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INTRODUCTION 

  

One of the food production sectors with the fastest rate of growth is aquaculture, 

which is essential to supplying people's daily demands for protein (Dawood & Kari, 

2024; FAO, 2024). In light of this, fish farming faces many obstacles, such as 

environmental stress, poor water quality, and the spread of infection that leads to 
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Excessive ammonia accumulation poses significant risks to aquaculture, 

potentially compromising the performance and productivity of aquatic species. The 

investigation aimed to determine the impacts of dietary supplementation with 

Opuntia littoralis cladodes (OLCP) at 0% (OLCP-0), 0.5% (OLCP-1), 1% (OLCP-

2), and 2% (OLCP-3) on growth performance, haematological, immuno-

biochemical indices, digestive enzyme activity, and antioxidant responses. 

However, a study was conducted on the Nile tilapia (O. niloticus) (25.49±0.25g) 

for sixty days (pre-phase). After that, fish were exposed to ammonia stress (0.5mg/ 

L) for 24 hours (post-phase). The findings indicated that dietary OLCP, particularly 

at 1% and 2% levels, significantly stimulated growth and enhanced protease, 

amylase, and lipase activities. Data revealed improved haematological parameters 

and immunological markers (complement C3, lysozyme activity, and total 

immunoglobulin) with increased OLCP levels. However, the exposure to ammonia 

caused a general reduction in these parameters, and the 2% OLCP group 

maintained the highest improved levels.  The higher concentrations of OLCP diets 

before and after ammonia-induced stress significantly enhanced the antioxidant 

defenses, especially in the 2% OLCP group. Additionally, OLCP supplementation 

reduced malondialdehyde (MDA) levels and leukocyte counts. Overall, the results 

suggested that prickly pear cladodes, can improve the growth, immune function, 

and antioxidant response of tilapia fish diets, especially in the 2% OLCP group, 

while effectively reducing the adverse impacts of ammonia exposure on their 

immuno-biochemical and haematological indices. 
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decreased productivity in these farms (Dawood et al., 2021; Radwan et al., 2023). One 

of these stressors was the accumulation of ammonia in fish farms, mainly caused by fish 

waste, leftover feed, increased organic matter deposition in pond bottoms, and low 

dissolved oxygen levels (Sriyasak et al., 2015). According to Qi et al. (2017), high levels 

of ammonia toxicity cause various problems in marine life, such as reduced feed intake 

and reduced immune and oxidative responses. Additionally, the body's ability to 

metabolize protein may decline, requiring significant energy to maintain the proper 

protein level in the fish's body (Güroy et al., 2014). The most effective way to reduce 

ammonia toxicity is to decrease feeding, change the water, add more dissolved oxygen, or 

gradually add lime to the ponds (Boyd, 2017). 

Medicine plant extract was a potent technique to lower the ammonia level in fish 

ponds (Yang et al., 2015; Fayed et al., 2019). Also, medicinal herbs or extracts as 

natural immune stimulants were another promising strategy for enhancing fish growth, 

immune system performance, and disease resistance in aquaculture (Dawood et al., 

2024). Moreover, medicinal plants have been used as therapeutic agents to regulate fish 

health in aquaculture because of their bioactive components (Radwan et al., 2024a & b). 

One of the most popular therapeutic plants in the world, prickly pears are used 

extensively in the pharmaceutical, food, and healthcare sectors. It belongs to the 

Cactaceae family and is considered an edible herb used worldwide with medicinal 

properties (Mahrose, 2021; Abbas et al., 2024a-c). According to Stintzing and Carle 

(2005) and Galal et al. (2017), the cladodes contain a variety of active phytochemical 

components, such as terpenes, carbohydrates, glycosides, coumarins, tannins, and 

flavonoids. These compounds might significantly defend against nitrogen or reactive 

oxygen species (ROS) in aquatic life and possess antimicrobial, antioxidant, and 

immunological properties (Saheli et al., 2021; Ahmadifar et al., 2021). 

Conversely, previous studies on the toxicity of ammonia have demonstrated that 

elevated ammonia levels may result in suppression of immunity, oxidative stress, and 

stress reactions, which can be mitigated using herbal dietary supplements (Dawood et al., 

2021; Elbialy et al., 2021). However, no investigation has been conducted into the 

potential application of nutritional supplements (prickly pears) in tilapia diets and 

exposure to ammonia stress. Hence, this study aimed to evaluate the benefits of 

supplementing diets with cladodes of Opuntia littoralis to mitigate the negative 

consequences of ammonia stress. The research entailed feeding period (60 day, pre-

phase) of tilapia (O. niloticus) on a diet supplemented with OLCP and followed by a 

twenty-four-hour exposure to ammonia (post-phase). 
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MATERIALS AND METHODS  

 

Samples collection 

Fish were collected from a private farm located in Kafer El-Sheikh (Egyptian 

province) and transported carefully into the lab for examination. After the fish had 

arrived at the laboratory, samples were acclimate in glass aquariums. Upon visual 

inspection, the fish specimens had no apparent injuries or illnesses and appeared healthy 

(Radwan et al., 2022a). In the same way, fresh cladodes of prickly pears were harvested 

from the Wady Mageid Marsa-Matrouh province, Egypt (summer-2023). 

Identification, extraction, and dietary procedure of prickly  

The cladodes of O. littoralis were identified at the Botany Depart., Science Fac., 

Al-Azhar Uni., Egypt. The cladodes were dried in the shade and extracted using a Soxhlet 

apparatus with 70% ethanol solvents (Abd El-Moaty, 2020). Then, mix feed ingredients 

with the extracted cladodes levels of 0% (OLCP-0 category, control), 0.5% (OLCP-1 

category), 1% (OLCP-2 category), and 2% (OLCP-3 category) and blinded with water 

and oil using a miner to create a solid mixture (Table 1). The pellets of OLCP were dried 

in air and stored in polyethylene bags at 4°C for further use, according to Hoseinifar et 

al. (2021). Gas chromatography and mass spectrometry (GC-MS) analysis were used to 

detect and identify the composition of bioactive components in the extracted cladode 

(Table 2, Agricultural Research Centre, Dokki, Giza). The raw protein, total fats, crude 

fiber, ash, and dry matter contents of diets were calculated according to Thiex et al. 

(2012) standard procedures. The formula for calculated nitrogen-free extract (NFE) was 

NFE (%) = 100 – (lipid (%) + protein (%) + ash (%) + fiber (%)). We estimated 17.2, 

23.6, and 39.5 KJ/g f of carbohydrates, protein, and fat to calculate the diet's gross energy 

content. 

Experiment design  

Four healthy fish groups, OLCP-0, OLCP-1, OLCP-2, and OLCP-3 (15 

fish/aquariums represented as 60 × 50 × 30cm, 50-liter water) with initial weights of 

25.49±0.25g were distributed (3 replicates). The fish in each group fed a diet 

supplemented with cladodes twice daily, at 3% of body weight, at 9:00 AM and 4:00 PM 

for sixty days. Every day, 70% of dechlorinated water was changed, siphoned out, and 

continually aerated in each aquarium. Regularly monitored the aquarium water quality, 

including measurements of temperature (26.60 ± 0.57°C), pH (7.63 ± 0.38), total 

ammonia (0.17 ± 0.01mg/ L), and dissolved oxygen (6.56 ± 0.74mg/ L). The fish in each 

aquarium were counted and weighed individually three times (every fifteen days) during 

the feeding experiment to assess survival rate, growth performance, and feed efficiency 

for each fish diet category. These measurements were taken using well-established 

methods as detailed in Radwan et al. (2024b). 

 



Abbas et al. 2024 

 

1862 

Table 1. The experimental diets' formulation and composition (%, on a dry matter basis) 

Ingredient OLCP-fortified diets 

 

OLCP-0 

(Control) 

OLCP-1 

(0.5%) 

OLCP-2 

(1%) 

OLCP-3 

(2%) 

Fish meal (72.0% CP) 99.8 99.8 99.8 99.8 

Soybean meal (48% CP) 420.2 420.2 420.2 420.2 

Yellow corn 200 200 200 200 

Wheat flour 90.6 85.6 80.6 70.6 

Wheat bran 150.2 150.2 150.2 150.2 

Vegetable oil 13.50 13.50 13.50 13.50 

Cod liver oil 12.00 12.00 12.00 12.00 

Dicalcium phosphate 8.70 8.70 8.70 8.70 

*Vitamins and mineral mixture 2.00 2.00 2.00 2.00 

Vitamin C 3.00 3.00 3.00 3.00 

OLCP 0 5 10 20 

 1000 1000 1000 1000 

Proximate chemical analysis (%)     
Moisture (%) 9.64 9.68 10.1 10.18 

Dry matter (%) 90.36 90.32 89.9 89.82 

Crude protein (%) 30.34 30.38 30.36 30.34 

Crude lipid (%) 8.19 8.21 8.23 8.24 

Fiber (%) 6.14 6.04 6.07 6.08 

Ash (%) 10.42 10.44 10.45 10.44 

Nitrogen-free extract (%) 44.91 44.93 44.89 44.90 

Gross energy (KJ/g) 1917.59 1917.95 1918.09 1918.36 

    

*The mixture of vitamins and minerals was prepared according to Radwan et al. (2024a). 

Ammonia stress experiment  

Fish from each group were fasted for a full day before the ammonia experiment 

was challenged, representing 0.5mg/ L for 24 hours (Yousefi et al., 2020). 

Collection of blood samples 

After a 24-hour fast, fish were anaesthetised with 50μL/ L of clove oil to 

determine blood indices in the pre-phase and post-phase ammonia stress experiments. To 

perform haematological tests, blood collected from the caudal peduncles of three fish in 

each aquarium using a syringe loaded with an anticoagulant (EDTA). On the other hand, 

a syringe (without anticoagulants) was used for the immunological biochemical and 

antioxidant assays. The mixture was centrifuged at 3000g for 15 minutes to extract the 

serum, which was then stored at -20°C until analysis. 
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Table 2. GC-MS of Opuntia littoralis cladodes extract showed the identified components 

 

No Compound identified 
Molecular 

weight 
Formula 

Retention 

time (min) 

Area 

(%) 

1 Palmitic acid 256.40 C16H32O2 7.342 71.24 

2 Oleic acid 895.00 C18H34O2 8.111 55.43 

3 Oxalic acid 90.03 C2H2O4 6.881 52.19 

4 Quercetin 117.39 C15H10O7 7.451 49.81 

5 β-Sitosterol 414.71 C29H50O 8.312 48.45 

6 Ellagic acid 302.19 C14H6O8 11.443 47.37 

7 Chlorogenic acid 354.31 C16H18O9 13.109 46.82 

8 Isorhamnetin 316.26 C16H12O7 14.95 44.52 

9 Luteolin 286.23 C15H10O6 16.117 33.94 

10 Kaempferol 286.23 C15H10O6 18.442 25.16 

11 Stigmasterol 412.69 C29H48O 20.178 20.90 

12 Methyl caffeate 194.18 C10H10O4 22.615 18.92 

13 Campesterol 400.7 C28H48O 24.215 16.69 

14 Ursolic acid 456.7 C30H48O3 25.812 15.82 

15 Sakuranetin 286.28 C16H14O5 27.701 13.01 

16 Myricetin 318.23 C15H10O8 28.172 12.41 

17 Squalene 858.00 C30H50 29.422 10.55 

18 Glucocapparin 333.3 C8H15NO9S2 34.055 9.54 

Digestive enzymes assay 

Fish (three intestines) samples were obtained from every aquarium. The samples 

were dissected, homogenized, then centrifuged at 4°C to get the supernatant for the 

digestive enzymes (protease, lipase, and amylase) (Najdegerami et al., 2016). However, 

Iijima et al. (1998) observed intestinal amylase and protease activity utilizing 0.3% 

starch and 1% hydrolysis of p-nitrophenyl myristate. 

Biochemical-haematological measurement  

Haematological markers, including haemoglobin levels, leucocytes, erythrocytes, 

packed cell volume, and blood cell indices, were calculated using previous methods 

described by Dacie and Lewis (1991) and Brown (1993). Cortisol levels were 

determiened using France kits from Bio-Merieux (Vecsei 1979). Blood glucose (Trinder, 

1969) and biochemical parameters (total protein, albumin, alanine, and aspartate 

aminotransferase) were measured in blood-serum samples (Reitman & Frankel, 1957; 

Henry 1964). By subtracting albumin from total protein, the globulin level was 

determined. 

Immune- and antioxidants assay  

Tilapia blood serum samples were tested for lysozyme, total immunoglobulin, and 

complement C3 activity using techniques outlined by Siwicki and Anderson (1993) and 

Tang et al. (2008). Diagnostic kits were used to assess the antioxidant activities in the 
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tilapia serum, including glutathione peroxidase, superoxide dismutase, catalase, and 

malonaldehyde activities. 

Analytical statistics 

SPSS software was used to perform a one-way ANOVA on the final data (Dytham, 

2011). When a significant difference was found between the fish groups (P < 0.05), 

Tukey's test was applied. To identify differences between the pre- and post-phase 

samples, a T-test was used. 

RESULTS AND DISCUSSION 

 

Fish growth and the activity of digestive enzymes 

The final body weight, weight gain, and specific growth rate (FBW, WG  and 

SGR, respectevily) of fish fed OLCP for 60 days were significantly (P < 0.05) higher 

than those fed an OLCP-free diet (Table 3). The highest levels of FBW, WG, and SGR 

(72.92±2.27, 47.18±3.10, and 1.74±0.11g, respectively) were recorded in the fish-fed 

OLCP diet at 2%. Conversely, the value feed conversion ratio (1.49±0.15 %) was 

significantly reduced in fish-fed OLCP at 2% compared to the control value 

(1.88±0.21%) without significant differences from the other groups. Between the groups, 

there were no significant variations in the survival rate. Correspondingly, the highest 

value (3.91±0.18, 9.21± 0.41, 15.72±1.19) of digestive enzyme activities (lipase, 

amylase, and protease, respectively) of the OLCP-3 group and the lowest values 

(1.88±0.32, 4.19±0.54, 9.35±1.78) observed in the control OLCP-0 (Fig. 2). 

Incorporating cladodes extracts to the feed, growth of fish was encouraged, feed intake 

rose, and palatability was enhanced. The increased growth performance is most likely due 

to the function of Cladodes in stimulating the digestive enzymes, which improves the 

palatability of diets (Abbas et al,. 2024). More precisely, by enhancing intestinal wall 

permeability, steroidal saponins contribute to increased nutrient absorption (Francis et 

al., 2002). Furthermore, Salem et al. (2024) reported that O. littoralis's improved growth 

performance is due to the inclusion of vitamins, fatty acids, and amino acids. Phenolic 

and flavonoids compounds, two phytochemical chemicals found in extracts of O. 

littoralis, may be responsible for the recorded results (Ahmed et al., 2020). In this 

sense, medicinal herbs increase feed intake and weight gain in supplemented fish by 

mediating the formation of beneficial bacteria colonies in the digestive tract (Safari et al., 

2017; Radwan et al., 2023). Additionally, herbal extracts are known for suppressing the 

activity of pathogenic microorganisms in the gastrointestinal tract, which is behind their 

influence on the activity of digestive enzymes (Dhama et al., 2018). 
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Table 3. Growth performance of tilapia fed with OLCP-fortified diets (OLCP) for sixty 

days 

 OLCP levels (%)  

 OLCP-0 OLCP-1 OLCP-2 OLCP-3 
p-value 

Initial body weight(g ( 25.50±1.35 25.74±1.85 25.55±1.11 25.51±1.66 
0.11 

Final weight  (g ( 55.00±2.97 c 64.06±3.37 b 65.95±1.85 b 72.92±2.27 a 0.01 

Weight gain (g ( 29.26±3.13 d 36.32±3.74 c 40.20±1.94 b 47.18±3.10 a 0.01 

Specific growth rate  

(%day-1) 
1.26±0.11 d 1.47±0.13 c 1.57±0.07 b 1.74±0.11 a 

0.03 

Feed intake (g) 51.76±3.32 c 62.72±3.09 b 64.11±3.23 b 70.20±4.23 a 0.03 

Feed conversion ratio 1.88±0.21 a 1.65±0.25 b  1.60±0.10 b 1.49±0.15 c 
0.02 

Survival rate (%) 100 100 100 100  

* A one-way ANOVA comparing the OLCP groups with P < 0.05 shows a significant difference 

(mean±S.D.) when different letters were displayed. 

Haematological assay 

Haematological indices are crucial to understanding fish farming because they 

provide information on the physiological states, nutritional status, and overall health of 

aquatic species (Fazio, 2019). Table (4) displayed the haematological parameters of 

tilapia groups between pre- and post-phases. The haematological indices of tilapia fed 

with different levels of OLCP showed notable variations. Before the ammonia stress test, 

the OLCP-3 group exhibited the highest erythrocyte count (2.36±0.08 × 106 cells/mm³) 

and PCV (24.98±0.10  %), while the OLCP-0 group had the lowest values for both 

(2.18±0.13 × 106 cells/mm³ and 22.73±0.39 %, respectively). After the ammonia stress, 

erythrocyte counts and PCV decreased in all groups, with OLCP-3 still maintaining the 

highest values (2.29±0.06 × 106 cells/mm³ and 23.04±0.08%) and OLCP-0 the lowest 

(1.97±0.07 × 106 cells/mm³ and 19.91±0.49 %, respectively). For leucocytes, OLCP-0 

had the highest count pre-ammonia (22.86±0.28 × 103 cells/mm³, respectively), which 

increased post-ammonia to 24.18±0.53 × 103 cells/mm³, while OLCP-3 had the lowest 

pre-ammonia (19.65±0.31 × 103 cells/mm³) and post-ammonia (21.14±0.56 × 103 

cells/mm³). Haemoglobin levels were highest in OLCP-2 pre-ammonia (7.93±0.08 g/dl) 

and lowest in OLCP-0 (6.51±0.14 g/dl), with OLCP-3 showing the highest post-ammonia 

value (6.96±0.09 g/dl) and OLCP-0 the lowest (5.35±0.44 g/dl). MCV and MCH 

followed similar patterns, with OLCP-3 having the highest values before (105.85±2.42 fL 

and 32.88±0.74 pg) and after (100.61±1.55 fL and 30.39±0.40 pg) the ammonia stress. In 

contrast, OLCP-2 had the lowest pre-ammonia MCV (101.07±1.72 fL) and MCH 
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(33.89±0.31 pg), and post-ammonia MCV (99.55±0.48 fL) and MCH (29.77±0.36 pg). 

MCHC values were highest for OLCP-2 before (33.26±0.33 %) and OLCP-3 after 

(30.21±0.27 %), and lowest for OLCP-0 before (28.64±0.46  %) and after (26.87±0.60  

%). Overall, while there were significant differences in these haematological indices 

across different OLCP levels, the relative rankings of the groups remained consistent 

before and after the ammonia stress experiment. 

The present investigation found that exposure to ambient ammonia dramatically 

reduced erythrocytes, Hb, MCHC, MCV, MCH, and PCV levels in tilapia groups. The 

decrease in erythrocyte count in aquatic species could be attributed to anemia, which 

inhibited erythropoietin following ammonia exposure. According to Tilak et al. (2007), 

increased oxygen intake and methemoglobin resulted in a significantly lower percentage 

of haemoglobin in common carp following ammonia stress. 

Nevertheless, the leucocyte levels showed a considerable increase following 

exposure to ammonia stress in all experimental groups. The OLCP-0 group exhibited the 

maximum rise in leucocyte levels, while the group with the highest OLCP concentration 

(2%) showed the lowest growth. Increased lymphocytes and lymphopoies from lymphoid 

tissues may cause leukocyte elevation following ammonia stress. Also, Zeitoun et al. 

(2016) and Gehad et al. (2023) reported similar results. Compared to the OLCP-0 

groups, the current study's diet groups with OLCP supplementation showed significantly 

higher levels of PCV, erythrocytes, Hb, and MCH (P < 0.05). Haematological measures, 

which primarily display the stress levels and overall health of fish, may be improved by 

adding cladodes to diets. Comparable reports (Osman et al., 2018; Fazio, 2019) showed 

that feeding aquatic organisms a diet enriched with herbal supplements enhanced their 

haematological measures. 

All tilapia on OLCP diets, erythrocytes, PCV, and Hb were increased significantly 

compared to the control group not on OLCP diets, indicating that OLCP has an immune-

stimulating effect and can be protected against toxins. According to Bhatt and Nagar 

(2013) and Osuna-Martinez et al. (2014), the bioactive compounds (flavonoids, 

glycosides, phenols, terpenoids, saponins, and tannins) that are immunostimulants could 

be the reason for the improvement in tilapia haematological markers. Improved 

haematological indicators promote haemoglobin in the Nile tilapia-fed OLPC in the diet. 

The current study revealed that the bioactive compounds also explained this effect, in 

agreement with Goda (2008). Numerous medicinal herbs contain secondary metabolites, 

which have been linked to immunee-modulating effects under adverse conditions 

(Hoseinifar et al., 2021; Radwan et al., 2022a; Gehad et al., 2023; Abbas et al., 

2024a-c; Radwan et al., 2024c-d). 
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Table 4. Hematological indices of tilapia fed with OLCP groups 

* Tables' data revealed significant variations in bars with different large letters in the same diets (T-test 

between Pre and Post-Phase, P < 0.05) and different small letters in the same phase (means±S.E., n = 5; 

ANOVA, P < 0.05). 

Biochemical assay 

After the toxin stress, changes in the biochemical investigations in tilapia blood 

and blood tests are a reliable and accurate method of assessing the condition of the 

species (Shin et al., 2016; Abdel-Aziz et al., 2022; El-Gaar et al., 2022; Abbas et al., 

2023, 2024; Elaraby et al., 2024).  

Table (5) reports the ALT, cortisol, AST, glucose, total protein, globulin, and 

albumin of tilapia studied groups. The biochemical indices of tilapia fed with various 

levels of OLCP revealed several significant trends. AST levels increased in all groups 

post-phase, with the OLCP-0 group showing the highest increase (164.95±0.53 U/L) 

compared to OLCP-3, which had the lowest (133.27±0.67 U/L). ALT also rose post-

phase, with the OLCP-0 group again having the highest value (36.87±0.49 U/L) and the 

OLCP-3 group the lowest (24.84±0.34 U/L). Cortisol levels increased after the stress test 

across all groups, with OLCP-0 showing the highest levels (6.51±0.17ng/ ml) and OLCP-

3 the lowest (3.11±0.11ng/ ml). Glucose levels significantly increased in all groups (post-

phase), with OLCP-0 having the highest glucose levels (122.75±1.49mg/ dl) and OLCP-3 

  

  OLCP levels 

 OLCP-0 OLCP-1 OLCP-2 OLCP-3 

RBCs  (×106 

cell / mm3) 

Pre-Phase 2.18±0.13bA 2.31±0.09aA 2.34±0.02aA 2.36±0.08aA 

Post-Phase 1.97±0.07dB 2.11±0.09cB 2.21±0.07bB 2.29±0.06aB 

WBCs (×103 

cell / mm3) 

Pre-Phase 22.86±0.28cB 20.39±0.71bB 19.82±0.24aB 19.65±0.31bB 

Post-Phase 24.18±0.53cA 22.05±0.62bA 21.62±0.68aA 21.14±0.56cA 

Hb (g/dl) 
Pre-Phase 6.51±0.14cA 7.36±0.14bA 7.93±0.08bA 7.76±0.20aA 

Post-Phase 5.35±0.44cB 6.42±0.04bB 6.58±0.18bB 6.96±0.09aB 

PCV (%) 
Pre-Phase 22.73±0.39cA 24.13±0.12bA 23.84±0.13bA 24.98±0.10aA 

Post-Phase 19.91±0.49cB 21.65±0.39bB 22.00±0.30bB 23.04±0.08aB 

MCV (fL) 
Pre-Phase 104.27±1.04dB 104.46±1.27cB 101.88±1.61bB 105.85±2.42aB 

Post-Phase 101.07±1.72dA 102.61±1.26cA 99.55±0.48bA 100.61±1.55aA 

MCH (pg) 
Pre-Phase 29.86±0.78cA 31.86±0.18cA 33.89±0.31bA 32.88±0.74aA 

Post-Phase 27.16±0.57dB 30.43±0.44cB 29.77±0.36bB 30.39±0.40aB 

MCHC (%) 
Pre-Phase 28.64±0.46Aa 30.50±0.27bA 33.26±0.33cA 31.06±0.06dA 

Post-Phase 26.87±0.60aB  29.65±0.37bB 29.91±0.39cB 30.21±0.27dB 
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the lowest (71.64±0.36mg/ dl). For total protein, the OLCP-0 group had the highest pre-

phase value (3.79±0.06g/ dl) and the highest post-phase value (4.51±0.24g/ dl), while the 

OLCP-3 group showed the lowest values in both pre-phase (2.41±0.09g/ dl) and post-

phase (3.21±0.09g/ dl). Albumin levels increased post-phase in all groups, with OLCP-0 

showing the highest levels both pre-phase (2.04±0.09g/ dl) and post-phase (2.69±0.09g/ 

dl), while OLCP-3 had the lowest pre-phase (1.34±0.09g/ dl) and post-phase 

(1.89±0.09g/ dl). Globulin levels increased post-phase in all groups, with OLCP-0 

showing the highest pre-phase value (1.75g/ dl) and post-phase value (1.82±0.09g/ dl), 

and OLCP-3 the lowest pre-phase (1.07±0.09g/ dl) and post-phase (1.32±0.09g/ dl). 

These results suggested that OLCP levels affected biochemical markers and protein status 

in tilapia and the higher OLCP concentrations correlating with lower stress responses and 

better protein profiles. 

All OLCP groups showed significantly greater levels of albumin, ALT, cortisol, 

AST, glucose, total protein, and globulin after exposure to ammonia. Compared to 

control samples (tilapia-fed non-OLCP-fortified diets), the levels of AST and ALT in the 

former were much lower. Following ammonia exposure, AST and ALT levels 

significantly rise in all fish diets, with the control diets displaying the highest values. 

Conversely, the activities of ALT and AST in tilapia-fed OLCP diets showed a decreased 

in escalation rate after exposure to ammonia compared to OLCP-0 diets (Table 5). One 

possible explanation for the degree of liver necrosis in tilapia subjected to ammonia stress 

is the ALAT activity. According to Ye et al. (2011), when hepatocytes are injured, 

substantial liver enzymes, which change the amino groups of alpha-amino into alpha-keto 

acids, often leak inside the bloodstream. 

On the other hand, lower blood levels of liver enzyme synthesis were due to the 

existence of phenolic and flavonoid groups, which have hepato-protective properties. 

According to earlier studies, exposure to ammonia causes harm to aquatic creatures' 

organs and increases their enzyme activity. Lin et al. (2011) made similar discoveries. 

Moreover, Agrahari et al. (2007) suggested the measurment of AST and ALT activities 

in fish to evaluate kidney and liver injury. 

Additionally, Table (5) demonstrates that the tilapia-fed OLCP diets had 

considerably lower levels of cortisol and hyperglycemia than the control samples. The 

fish showed a significant increase in glucose and cortisol levels in all treatments after 

being exposed to ambient ammonia. Furthermore, tilapia fed OLCP diets exhibited a 

lower rate of glucose and cortisol escalation after ammonia exposure compared to the 

OLCP-0 group (control). Elevated blood cortisol levels in fish exposed to ammonia stress 

has been linked to physiological stress (Sinha et al., 2012; Shin et al., 2016). Elevated 

glucose levels (hyperglycemia), can be caused by the activation of cortisol in response to 

stressful events, as stated by Elbialy et al. (2021).  

 



1869 
Effect of Ammonia on Nile Tilapia Fed with Prickly Pear Cladodes as a Dietary Supplement 

 

 

Table 5. Biochemical indices of tilapia fed with OLCP groups 

* Tables' data revealed significant variations in bars with different large letters in the same diets (T-test 

between Pre and Post-Phase, P < 0.05) and different small letters in the same phase (means±S.E., n = 5; 

ANOVA, P < 0.05). 

 
Fig. 1. Activities of digestive enzymes in tilapia fed with OLCP groups. Figures' data 

revealed significant variations in bars with different letters in the same treatments 

(means±S.E., n = 5; ANOVA, P < 0.05) 

  

  OLCP levels 

 OLCP-0 OLCP-1 OLCP-2 OLCP-3 

AST (U/L) 
Pre-Phase 145.45±0.57aB 132.32±0.82aB 131.90±0.24bB 130.32±0.62bB 

Post-Phase 164.95±0.53aA 137.04±0.98bA 136.75±0.66cA 133.27±0.67dA 

ALT (U/L) 
Pre-Phase 27.39±0.71aB 22.79±0.49bB 21.31±1.27bB 20.40±0.23cB 

Post-Phase 36.87±0.49aA 26.46±0.65bA 25.49±0.45cA 24.84±0.34dA 

Cortisol 

(ng/ml) 

Pre-Phase 2.98±0.13bA 2.36±0.08aA 2.34±0.02aA 2.31±0.09aA 

Post-Phase 6.51±0.17cA 3.55±0. 25bA 3.32±0.23bA 3.11±0.11aA 

Glucose 

(mg/dl) 

Pre-Phase 76.50±0.48aB 67.72±0.31bB 62.62±0.35cB 58.08±0.55cB 

Post-Phase 122.75±1.49aA 93.98±1.00bA 84.66±0.79cA 71.64±0.36cA 

Total protein 

(g/dl) 

Pre-Phase 3.79±0.06cB 3.18±0.18bB 2.87±0.02bB 2.41±0.09aB 

Post-Phase 4.51±0.24cA 3.88±0. 12bA 3.45±0.13bA 3.21±0.09aA 

Albumin 

(g/dl) 

Pre-Phase 2.04±0.09aB 1.81±0.09aB 1.69±0.09aB 1.34±0.09aB 

Post-Phase 2.69±0.09aA 2.26±0.09aA 2.05±0.09aA 1.89±0.09aA 

Globulin 

(g/dl) 

Pre-Phase 1.75±0.09aB 1.37±0.09aB 1.18±0.09aB 1.07±0.09aB 

Post-Phase 1.82±0.09aA 1.63±0.09aA 1.40±0.09aA 1.32±0.09aA 
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In contrast, the decline in levels of glucose observed in the studied groups under 

both phases in comparison to the control group may be explained by the bioactive 

components (phenols, flavonoids, and saponins) of O. littoralis mediating its 

hypoglycemic action. Flavonoid and phenolic substances are widely recognized for their 

antidiabetic properties, enabling them to effectively reduce blood glucose levels 

(Parwata et al., 2018). Moreover, a group of phytochemicals known as saponins has 

various biological effects, such as lowering blood sugar and preventing the enzymes from 

converting disaccharides into simple sugars (Oishi et al., 2007). 

The level of protein in the blood of aquatic animals may be a sign of their overall 

well-being (Ngugi et al., 2017). Compared to the OLCP-0 group (control samples, P < 

0.05), all OLCP-fortified treatments significantly reduced albumin, total protein, and 

globulin levels. Nonetheless, albumin, total protein, and globulin contents were 

significantley increased in tilapia fed on OLCP-fortified diets, while exposure to ambient 

ammonia caused the most significant amounts in the OLCP-0 group (Table 5). Likewise, 

fish diets that include immune stimulants increase total protein levels in their blood, 

which links to an innate immune response (Rudneva & Koverchina, 2011). OLCP diets 

increase tilapia fish's innate immunity, as evidenced by the significantly higher total 

protein levels in fish fed OLCP diets during the investigation's pre- and post-phases. 

These findings align with Goda (2008) and Sonmez et al. (2015), whom found that the 

fish had greater globulin and total protein levels when herbal plants were added to fish 

diets. Following the ammonia challenge, all OLCP-fortified meals significantly decreased 

in all biochemical indicators (albumin, globulin, glucose, total protein, cortisol, and 

ALT). However, the OLCP-3 groups (which accounted for 2% of OLCP) had the highest 

effectiveness. Also, Harikrishnan et al. (2011), Gehad et al. (2023), and Radwan et al. 

(2024c-d) stated that incorporating medicine plants into the diet reduced the rise in 

ammonia-induced levels of various biochemical variables, including AST, cortisol, ALT, 

total protein, glucose, globulin, and albumin. 

Antioxidant assay 

The antioxidant indices of tilapia fed with different levels of OLCP showed 

notable variations (Fig. 2). Before the ammonia stress test, the OLCP-3 group exhibited 

the highest GPX (38.84±1.02 IU/L), CAT (36.44±1.13 IU/L), and SOD (13.92±0.79 

IU/L) levels. In contrast, the OLCP-0 group had the lowest values for GPX, CAT, and 

SOD (23.14±1.31, 28.19±1.15, and 11.24±1.08, respectively). Conversely, the highest 

MDA value (19.10±0.42 IU/L) was recorded in the OLCP-0 group, and the lowest values 

(13.54±0.92 IU/L) were recorded in the OLCP-3 group. After the ammonia stress, the 

OLCP-3 group exhibited the highest GPX (58.93±1.87 IU/L), CAT (46.52±1.85 IU/L), 

and SOD (16.44±1.23 IU/L) levels, while the OLCP-0 group had the lowest values for 

GPX, CAT, and SOD (25.54±2.07, 26.72±1.44, and 12.21±0.77, respectively). 

Conversely, the highest MDA value (22.17±0.19 IU/L) was recorded in the OLCP-0 
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group, and the lowest values (15.12±1.03 IU/L) were recorded in the OLCP-3 group. 

Overall, while there were significant differences in these antioxidant indices across 

different OLCP levels, the relative rankings of the groups remained consistent before and 

after the ammonia stress experiment. The findings were associated with prickly pear 

extract's flavonoids and phenolics, which improved immunological reactions, decreased 

lipidic superoxide injury, promoted the antioxidant state, and inhibited the generation of 

free radicals (Daniloski et al., 2022). Similarly, Ahmed et al. (2020) showed that the 

strong antioxidant content of prickly extract can improve the body's antioxidant status 

and stop lowering the peroxidation of lipids Moreover, Abbas et al. (2024) noted that 

Prickly pear plants contain flavonoids, which work as antioxidants and stop free radicals 

volatile, reactive chemicals—from harming healthy cells. Furthermore, Ben Saad et al. 

(2017) found that prickly pear extract administration significantly reduced oxidative 

lithium-mediated rat model damage. This finding results from the antioxidant activity of 

the extract's active ingredients, which include polysaccharides, flavonoids, and phenolics. 

Owing to the presence of polyphenolic chemicals, vitamins C and E, β-carotene, and total 

carotenoids, prickly pears showed to have antioxidant activities both in vivo and in vitro, 

protecting the body from oxidative stress, as reported by Avila-Nava et al. (2014). 

Similarly, these findings are in agreement with Rodriguez-Mateos et al. (2014), Mata et 

al. (2016), Andreu et al. (2018) and Berrabah et al. (2019), who revealed that the 

bioactive compounds in OLCP are tannins, flavonoids, terpenoids, and phenols, which  

are essential for their capacity to function as antioxidants and as lipid peroxidation. 

Moreover, according to Ramadan and Mörsel (2003) and Yahia and Mondragon-

Jacobo (2011), the prickly showed to be capable of providing protection and antioxidant 

properties through a range of substances, including phenolic compounds, vitamins, and 

other non-nutritional substances. Prickly pears' phenolic components have antioxidant 

agents due to the separation of the primary flavonoids (Saih et al., 2017; Mahrose, 

2021). 
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Fig. 2. Variations in SOD (IU/L), CAT (IU/L), GPX (IU/L), and MDA (IU/L) activities of tilapia fed with OLCP groups. The figures' data 

revealed significant variations in bars with different large letters in the same diets (T-test between Pre- and Post-Phase, P < 0.05) and 

different small letters in the same phase (means±S.E., n = 5; ANOVA, P < 0.05). 
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Immunological assay 

Lysozyme and complement C3 activity are innate immune responses that regulate 

the body's general immunity against infection or stress (Radwan et al., 2023b). The 

immunological status of aquatic organisms can be assessed by measuring their blood Ig 

level, even though Ig is a part of the adaptive immune system (Yousefi et al., 2023). 

Moreover, the supplementing fish diets with herbal plants may increase the lysozyme 

total Ig and complement C3 activities, boosting fish's resistance to subsequent stressors 

(Taheri Mirghaed et al., 2019; Dawood et al., 2021). 

The immunological characteristics of tilapia under ammonia stress in both the pre- 

and post-phase are represented in Fig. (3). Following ammonia exposure, the tilapia 

groups showed a decrease in the activities of total Ig, complement C3, and lysozyme. In 

tilapia fish during the pre-phase, the lysozyme, total Ig, and complement C3, activities 

were increased through OLCP groups, suggesting that OLCP has immunostimulant 

qualities. Following exposure to ammonia, the activites of Ig, complement C3, and 

lysozyme were both dramatically decreased; the control group observed the least degree 

of this loss. Compared to the control one, they were much higher in all OLCP groups (P 

< 0.05). Therefore, the current investigation stated that the OLCP diets promoted the 

immune system of O. niloticus, as evidenced by the activities of immune responses being 

elevated. Consistent with the present findings, tilapia exposed to ammonia exhibits 

immunosuppressive biomarkers (Xu et al., 2021). Furthermore, the fish benefited from 

the OLCP diets because they reduced the immunosuppression caused by exposure to 

ammonia stress. On the other hand, dietary phytochemicals may have reduced the 

negative effects of ammonia stress on fish species' complement C3 lysozyme and total Ig 

activity (Adineh et al., 2021; Abdel-Tawwab et al., 2022; Yousefi et al., 2023).  

The results corroborate the theory that plant extracts can improve the immune 

systems of fish farms. Numerous bioactive substances (phenolics, alkaloids, terpenoids, 

pigments, and steroids) activated the different biological reactions (phagocytic activation, 

complement system, anti-stress responses, and immunostimulant) in cultivated organisms 

(Chakraborty et al., 2014; Radwan et al., 2022b; Abbas et al., 2024). According to 

Liu et al. (2021), Esam et al. (2022), and Guo et al. (2023), various environmental 

contaminants impact the levels of complement C3, IgM, and lysozyme activities. These 

changes can potentially influence the immunological properties of fish species. In the 

present investigation, lysozyme, complement C3, and total Ig in activities the studied 

groups were reduced, followed by ammonia stress, suggesting a chronic decline in 

immunological function. Furthermore, Gao et al. (2022) showed a significant decrease in 

lysozyme activities, complement C3, and IgM of Takifugu rubripes fish after ammonia 

stress



 

 

 

 
Fig. 3. Variations in lysozyme, complement C3, and total Ig activities of tilapia fed with OLCP groups. The data in the Figs. revealed 

significant variations in bars with different large letters in the same diets (T-test between Pre- and Post-Phase, P < 0.05) and 

different small letters in the same phase (means±S.E., n = 5; ANOVA, P < 0.05)  
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CONCLUSION 

 

The findings comprehensively show how dietary Opuntia littoralis cladodes protect 

tilapia fish against ammonia-induced damage. The exposure of tilapia fish to ammonia 

led to a significant decrease in hemato-biochemical indices and immune and antioxidant 

markers depending on the level of O. littoralis cladodes in tilapia diets. The study's 

results suggest that tilapia diets supplemented with varying concentrations of OLCP may 

improve growth, stress resistance, and feed utilization. Increased levels of OLCP are 

associated with activating the immune system and antioxidants. In the current study, 

tilapia (Oreochromis niloticus) fed up to 2% OLCP showed the best outcomes across all 

metrics. The research suggests that adding O. littoralis cladodes to fish diets promotes 

sustainable aquaculture by mitigating the negative impacts of ammonia exposure in an 

environmentally responsible manner. 
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