begin either 

through the intrinsic pathway, cell kills itself by 

reacting to the intrinsic stress, or through the 

extrinsic pathway, cell kills itself relying on 

signals from different cells. The cooperation 

between Bax as a pro-apoptotic protein and Bcl-2 

as an anti-apoptotic protein can control the 

susceptibility of cells to apoptosis [45]. 

Therefore, MTX mediated an apoptotic elect via 

increased Bax and declined Bcl-2 levels showing 

the variation in the pro-apoptotic/anti-apoptotic 

markers quantification. Also, the 

immunohistochemical intensity signal of caspase 

3 was increased indicating the apoptotic effect of 

MTX.  

5.6.2. Effect of MTX on autophagy  

The goal of autophagy is to destroy and 

repair destroyed organelles and improperly 

folded proteins by directing them to the 

autophagosome-lysosome system. Autophagy is a 

cytoprotective means that protects the cell against 

death. As a result, increased levels of reactive 

oxygen species (ROS), malfunctioning 

mitochondria, and oxidative stress have all been 

linked to defective autophagy [46, 47]. 

Macroautophagy represents the most common 

form of autophagic processes. In a previously 

implemented study on spermatogenesis, MTX 

was found to enhance autophagy which indicates 

that autophagy contributes to the impairment in 

spermatogenesis induced by MTX [48]. 

Furthermore, MTX was documented to provoke 

inadequate autophagy as detected by decreased 

levels of Beclin 1 and augmentation of p62 

SQSTM1 protein [49]. The increment in p62 

SQSTM1 is proof of defective autophagosome 

destruction and malfunctioning autophagy 

pathway [50]. 

5.6.3. Neurogenic Depletion and Memory 

Dysfunction Using MTX 

The gradual loss or destruction of neural cells 

is one of the bad outcomes of some neurotoxic 

substances such as MTX. In an earlier study [51], 

Ki-67-positive cells were significantly 

suppressed after the administration of MTX in 



Sabry et al., Arch Pharm Sci ASU 7(2): 402-420 
 

408 

experimental rats. Those experimental models 

performed normally in the Morris water maze 

test, after being injected with a high 

concentration of MTX. In contrast, after the 

removal of the platform on the test day, the MTX 

group showed decreased investigation of the 

place where the platform was previously located. 

Moreover, they showed a declined behavior on a 

novel object recognition task. These findings 

revealed a deterioration of anterograde memory 

[51]. In an investigational study, the study of the 

effect of MTX on retrograde memory was an 

important scope. Rats were exposed to different 

behavioral tests like context fear conditioning 

task to assess their memory before and after 

MTX [52]. Morris water maze was also a test of 

interest. Another study performed by Sritawan 

and some of his research partners assessed the 

disturbances created in the hippocampus and the 

neurogenic defects that appeared after MTX 

treatment. This experimental design was 

conducted over a period of two weeks. The 

results of affected memory became clear after 

approximately 6 days after the injection of MTX. 

A deterioration in behavior in novel location 

memory was detected [53]. 

5.6.4. MTX and its relation to inflammation 

MTX and MTX polyglutamate molecules are 

capable of inhibiting 5-aminoimidazole-4-

carboxamide ribonucleotide (AICAR) 

transformylase. This enzyme represents one of 

the enzymes involved in folate synthesis and is 

consequently related to purine synthesis [55]. 

This enzyme takes charge of the conversion 

of AICAR into formyl-AICAR. This formed 

molecule acts as a precursor for DNA purines. As 

a result, when the function of transformylase is 

absent, its product will decline in amount and its 

substrate, AICAR, will build up within the 

cellular compartment. High amounts of AICAR 

will lead to the stoppage of adenosine deaminase 

enzyme action. Therefore, adenosine molecules 

will accumulate in the extracellular field. Indeed, 

adenosine has a crucial role in the anti-

inflammatory response of MTX. This effect 

happens from the interaction of adenosine with 

some cell surface receptors, leading to an 

effective inhibition of chemotaxis of leukocytes. 

Additionally, the oxidative inflammation taking 

place in either neutrophils or monocytes will be 

also inhibited. On another side, the synthesis of 

cytokines such as IL-6, IL-12, and TNF-alpha 

will be hindered [54]. 

5.6.5. Effect of MTX on oxidative stress 

Earlier studies have documented that MTX 

leads to elevation in ROS, which stops the cell 

cycle and leads to cell death in the CNS through 

the p53/p21 activation [55, 56]. In fact, due to the 

elevated metabolic rate of the brain and the 

extensive amount of polyunsaturated fatty acids, 

the brain is a very sensitive organ to the 

disturbance in the oxidative state. Also, it has a 

low antioxidant power which increases its risk of 

facing oxidative stress. Indeed, decreasing 

reactive oxygen species and targeting oxidative 

stress can preserve readily against the 

neurological toxicity of MTX. MTX 

administration has been linked to harmful effects 

in various organs such as the brain, spinal cord, 

intestine, and liver [56]. It causes an increase in 

ROS production as well as a decrease in 

antioxidant defensive mechanisms in the affected 

tissues. Malondialdehyde (MDA), which results 

from lipid peroxidation, increases in amount by 

MTX. Furthermore, glutathione peroxidase 

(GPx), catalase (CAT), and superoxide dismutase 

(SOD) declined levels are all proofs that MTX-

induced oxidative stress. Since Nrf2 is essential 

for the expression of antioxidant genes like HO-

1, CAT, and SOD, it implies that Nrf2/HO-1 

pathway activation was linked to antioxidant 

consequences and this pathway is readily 

influenced by MTX injection. This pathway can 

also lower the expression of iNOS and NF-κB in 
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tested animal models [57]. 

5.6.6. Effect of MTX on Neurotransmitter 

levels 

Fundamentally, the hippocampus represents 

the principal part of the limbic system being 

included in different learning activities and 

memory executive functions [58]. Hippocampal 

monoamines have been implicated in different 

behavioral patterns, including learning and 

memory. Therefore, the assessment of amines 

present in the hippocampal tissues after the 

administration of MTX could be suggested to 

unveil insight into the probable pathways 

involved in neurotoxic events. Extensive work 

has been done to decode the interconnection 

between hippocampus brain amine levels and 

learning and memory function. Behavioral 

examinations have proposed that brain amines, 

primarily norepinephrine, serotonin, and 

dopamine, play some essential role in memory 

processing [59]. Learning and memory functions 

were varyingly impacted by altered amounts of 

brain amines. Norepinephrine injections into the 

entorhinal cortex and CA1 region of the 

hippocampus improved both short- and long-term 

memory [60]. Therefore, it is obvious that 

norepinephrine facilitates memory and learning. 

The brainstem's locus coeruleus is a preliminary 

origin of information for the hippocampus and it 

is highly affected by norepinephrine amounts. 

Moreover, Dopamine is one of the considered 

amines in learning and memory processes. The 

receptors of Dopamine were detected to play a 

role in memory either at the cortical or at the 

hippocampal level [61]. Dopamine receptor 

agonists administration to the cortex enriched 

spatial memory. Accordingly, hippocampal 

dopamine seems to have a boosting role in 

memory processing. Dopamine levels declined 

significantly in the hippocampus due to MTX 

[62]. Taken together, it seems that an impaired 

dopaminergic system is related to cognitive 

dysfunction triggered by MTX. 

6. Impact of chemobrain on subjects’ life  

Along with illness and mortality, health-

related quality of life (HRQOL) is acknowledged 

as a significant health outcome in the context of 

public health [63]. 

A greater appreciation for both length of life 

and quality of life can be seen in HRQOL. 

Physical health, mental health, social health, and 

role functioning are all parts of HRQOL.  

6.1. Many predisposing factors may contribute 

to chemobrain development including: [64] 

Females exhibit higher vulnerability in 

comparison with males, age (60±5 y), education, 

and IQ. In addition, dietary factors are associated 

with increasing risk for chemobrain such as 

vitamin D deficiency. On the other hand, immune 

response, anemia, hormonal levels, anxiety, and 

depression were also detected. When they begin 

to reinitiate their careers, especially for those in 

mentally processing jobs, several patients who 

have survived breast cancer have grumbled of 

decreased reaction speeds and problems 

multitasking, which become more dominant.  

According to Wagner et al. [65], 63% of 

survivors showed difficulties in paying attention 

and focusing, 50% reported memory defects, and 

38% were familiar with issues with abstract 

reasoning.  

7. Assessment of cognitive dysfunction  

7.1. Assessment of cognitive dysfunction in 

humans 

7.1.1. Magnetic resonance imaging (MRI)  

To evaluate cognitive dysfunction as well as 

highlight the plausible pathways responsible for 

chemobrain, MRI serves as a powerful diagnostic 

tool. Studies revealed a continuous decrease in 

neuropsychological processes approximately 

after 5 years of chemotherapeutic plan 
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finalization. Furthermore, an empirical 

investigation implemented on some patients who 

have survived breast cancer 3 to 10 years after 

their anti-neoplastic regimen, linked the 

increased oxidative DNA damage and the 

decreased grey matter density as well as lower 

functional MRI activation in specific brain 

regions [66].  

7.1.2. Neuropsychological tests  

The International Cognition and Cancer Task 

Force (ICCTF) affirmed that the testing of 

neurological performance represents the core for 

evaluating cognitive functions even though MRI 

is very significant in evaluating CICI. The 

following tests have been specifically suggested 

in this regard: The Controlled Oral Word 

Association test, the Trail Making Tests A and B, 

and the Hopkins Verbal Learning Test which has 

been revised.  Subjective patient reports are 

excellent in clinical settings and more 

presumably to reveal the patients' reduced QOL 

than objective evaluations that might not shield 

all of the patients' influenced regions, even 

though the ICCTF does not view them as a 

definitive method in evaluating chemobrain [67, 

68]. 

7.1.3. Electroencephalography (EEG)  

By using electrodes to assess various brain 

activities after chemotherapeutic intervention, 

EEG seems to be a beneficial method. 

Furthermore, it is non-invasive letting the patient 

feel safer.  

Many researchers stated that the neurological 

stimulation and latency in different cancer 

survivors were easily detected by EEG after 5 

years of chemotherapy. Despite the power of this 

technique, other studies documented no 

noticeable variations in EEG results between 

untreated healthy persons and cancer cases who 

were in continuous use of chemotherapy [69]. 

7.1.4. Positron emission tomography (PET)  

For several cancer patients, PET is 

considered a useful research and diagnostic tool. 

For imaging, it employs the radiopharmaceutical 

18-fluorodeoxyglucose (FDG). This compound 

was employed to investigate the cellular 

metabolic processes and to identify, treat, and 

diagnose various CNS disorders, such as 

Parkinson's, depression, and Alzheimer's. In 

experimental animals, chemotherapy was found 

to decline the metabolism of glucose molecules 

in both the hippocampal and cortical tissues 

which causes later mental decline in those 

subjects [70]. PET scans were used to assess 

variations in the metabolism of different cerebral 

patterns in assessing the link between the 

treatment with aromatase inhibitors and 

intellectual damage [71]. Additionally, using PET 

analysis following concurrent chemotherapy for 

breast cancer, a relationship between pro-

inflammatory cytokines, localized cerebral 

metabolism, and mental complaints was detected. 

7.2. Assessment of cognitive decline in 

experimental animal models  

Because experimental animal models allow 

the simulation of human diseases, the explanation 

of underlying mechanisms, and the development 

of satisfactory therapeutic plans that cannot be 

directly tested in human beings, animal models 

are considered a fundamental component of 

clinical research.  

7.2.1. Passive avoidance 

The Passive Avoidance test represents a fear-

exasperated test employed to assess learning and 

memory in rodent experimental models of CNS 

diseases. In this test, animals acquire the 

knowledge of avoiding a surrounding in which a 

noxious stimulus (such as a foot shock) was 

formerly applied. The Passive Avoidance task is 

beneficial for assessing the impact of new 

chemical substances on learning and memory 

besides exploring the mechanisms included in 
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cognition [72]. The administration of MTX 

systematically has been documented to hinder 

annoyingly stimulated memory in different 

subjects [73]. 

7.2.2. Morris Water Maze 

In this test, experimental animal models must 

learn to swim in a wide circular black pool of 

water that has been surrounded by external cues. 

The primary variables that are measured are 

escape latency, the number of crossings that 

occur at that precise location, the amount of time 

consumed in the quadrant of interest relative to 

the opposing quadrant, swimming speed, and 

swimming path length. The animals treated with 

MTX manifested a longer latency time to cross 

the platform location in the probe trial, showing a 

defect in spatial memory function. There was 

additionally a tendency for these animals to 

spend less time in the right quadrant in 

comparison with the control animals [51]. 

7.2.3. The Novel Object Recognition Test 

(NORT) 

Is considered a behavioral experiment that is 

usually used to examine different facets of 

learning and memory in mice. Three days can be 

dedicated to the relatively easy-to-understand 

ORT: the testing, training, and habituation days. 

The mouse is permitted to investigate two 

identical objects throughout training. One of the 

practice items gets swapped out for a new one on 

test day. Given their natural predilection for 

novelty, mice will gravitate towards the novel 

object if they recognize the familiar one [73]. The 

rats given MTX in the NOR test were unable to 

discriminate between a new and a known object, 

suggesting a decline in the hippocampal 

comparator function [74]. 

7.2.4. Y-maze 

To test laboratory mice's spatial working 

memory, the Y-maze test is frequently used. The 

test is based on rodents' inclination to explore 

novel settings naturally. Animals will first study 

a different arm of a maze before going back to 

the one they previously explored since rodents 

normally prefer to investigate unfamiliar 

situations rather than familiar ones. This task 

involves a variety of brain parts, encompassing 

the hippocampus, septum, basal forebrain, and 

prefrontal cortex [76]. The decline of memory 

confirmed by the behavioral tests in which MTX 

was administered was documented [73]. 

8. Coping with chemobrain 

8.1. Non-pharmacological strategies 

8.1.1. Social Support 

During cancer therapy, social support is 

crucial in helping patients manage their 

symptoms. Social connections or medical 

specialists who provide patients with emotional 

and supportive counseling are two possible 

sources of this support. Patients can benefit from 

this support, especially when it comes from 

people closest to them. Family members, for 

instance, are frequently a tremendous source of 

support for cancer patients and have been shown 

to ameliorate QOL and lessen symptom severity. 

Additionally, it has been discovered that patients 

who depend more on their friends for emotional 

and social support adjust psychologically better 

both during and after receiving a cancer 

diagnosis. This is probably because when 

someone feels vulnerable, they are more inclined 

to ask for social and emotional support. Social 

support can also assist patients in coping with 

their disease's physical side effects. For instance, 

by exchanging experiences and learning about 

other people's symptom-management strategies, 

support groups might help patients control their 

nausea and exhaustion [77]. 

8.1.2. Cognitive-Behavioral-Therapy (CBT) 

CBT is a psychosocial talking type of therapy 
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that addresses intellectual health issues by 

creating individual management plans to address 

current issues and modify negative thoughts, 

behavior, and emotional patterns, thereby 

reducing psychological and emotional 

disturbances [78]. Three studies, found in the 

literature added appropriate CBT methods to aid 

in chemobrain improvement. The first one used 

memory and attention adaptation training 

(MAAT) as an intervention. It was a single-arm 

pilot study. The participants reported 

improvements in their self-assessment of 

improved QOL and altered mental function. 

 Furthermore, patients improved on post-

treatment neuropsychological tests as well as at 

the follow-ups that took place in the second and 

sixth months, respectively. The second 

experiment was a randomized clinical trial (RCT) 

with two groups: MAAT and no treatment 

control. The survivors of breast cancer going 

through MAAT were evaluated at the beginning 

and after 8 weeks of treatment. MAAT 

contributors achieved remarkable progressions in 

comparison with the baseline group on verbal 

memory and the spiritual well-being subscale of 

the Quality of Life-Cancer Survivors scale. 

However, the self-report of daily cognitive 

defects did not reach statistical significance. The 

third study used a secondary investigation of data 

from an RCT to assess whether patients would 

report less cognitive decline following CBT 

treatment for cancer-related fatigue. Patients with 

cancer who experienced extreme fatigue 

underwent a 6-month cognitive behavioral 

therapy intervention that focused on identifying 

the underlying causes of their fatigue. 

Participants in CBT consequently reported 

noticeably less cognitive dysfunction [79].  

8.1.3. Physical activity (exercise)  

Resistance training associated with physical 

activity has been found to improve cognitive 

functions by upregulating the gene expression of 

brain neuroprotective agents. 

Furthermore, physical activity has a major 

positive effect on hippocampal neurogenesis 

[80]. An animal model of chemobrain revealed 

that post-treatment activity suppressed 

chemotherapy-enhanced suppression of neuron 

formation and ameliorated cognitive levels [81]. 

8.2. Coping by drugs 

8.2.1. Symptomatic Treatment Approaches  

8.2.1.1. Methylphenidate 

Methylphenidate is a medication used for 

narcolepsy and attention-deficit/hyperactivity 

disorder. In light of methylphenidate being 

employed prosperously to handle cognitive 

deterioration in patients with brain tumors and in 

children having cancer [16], its potential for 

helping survivors with solid tumors who are 

experiencing cognitive decline is found to be 

highly promising. Taking into consideration the 

probable link between cognitive dysfunction 

induced by chemotherapy and unbalanced 

catecholamine levels, drugs that raise 

catecholaminergic tone may contribute to 

alleviating the resulting cognitive issues.  

Methylphenidate is a dopaminergic and 

noradrenergic agonist. It inhibits monoamine 

oxidase enzyme activity and reduces dopamine 

uptake at synapses. It has received extensive 

evaluation in the context of cognitive impairment 

brought on by chemotherapy. The impact of 

methylphenidate on cognition and lethargy was 

examined in patients who had undergone breast 

cancer resection. Those patients were receiving 

chemotherapy in a randomized, placebo-

controlled, double-blinded experiment. 

Regrettably, there was no statistically remarkable 

difference between the methyl-phenidate-treated 

group and the placebo group [82]. 

 8.2.1.2. Psychostimulants  

They have already been used to treat fatigue 
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brought on by cancer and cognitive impairment 

linked to cancers. 

An FDA-approved stimulant called modafinil 

is used to treat narcolepsy and improve 

wakefulness. As a follow-up to a trial to 

determine whether modafinil is effective at 

reducing cancer-related fatigue, it was previously 

studied to see how it affects cognitive decline in 

breast cancer survivors [83]. It was discovered 

that Modafinil remarkably ameliorated episodic 

memory and memory performance rate when 

compared to the placebo group [83]. To assess 

Modafinil's impact on cancer-linked fatigue and 

mental dysfunction, a pilot study was done. 

Unexpectedly, modafinil ameliorated the QOL 

and reduced fatigue, but no noticeable cognitive 

change was found [84]. 

8.2.1.3. Fluoxetine  

One of the selective serotonin reuptake 

inhibitors used primarily to treat depression is 

fluoxetine. Previous research demonstrated that 

Fluoxetine enhances the level of brain-derived 

neurotrophic factor and promotes hippocampal 

neurogenesis, two potential mechanisms 

contributing to the pathogenesis of cognitive 

decline emerging after chemotherapy. As 

indicated by the animals' ameliorated 

performance on new recognition, fluoxetine 

reversed chemotherapy-induced cognitive 

deterioration [85].  

8.2.2. Neuroprotective Treatment Approaches  

8.2.2.1. Ginkgo Biloba 

Ginkgo biloba is a known herbal compound 

employed usually for protecting against 

intellectual deterioration in old patients [86]. It 

has been proven that its administration is 

efficacious against chemobrain. Ginkgo biloba 

was detected to possess antioxidant power and 

neuroprotective characteristics which may 

contribute to its maintenance of cognitive 

function [87]. 

8.2.2.2. Donepezil  

Donepezil, which is an acetylcholinesterase 

inhibitor, is presently described for some early 

stages of dementia, and it may also be efficacious 

for more severe phases [88]. In Alzheimer‘s 

disease, Donepezil is usually used as an effective 

way of treatment. Given that chemotherapy-

induced cognitive dysfunction may be caused by 

hippocampal-dependent memory loss, donepezil 

may improve mental function in these cases. A 

clinical trial with randomization, double blinding, 

and placebo control was performed on patients 

who had survived breast cancer and who had 

concomitant chemotherapy one year prior and 

were undergoing CICI treatment. The donepezil-

administered group showed noticeably better 

verbal memory; in contrast, no noticeable 

difference in other cognitive or subjective 

measures was documented [89]. 

8.2.2.3. Antioxidants   

Earlier gathered data in the noncancer 

condition reveal that vitamin E with high dosage 

is capable of preventing or improving mental 

deterioration by hunting free radicals [90]. 

Considering that systemic cytotoxic drugs for 

cancer are capable of producing ROS and also 

intercede with the acetylcholine-involved 

pathways of the brain, thus causing CICI, one 

could propose that vitamin E also may be 

efficacious in preserving the cognition of cancer 

survivors.  

Conclusion  

There is strong evidence from clinical 

research and animal models that chemotherapy 

causes cognitive impairments. Oxidative stress, 

neuroinflammation, disturbance of apoptotic and 

autophagic pathways, manipulation of principal 

kinase enzymes, reduction in the level of 

neurotransmitters, as well as genetic and 
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epigenetic factors, are some of the potential 

pathways behind chemobrain. In addition, the 

hippocampal neurogenesis represents a target 

that, when affected, leads to an increase in 

chemobrain development risk. While behavioral 

reclamation improves the post-chemotherapy life 

for survivors of chemotherapy-induced cognitive 

problems, there is generally no proven solution 

for these issues. Additionally, several 

pharmacological drugs have been successful in 

demonstrating a potential effect in blocking 

neurotoxic pathways; nevertheless, it is still 

necessary to assess their influence on the 

anticancer efficacy of chemotherapy treatment 

plans. 
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