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Abstract: Exploring and understanding the mechanisms of the complex cellular arrangements’ 

orchestration by gene activity in multicellular organisms has great impact on the advancement of life 

sciences research. Spatial transcriptomics has been enabled by novel technological breakthroughs in 

next-generation sequencing- and imaging-based techniques to systematically measure the gene 

expression levels throughout the tissue, and accordingly, increase our capabilities to draw better 

biological insights in developmental biology and neuroscience as well as to better understand the 

cellular composition and landscapes of many complex diseases such as cancer. Such large-scale data 

made possible population wide genomic sequencing opens the door to answering many unanswered 

biological questions using exploratory data analysis. In this paper we deliver a review of the different 

exploratory data analysis aspects of spatial transcriptomic data in order to test different hypotheses 

using various experimental designs that utilize and compare different genetic or environmental 

conditions as well as different points in time. Finally, spatial transcriptomics can be integrated with 

multiple other omics data in order to provide much broader and deeper insights into the cellular 

composition and organization. 
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1. Introduction 

 

The realization that biological functions are implicitly linked to the cellular organization of tissues has 

enabled various breakthroughs in the life sciences. Spatial relationships between cells represent the 

basis of multiple main topics in the field of developmental biology like cell-fate decisions and the 

symmetrical breakage of daughter cells [1]. Since various diseases are characterized by and associated 

with atypical cellular spatial organization, clinically, histopathology is frequently utilized in the 

diagnosis of such diseases [2]. Methods in molecular biology [3] provided the chance to map the DNAs, 

RNAs, and proteins in tissues and thus, the ability to better understand the biological processes and their 

relationship to the cellular architecture within these tissues. Hence, it is now known that some 

inflammatory and infectious processes can alter the cellular composition and organization of tissues [5]. 

However, such methods have limitations regarding the number of genes or proteins studied at a time. 

 

Our ability to understand cells has been profoundly enhanced after the Omics revolution. The newly 

developed methods are now able to assay full genomes, transcriptomes, and proteomes instead of 

recognizing just a few genetic markers [6]. That cleared the way to recognize new cell states and types 

and consequently, helped to provide a much deeper understanding of biological processes [7]. However, 

such high-throughput technologies result in the loss of cellular spatial information as they could not be 

performed in situ. Earlier methods tried to overcome such a limitation by the utilization of different 

techniques such as RNA-seq tomography (tomo-seq) [8] and isolating specific regions for scRNA-seq 

by microdissection to provide the needed spatial information [9] alongside many other technologies and 

approaches including PIC-seq [10], ClumpSeq [11], and mapping subsets of genes to deduce the 

locations of cells in a whole transcriptome [12].  

 

While such approaches allowed tissue organization reconstruction, they have also demonstrated the 

importance of developing spatial resolution methods that scans across the whole transcriptome. That 

need has been met over the past decade through the immersion of a set of technologies that combine the 

retention of spatial information and the ability to operate on whole transcriptomes. The emergence of 

this novel ‘spatially resolved transcriptomics’ approach has led to breakthrough discoveries in many 

research fields such as neuroscience, and cancer research. In this paper, we briefly review common 

spatial transcriptomics technology while focusing on discussing the main principles of spatially 

resolved transcriptomics data exploration and highlighting the promise of such technology for providing 

new valuable biological insights. 

 

2. Spatially resolved transcriptomic technologies 

 

The computational approaches addressed here concentrate on spatial transcriptomic technologies that 

provide tissue-level transcriptome wide information since such technologies usually broadly differ with 

regard to the examined tissue size and the total number of probed genes. These technologies are 

commonly classified into two main groups [13]; the first group is based on incorporating spatial 

information in the studied transcripts prior to next-generation sequencing, while the second one 

involves imaging-based methodologies such as in situ sequencing (ISS) and hybridization (ISH) based 

techniques [14]. Further, it is worth mentioning that such classification may not always be binary, and 

that some computational approaches may require the utilization of information from both groups. 

 

2.1. Next-generation sequencing-based techniques 
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Next generation sequencing based techniques rely on adding spatial markers before performing single-

cell RNA sequencing; This technique was initially used in 2016 and enabled the capturing of tissue-

level spatial data across whole transcriptomes [15]. That was done by ensuring the ability to map each 

transcript to its original microarray spot by utilizing positional barcodes prior to reverse transcription to 

detect poly-adenylated RNA. Large areas of tissues can be thoroughly examined without choosing to 

focus on a specific area or being limited to a group of gene markers, that is due to the high resolution of 

the used slides [16]. This primary concept has been previously applied by numerous research groups 

[15]. Thereafter, 10X Genomics further enhanced both the sensitivity and resolution of the technology 

which was later used in several domains such as developmental and cancer biology [17]. 

 

2.2. Imaging-based techniques 

 

Both the in-situ sequencing (ISS) and hybridization (ISH) based techniques come at the center of 

Imaging-based techniques. Target genes were investigated in studies of brain development [18] and 

cancer [19] by applying Sequencing-by-ligation (SBL) after reverse transcription probes targeting. By 

further enhancing this technique, thousands of genes were successfully profiled in the cerebral cortex of 

mice [20]. Moreover, other techniques utilized sequencing by synthesis [21] or hybridization have 

yielded longer reads, thus leading to enhanced barcoding and increased throughput [22]. Further, in 

some studies, both imaging- and NGS-based techniques were combined in pursuit of enhanced 

performance and deeper insights [23]. 

 

3. Exploratory data analysis 

 

The gene-expression matrix produced by spatial transcriptomic technologies can be analyzed to verify 

current hypotheses alongside making novel observations through performing exploratory spatial 

transcriptomic data analysis. Novel insights can be figured out by openly exploring the vastly complex 

high dimensional data looking for unexpected relationships. Typically, the outcome of a bench 

experiment acts as a guide to the next one; Similarly, the result of one exploratory data analysis leads to 

the choice of the following one [24]. That does not mean that existing hypotheses and knowledge are 

not taken into account, rather that they are utilized to better interpret the results of the analysis and 

direct it. Hence, there is no typical exploratory data analysis protocol or pipeline for how to investigate 

a spatially resolved transcriptomic dataset. Instead, there are main logical guidelines and principles for 

how the data may be studied alongside an expectation of the possible outcomes for each analysis [25]. 

 

The analysis of spatial transcriptomics data often starts with quality control steps and some preliminary 

transformations on the gene-expression matrix to reduce noise in the data and, accordingly, amplify the 

signal-to-noise ratio; that can be done by utilizing data analysis packages like Seurat [26] and Giotto 

[27]. A preliminary insight of the technical and biological characteristics of the data can be provided by 

the number of detected transcripts in a given location. A lower average number of transcripts may 

signify a technical issue; namely, cell-density differences or insufficient permeabilization in some 

regions. Nevertheless, there may be biological sources to such variations; including transcriptional 

activity variations across different cell types or death of cells, this may result in a state of confusion to 

the downstream analyses. In order to increase sensitivity and get rid of both undesirable technical and 

biological variation sources, smoothing algorithms may be used. Also, using a moving window across 

the spatial coordinates while calculating the average gene expression within it can help in reducing 

noise since neighboring spots usually have common or shared information [28]. Normalization of 

transcriptomes is usually done using regularized negative binomial regression or by simply dividing by 
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the expression values the sum of transcripts (transcripts per million) [29] allowing the comparison 

between gene expression among spots. In a similar fashion, such comparisons are often supported by z-

score data scaling, that is to unify both mean and variance values across all the spots. 

 

Preliminary insights at the level of single genes are then based on the normalized gene-expression 

matrix. Further analysis of the matrix is often required as a means to reveal underlying relationships in 

the data such as functional modules of genes or characteristics of cell types. While many other 

computational processes may be utilized, here, we briefly mention five main categories that have been 

commonly applied in an effort to investigate and understand spatially resolved transcriptomic data. 

Immediate insights may not be derived by implementing any single process; still, applying multiple 

processes in a serial fashion and interpreting the results of each stage may eventually lead to valuable 

insights. 

 

The first of these categories is the clustering of data in order to uncover intricate structures. There are 

two basic options for clustering spatial transcriptomics data. The first option is to cluster spots with 

regards to transcriptomic similarity among them, the resulting clusters usually represent unique cell 

types or regions in the tissues of interest [30]. The second option is to cluster genes in order to identify 

sets of co-expressed genes that correspond to different cell types or states [31]. Various dimensionality 

reduction methods [32] are often used before the choice of suitable clustering method [33]. 

 

The second category is the choice of specific region to study in order to increase the interpretability of 

the analysis by limiting the investigation to a specific region, for instance, a distinct brain layer [34]. 

The third one is the summarization of the data to help in the recognition of spatially related functional 

characteristics within tissues and organs. This can be done by averaging the counts within each cluster 

or by utilizing a null model in order to relatively grade expression values [35]. The fourth is the 

annotation of the clustered data whether by integrating other datasets, using marker genes or mapping to 

already annotated gene sets (e.g., multimodal intersection analysis, gene-set enrichment analysis) [36]. 

While the fifth is the comparison of modules of genes and regions of tissues in order to point out, study, 

and understand the similarities, variations, and relationships between them. These comparisons can be 

done considering multiple factors such as RNA velocity [37] and modes of cellular interaction [38]. 

 

4. Analytical challenges and opportunities 

 

While there are various challenges to the analysis of spatial transcriptomics data, it also offers numerous 

opportunities. To attain single-cell resolution transcriptomic profiling, identified RNA molecules should 

be aggregated individually into the cells in the case of in situ imaging-based approaches. Thus, as a 

means to correctly analyze the morphological properties and spatial heterogeneity among single cells, 

proper cell segmentation is required. Multiple current cell segmentation workflows perform well with 

fluorescent labeled and culture cells [39]. Segmentation performance can be further improved by 

integrating extra information; for example, cellular composition of the transcriptome and previously 

known gene expression per cell type [40]. However, new computational approaches for proper cell 

segmentation are still required in the case of cells with more complicated morphological features (e.g. 

neurons). Proper cell segmentation, alongside enhancing gene counts estimation in single cells, paves 

the road for the integration of spatial information by more computational approaches down the analysis 

stream. One instance is the prediction of transcriptional states of cells by taking the transcriptomic 

subcellular location into account; that is done by analyzing the temporal and spatial tissue-level 

heterogeneity and their functional consequences [41]. 
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Similarly, varying distinct challenges arise regarding the analysis of spatial transcriptomic data 

depending on the technological source whether it is NGS-based or Imaging-based. Especially if 

transcripts across several cells were captured in each pixel due to larger pixels used in some 

technologies. This may significantly Impede the characterization of architectural patterns of single cells. 

Various computational approaches have been implemented in order to help overcome this obstacle by 

building and utilizing generative models [42] or by combining transcriptomic profiles for single cells 

[43] to predict the relative degree to which each cell type is represented in pixels with multi-cellular 

transcripts. For this reason, in order to examine the pixel- and sub-pixel-level spatial architectural 

patterns of distinct cell types, new computational approaches are required. 

 

Nevertheless, to enable statistical assessment and methodical identification of the mechanisms 

underlying the relationship between cellular architectural patterns and phenotypical features, additional 

computational approaches for studying temporal and spatial transcriptomic patterns are required to 

overcome the limitations of the current computational approaches such as their inability to analyze 

multiple tissue sections over multiple time points [44]. 

 

5. Future Perspective 

 

The domain of spatial transcriptomics is developing at a great rate due to the emergence of new related 

technologies and datasets on a daily basis. Quickly overcoming various challenges to the existing 

spatially resolved transcriptomics methods such as sensitivity, resolution, and accessibility limitations. 

Lately, retrospective analyses of previously collected samples have been enabled by applying spatially 

resolved transcriptomics methods to paraffin-embedded tissues [45]. Looking forward, the ability to 

analyze larger tissue areas to assemble 3-dimensional cellular atlases for organs and to visualize 

temporal gene expression variations across full transcriptomes will be enabled by future innovations. 

The development of novel computational approaches and creatively analyzing their results will come 

beside tackling these technological limitations in the future. These will jointly help with the exploration, 

identification, and understanding of spatial patterns and their related biological factors. While the 

functionalities of various genomic regions are still being studied, future spatially resolved 

transcriptomics experiments may exploit from human reference genome (that is considered a reference 

for investigating the origins and effects of genetic variations and was firstly drafted and published by 

the Human Genome Project in 2001 [46]) to study different conditions. Nonetheless, charting the levels 

of gene expressions will only be an opening move to shed light on how tissues are organized. The 

pairing of such advanced cellular atlases with creative analytical thinking is what will reveal the 

consequences of tissue composition and organization in physiology and disease. 

 

One of the main questions in the field is how we can create a model that utilizes the characteristics of 

single cells in order to predict multicellular spatial patterns. Intricate spatial patterns were recovered by 

executing on a basic hypothesis that neighboring cells mostly have similar levels of gene expressions 

[47]. Hence, by exploring and analyzing spatial transcriptomic data, it is expected that other elementary 

principles will be discovered. Such principles and insights may steer spatial architecture modeling and 

assist mechanistic studies of spatial patterns and their impacts. This will help deepen our understanding 

of complex tissue architectural patterns in healthy and diseased tissues, providing us with the 

opportunity to chart the uncharted biological territory. 

 

6. Conclusion 
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Eventually, spatially resolved transcriptomics provides an interesting novel approach to uncover the 

complex spatial systematic mechanisms within the tissues. Datasets carrying spatial information 

generated by such technologies alongside novel computational tools especially developed to analyze 

such data enable the identification of the sophisticated architecture of tissues. In order to confirm the 

results and insights derived from employing these computational tools, their generalizability is still to be 

tested, the experiments are to be validated, and targeted perturbation is to be performed. One example is 

the need for additional validation in order to figure out whether newly identified cell types through the 

computational integration of spatial and morphological information illustrate real biological insights 

into the functional heterogeneity among these cells. Further, observations about other elements that 

affect cell phenotype can be made by studying the degree to which gene expression is correlated to the 

spatial and morphological features of cells. Similarly, the impact of spatial heterogeneity among the 

cells on their functions remains to be identified. Ultimately, charting the cellular landscape and studying 

its temporal and spatial heterogeneity using specialized computational approaches can provide vital 

biological insights regarding tissue composition and organization in physiology and disease. 
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