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INTRODUCTION  

 

Global energy shortage, rapid industrialization, the destructive effect of fossil 

supplies, and the increasing standard levels of nitrogen and sulpher oxides in the 

atmosphere have spurred a significant research era in the field of biofuel (Bórawski et 

al., 2019; Curtin et al., 2019; Li et al., 2019; Ganesan et al., 2020). In this concern, 

finding alternative energy sources characterized by renewability and sustainability is a 
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              Changing the growth medium for microalgae causes a remarkable 

effect on cell metabolism. The growth and lipid content of Monoraphidium 

species, a promising source for biodiesel production, are significantly 

influenced by various nitrogen sources, phosphorus, and iron 

concentrations. Three different Monoraphidium species were isolated, 

identified and evaluated for their growth, lipid content and fatty acid profile 

on the Bold’s Basal medium. Monoraphidium convolutum exhibited the 

highest biomass (0.34g L
-1 

± 0.02) and lipid content (22.6± 1.6%). The 

effects of BG 11, Bold’s Basal and modified Navicula media on biomass 

and lipid production of M. convolutum were tested and compared. Different 

nitrogen sources; calcium nitrate, ammonium sulphate, ammonium acetate, 

and urea were tested for biomass production and lipid content. M. 

convolutum, which grew on ammonium acetate (12mg L
-1

 N), maintained 

the highest lipid content (36± 0.6%), with a large amount of saturated fatty 

acid methyl esters. The effect of different phosphorous and iron 

concentrations on biomass and lipid accumulation of M. convolutum was 

separately tested. M. convolutum grown on phosphorous concentration equal 

to 0.475mg L
-1

 recorded the highest lipid content (38.4± 1.5 %), with a high 

amount of monounsaturated, saturated, and polyunsaturated fatty acid 

methyl esters. On the other side, M. convolutum showed the highest lipid 

content (39.1± 0.14%) when grown on 0.75mg L
-1

 Fe
+3 

 with saturated > 

monounsaturated > polyunsaturated fatty acid methyl esters. Thus, it is 

advisable to optimize M. convolutum growth on a modified Navicula 

medium containing ammonium acetate and low phosphorous and iron 

concentrations to obtain high lipid content potential as a biodiesel feedstock. 
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pressing issue (Aziz et al., 2020; Kong et al., 2020; Singh et al., 2020). Therefore, 

several efforts are being considered for biofuel advancement, particularly bioethanol and 

biodiesel, which serve as alternatives to petrodiesel (Schenk et al., 2008). 

Biofuels are mainly produced from organic feedstocks (Mata et al., 2010) and are 

categorized into three generations. Edible crops, such as maize, sugarcane, and wheat 

comprise the first-generation biodiesel. In contrast, non-edible lignocellulosic feedstock, 

leaves and husks are included in the second-generation biodiesel (Zhu et al., 2015; 

Alishah Aratboni et al., 2019). The reliance of these generations on the availability of 

arable lands and their competition with crops raised for human use is considered to be the 

fundamental hindrance, and they can't practically substitute fossil fuels (Zhu et al., 

2016).  

 Microalgae comprise the third-generation, which is superior to second-generation 

biofuels since they do not depend on farmlands of food crops, grow quickly, require less 

water, may be able to obtain nutrients from wastewater, minimize the effects of 

greenhouse gas emissions, and certain strains possess more than 70% oil (Ng et al., 2017; 

Pang et al., 2019; Refaay et al., 2022b; Song et al., 2022). The efficiency of biofuel 

production, particularly biodiesel from microalgae, faces numerous challenges. 

Therefore, it is critical to distinguish promising strains and develop growth techniques to 

induce biomass and lipid yield (Pineda-Camacho et al., 2019). The best strains for 

biodiesel are Chlorella spp. and Monoraphidium spp. since they were both observed for 

their maximum diversification, biomass, and lipid yield (He et al., 2015; Shanmugam et 

al., 2020; Mathimani et al., 2021). 

Microalgal lipids improved under surviving in comparatively extreme conditions 

(Manzoor et al., 2020; Leong et al., 2022; Mohammad et al., 2023). For instance, 

nutrient starvation or depletion, such as restriction of phosphorous, nitrogen, iron, and 

salinity, stimulates the biosynthesis of the lipid in microalgae (Ma et al., 2018; 

Khamoushi et al., 2020; Su et al., 2021; Yaakob et al., 2021). The microalgal synthesis 

of lipids, carbohydrates, proteins and cellular growth necessitates nitrogen as a vital 

macronutrient (Yodsuwan et al., 2017; Zarrinmehr et al., 2020); hence, nitrogen 

content significantly impacts the biochemical constituents and growth of microalgae. For 

instance, reducing nitrogen concentration in the growth medium causes growth reduction, 

but on the other hand, lipid content increases (Van Vooren et al., 2012; Feng et al., 

2020).  

Phosphorus is intensively required for algal growth, lipid production, and critical 

metabolic processes (Ota et al., 2016; Yang et al., 2018). About 1% of the total algal 

biomass is phosphorus, which must be included in the growth medium at concentrations 

between 0.03 and 0.06% to support the biosynthesis of nucleic acids and cellular 

components (Procházková et al., 2014; Ota et al., 2016). Furthermore, iron is very 

critical in the redox reactions in nitrogen assimilation and glycerolipid synthesis; as a 
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result, iron concentration in the growth medium is a limiting factor for these reactions 

(Urzica et al., 2013; Che et al., 2015; Marchetti & Maldonado, 2016). 

This research aimed to determine how lipid-producing microalgae stimulate 

biomass production and lipid content in response to nitrogen, phosphorous, and iron 

concentrations for biodiesel production. 

 

MATERIALS AND METHODS  

 

1. Tested isolates 

 Freshwater samples were collected from the River Nile in Meet Khamees village, 

Delta region, Egypt (31°02'39.9"N, 31°20'24.2"E) using a device of a plankton net to 

collect phytoplankton from standing bodies of water. It is divided into three sections. The 

upper section has bridles and towing line to hold it. The central section is a funnel-shaped 

consisting of nylon mesh net, successfully captures plankton of different sizes and filters 

the plankton in the water sample. The lower section has a cod end at the end of a funnel 

containing a collecting cylinder, opening and shutting valve (Gutkowska et al., 2012). A 

low-speed boat was utilized to tow the net horizontally in order to collect a plankton 

sample (Valdecasas et al., 2010). The sampling process involved a 2min duration, after 

which a plankton sample was collected in a sample bottle by rotating the horizontal valve 

to open the cod end above it. 

The samples were centrifugated at 4,000rpm for 10min, after that the supernatant 

was discarded. The planktonic pellets were collected into a sterile test tube containing a 

sterilized Bold's Basal Medium (BBM) (Nichols & Bold, 1965). A possible axenic 

culture was reported by Stein (1973). A septic technique was employed to make 

parallel streaks of fresh microalgal biomass on the agar (1.5%) using a flame 

sterilized wire loop. The plate was covered and incubated at 26
o
C and 16:8h 

light: dark duration cycle of 50µmol photons m
-2

 s
-1

. Furthermore, a 

stereomicroscope was used to determine Monoraphidium colonies that are free of 

other organisms. Subsequently, Monoraphidium colonies were marked and used 

for further isolation using a fine and sterilized wire needle. Streaking procedure 

was repeated with algal units from single colony on agar nutrient medium. 

Finally, Monoraphidium cells were transferred to liquid BBM. The purity of the 

culture was ensured by regular microscopic examination. 

Isolates were identified according to Komárková-Legnerová (1969) as 

Monoraphidium griffithii (Berkeley) Komárková - Legnerová, Monoraphidium 

contortum (Thuret) Komárková - Legnerová and Monoraphidium convolutum (Corda) 

Komárková – Legnerová. 

 

https://www.algaebase.org/search/species/detail/?species_id=34673
https://www.algaebase.org/search/species/detail/?species_id=27719
https://www.algaebase.org/search/species/detail/?species_id=27719
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2. Growth assessment 

          The tested Monoraphidium isolates were cultivated in (three replicates of each 

isolate) 250ml Erlenmeyer flasks containing 90ml BBM, inoculated by 10% (v/v) with 

two weeks old culture and incubated for 21 days at 26
o
C, and 16:8h light: dark 

duration cycle of 50µmol photons m
-2

 s
-1

. Direct cell count using a standard 

haemocytometer technique was utilized to measure the tested algal growth 

(Moheimani et al., 2012). In addition to the specific growth rate (µ), divisions per day 

(Dd
-1

), and division time (Td) were calculated following the subsequent equations 

according to Guillard (1973). 

 

(1)  

(2)  

(3)  

Where, N0 is the initial cell count, and N is the cell count at a given time t. 

3. Biomass harvesting 

 A membrane filter (Nylon Lab Pak mesh opening 1 micron 121n×121N PK/6) 

was used to harvest the biomass through a filtration process, and distilled water was 

utilized  for washing, then dried at 60°C (Samori et al., 2010) to a persistent weight. The 

gravimetric estimation, expressed as g L
-1

 of dry weight (wt.), was conducted 

(Dayananda et al., 2005). The calculation of biomass algal productivity was calculated  

according to the equation outlined by Sánchez-García et al. (2013), as follows: 

  

 (4)  

Where, Px is the biomass of maximum production; Xf is the biomass concentration 

(g L
−1

) at time tf (the time of cultivation of maximum concentration), and X0 is the initial 

biomass concentration at time t0=0 days. 

4. Determination of the total lipid content 

 The amount of total algal lipids was estimated by the method of sulfo-phosho-

vanillin, and the resultant color was spectrometrically measured at 530nm. Then, the lipid 

content was calculated throughout an oleic acid standard curve (10- 100μg/ ml) (Byreddy 

et al., 2016). Accordingly, the lipid productivity was estimated according to the 

subsequent equation: 

 

(5)  

Where, PL and PX are the maximum production of lipids and biomass, and Y is the % of 

algal lipids at stationary growth phase. 
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5. Gas chromatography and mass spectroscopy (GC/MS) analyses 

Samples were analyzed at the National Institute of Oceanography and Fisheries, 

Alexandria, Egypt. Briefly, the apparatus of a gas chromatograph mass spectrometer 

(7890A GC system, USA) was used to analyze the composition of total algal fatty acid 

(FAs) lipids as methyl esters. Apparatus adjustment conditions were as follows: helium 

was introduced as a carrier gas, with a flow rate of 1.5ml/ m, the input temperature of a 

sample was adjusted at 290°C, programming an initial temperature of 90°C for 1min to 

300°C at a rate of 8°C, and a HP-5MS capillary column with a diameter of 0.25mm and a 

length of 30m. The identification of FAs, and mass spectra were employed. The retention 

times were compared to standards fatty acid methyl esters standard mixture, Sigma-

Aldrich, USA. 

6. Molecular identification and phylogenetic analysis of Monoraphidium 

convolutum 

Given the analyzed data of the previous experiment, the most promising isolate 

was furtherly identified using total genomic DNA extracted from the isolate via 

E.Z.N.A.
®
Water DNA Kit (D5525-00, Omega Bio-TEK, USA) following the 

manufacturer protocol. The forward primer (5΄-AACCTGGTTGATCCTGCCAG-3΄) and 

the reverse primer (5΄-CACCAGACTTGCCCTCCA-3΄) were utilized to amplify the 

genomic DNA via 18S rRNA (~560 bp) using GeneAmp Polymerase Chain Reaction 

(PCR) system cycler (Creacon, Thermo cycler, Holand) (Adhoni et al., 2016). The 

sequences were analyzed through ABI PRISM
®
 3100 Genetic Analyzer (Micron-Corp, 

Korea). The resultant data were analyzed through a gel documentation system (Geldoc-it, 

UVP, England) and TotalLab analysis software (Ver.1.0.1) (Haddad et al., 2014).  

7. Effect of different growth media 

Due to M. convolutum maintaining maximum growth characteristics, dry weight, 

lipid content, and fatty acid methyl esters (FAMEs) wt.%., this isolate was selected for 

further experiments. M. covolutum was cultivated on three different nutrient media: BG11 

nutrient media (Stanier et al., 1971), and BBM, modified Navicula (Starr & Zeikus, 

1993). The experiment was carried out in a sterilized 10-L transparent plastic carboy. 

Each carboy was inoculated separately with 1-L (0.031g L
-1

 of fresh weight (FW)) of the 

tested isolate and 8-L growth medium. All treatments were incubated for 12 days at 26°C 

under 16:8h light duration cycle of 50µmol photons m
-2

 s
-1

 and continuous sterilized air 

bubbling. The oven was employed to dry the harvested biomass at 60°C for 48h and then 

used for lipid extraction. 

8. Effect of different nitrogen sources  

 It is relevant to mention that the modified Navicula medium recorded the most 

significant dry weight and lipid content for M. convolutum. The tested alga was cultivated 

on four different nitrogen sources; ammonium acetate [C2H7NO2], ammonium sulphate 
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[(NH4)2SO4] and urea [CO(NH2)2], compared with standard modified Navicula medium 

(Calcium nitrate, [Ca(NO3)2.4H2O]) by 12mg L
-1

 of nitrogen concentration. Additionally, 

the experiment was carried out in 10-L transparent plastic carboy. Each carboy was 

inoculated separately with 1-L (0.031g L
-1

 FW) of the tested isolate and 8-L growth 

medium then incubated for 12 days at 26°C under 16:8h light duration cycle of 50µmol 

photons m
-2

 s
-1

 and continuous air bubbling. The harvested biomass was dried in the oven 

at 60°C for 48h and then used for lipid extraction. 

9.  Effect of ammonium acetate concentrations 

Ammonium acetate, an alternative nitrogen source of the modified Navicula 

medium, maintained the maximum lipid content of M. convolutum. Therefore, the 

experiment used different nitrogen concentrations of ammonium acetate (15, 9, 6 and 

3mg L
-1

) to compare the dry weight and lipid production of such microalga with 12mg L
-1

 

N (control culture). As previously mentioned, the experiment was carried out in 10-L 

transparent plastic carboy. Each carboy was inoculated separately with 1-L (0.031g L
-1

 

FW) of the tested isolate and 8-L growth medium then incubated for 12 days at 26°C 

under 16:8h light duration cycle of 50µmol photons m
-2

 s
-1

 and continuous air bubbling. 

The harvested biomass was dried in the oven at 60°C for 48h, and then used for lipid 

extraction. 

10. Effect of phosphorous (P) concentrations 

 M. convolutum was cultivated on different doses of phosphorous (1.425, 0.95, 

0.475 and 0.237mg L
-1

) to test the algal dry weight and lipid content with 19mg L
-1

 P 

(control culture). Similarly, as mentioned before, the experiment was carried out in 10-L 

transparent plastic carboy. Each carboy was inoculated separately with 1-L (0.031g L
-1

 

FW) of the tested isolate and 8-L growth medium then incubated for 12 days at 26°C 

under 16:8h light duration cycle of 50µmol photons m
-2

 s
-1

 and continuous air bubbling. 

The oven was utilized to dry the harvested biomass at 60°C for 48h, and then used for 

lipid extraction. 

11. Estimation of iron (Fe
3+

) concentrations  

 The dry weight and lipid content of M. convolutum were investigated under 

different doses of Fe
3+

 of FeCl3.6H2O (0.75, 0.50, 0.25 and 0.125mg L
-1

) compared with 

1.0mg L
-1

 Fe
3+

 (control culture). Correspondingly, as previously mentioned, the 

experiment was carried out in 10-L transparent plastic carboy. Each carboy was 

inoculated separately with 1-L (0.031g L
-1

 FW) of the tested isolate and 8-L growth 

medium then incubated for 12 days at 26°C under 16:8h light duration cycle of 50µmol 

photons m
-2

 s
-1

 and continuous air bubbling. The oven was used to dry the harvested 

biomass at 60°C for 48h, and then used for lipid extraction. 
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12. Statistical analysis 

All analyses were tested in triplicate, and values were averaged. The standard 

errors (SE) were computed as well. For all experiment results, the statistical package for 

the social sciences (SPSS) software was used to apply the analysis of variance (ANOVA) 

followed by the least significant difference tests (LSD). Probabilities less than 0.05 were 

considered significant (n= 3). 

 

RESULTS  

1. Growth curves of the tested Monoraphidium isolates on bold's basal medium  

Growth curves of different Monoraphidium species were plotted using cell count, 

as illustrated in Fig. (1)Error! Reference source not found. and Table (1). At the end of 

the 18th day, M. contortum (Fig. 2a) maintained the highest growth (1360×10
4
 cell mL

-1
) 

because of the smallest size of lunate cells (1.2 x 15µm) compared to the straight cells of 

both M. convolutum (Fig. 2b), (2 x12µm), and M. griffithii (Fig. 2c), (3 x 30µm), while at 

the end of the 12th and 15th days, M. convolutum and M. griffithii exhibited the highest 

growth (288×10
4
 and 272×10

4
 cell mL

-1
), respectively. 

 

 

 
 

Fig. 1. Growth curves of tested Monoraphidium isolates grown on BBM under lab-

controlled conditions 
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Fig. 2. Photo of isolates showing: a) M. contortum; b) M. convolutum , and c) M. griffithii 

 
 
1.1. Growth rates of tested Monoraphidium isolates 

In order to compare the growth rates of tested Monoraphidium isolates on BBM 

accurately, the specific growth rate (µ), division per day (Dd
-1

), and division time (Td) 

were calculated (Table 1). The highest µ, Dd
-1

 and Td were recorded for M. convolutum 

(0.5± 0.1, 0.73± 0.15, and 1.4± 0.3) and M. contortum (0.5± 0.07, 0.72± 0.16, and 1.4± 

0.32), respectively. The lowest values were recorded for M. griffithii as 0.45± 0.09, 0.65± 

0.13, and 1.6± 0.13, respectively. According to the growth characteristics (Table 1) and 

duration of growth cultivation that lasted for 12 days (Fig. 1), M. convolutum was 

selected for the following studied experiments. 

 

Table 1. Specific growth rate (µ), division per day (Dd
-1

), division time (Td), and cell 

size of tested Monoraphidium isolates 

Isolate µ Dd
-1

 Td Cell size 

M. griffithii 0.45 ± 0.09 0.65 ± 0.13 1.6 ± 0.13 3 x 30 µm  

M. contortum 0.5 ± 0.07 0.72 ± 0.16 1.4 ± 0.32 1.2 x 15 µm  

M. convolutum  0.5 ± 0.1 0.73 ± 0.15 1.4 ± 0.3 2 x 12 µm  

 

2. Dry weight and lipid content of tested Monoraphidium isolates 

 The tested Monoraphidium species exhibited different dry weights and lipids 

content, as shown in Fig. (3), M. convolutum exhibited a significant increase in dry wt. 

and lipid content (0.34± 0.02 g L
-1

), (22.6± 1.6 %) compared to M. contortum (0.14± 

0.003 g L
-1

), (16 ± 0.3 %), respectively. As a result of dry wt. and lipid content, M. 

convolutum was selected for further experiments. 
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Fig. 3. Dry weight (g L
-1

) and lipid content (%) of tested Monoraphidium isolates grown 

on BBM under lab-controlled conditions 

 

3. GC/MS analyses of the extracted lipids of tested isolates  
 

 Fatty acid methyl esters (FAMEs) of tested Monoraphidium species were 

investigated by GC/MS analysis. Variations in FAMEs of tested Monoraphidium species 

are illustrated in     Table 2. Compared to other tested isolates, M. convolutum maintained 

relatively higher wt.% of FAMEs, including methyl alpha-linolenate (C19H32O2), (31.30 

%), methyl 9- hexadecenoate (C17H32O2), (14.38%), methyl hexadecanoate (C17H34O2), 

(12.46%), methyl cis-9-octadecenoate (C19H36O2), (12.51%), methyl 9,12-

octadecadienoate (C19H34O2), (6.06%), methyl heptadecanoate (C18H36O2), (3.94%), 

methyl octadecanoate (C19H38O2), (3.40%) and methyl pentadecanoate (C16H32O2), 

(3.36%). 

    Table 2. Composition of FAMEs of tested Monoraphidium species 

FAME 
Chemical 

formula 
M. griffithii M. contortum M. convolutum 

Methyl 

pentadecanoate 

C16H32O2 ND
*
 ND 3.36 

Methyl 9- 

hexadecenoate 

C17H32O2 ND ND 14.38 

Methyl 

hexadecanoate 

C17H34O2 11 ND 12.46 

Methyl 

heptadecanoate 

C18H36O2 ND ND 3.94 

Methyl alpha-

linolenate 

C19H32O2 ND ND 31.30 

Methyl 9,12-

octadecadienoate 

C19H34O2 ND 6.0 6.06 

Methyl cis-9-

octadecenoate 

C19H36O2 0.5 ND 12.51 
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Methyl octadecanoate C19H38O2 ND ND 3.40 

Methyl 11-

eicosenoate 

C21H40O2 2.0 ND ND 

Methyl 6,9,12,15-

docosatetraenoate 

C23H38O2 ND 9.0 ND 

Sum (wt.%)   13.5 15 87.41 

ND
*
: Not Detected 

4. Dry weight and lipid content of M. convolutum grown on different nutrient 

growth media 

  

Fig. (4) shows that a significant increase in the dry wt. and  lipid content of M. 

convolutum was maintained when grown on modified Navicula medium (0.32± 0.001 g 

L
-1

), (26± 0.82 %) compared to BBM (control medium), (0.28± 0.002 g L
-1

), (22.6± 

1.55%), respectively. Accordingly, the modified Navicula medium was selected as a 

control medium for subsequent experiments. 

 

Fig. 4. Dry weight (g L
-1

) and lipid content (%) of M. convolutum grown on different 

nutrient media under lab-controlled conditions 

 

5.  Dry weight and lipid content of M. convolutum grown on different nitrogen 

sources 
  

 The results illustrated in Fig. (5) display the dry wt. and lipid content of M. 

convolutum cultivated on different nitrogen sources. The tested alga recorded a 

significant increase in dry wt. when grown on ammonium sulphate (0.33± 0.001g L
-1

) 

compared to standard medium-N source (Ca(NO3)2.4H2O), (0.31± 0.001g L
-1

). However, 

ammonium acetate exhibited a significant increase in lipid content (36± 0.6%) compared 

to (Ca(NO3)2.4H2O), (26± 0.37%). The lipid productivity was estimated for ammonium 



Biomass and Lipid Profile of an Aquatic Green Microalga Monoraphidium convolutum   
 

 

967 

sulphate (6.4± 0.05mg L
-1

 d
-1

), and ammonium acetate (8± 0.14mg L
-1

 d
-1

 ). Therefore, 

ammonium acetate-N source was replaced by calcium nitrate for further experiments. 

 

Fig. 5. Dry weight (g L
-1

) and lipid content (%) of M. convolutum cultivated on different 

nitrogen sources of modified Navicula medium under lab-controlled conditions 

 

6. Dry weight and lipid content of M. convolutum grown on different nitrogen 

(N) concentrations of ammonium acetate  

 The results of dry wt. and lipid content of M. convolutum grown on different 

nitrogen concentrations of ammonium acetate are displayed in Fig. (6A). It was obvious 

that 15 and 12mg L
-1

 of nitrogen ammonium acetate recorded a significant increase in dry 

wt., with values of  0.3± 0.003 and 0.3± 0.004g L
-1

, respectively, while the concentration 

of 3mg L
-1

 N maintained a significant increase in lipid content (50± 0.68%) compared to 

12mg L
-1

 N (36± 0.88%). By comparing lipid productivity (Fig. 6B) of either 15mg L
-1

 N 

(7± 0.66mg L
-1

 d
-1

), 12mg L
-1

 N (8± 0.45mg L
-1

 d
-1

), and 3mg L
-1

 N (3± 0.23mg L
-1

 d
-1

), 

the concentration of 12mg L
-1

 ammonium acetate maintained a greatest lipid productivity 

value, therfore it was decided to select such a concentration for further experiments.  
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Fig. 6. A) Dry weight (g L
-1

) and lipid content (%) of M. convolutum, and B) Lipid 

productivity of M. convolutum cultures grown on different nitrogen concentrations of 

ammonium acetate of modified Navicula medium under lab-controlled conditions 

6.1. GC/MS analyses of FAMEs of M. convolutum cultures grown on both 12mg L
-1

 

calcium nitrate and ammonium acetate of modified Navicula medium  

Table 3) illustrates the FAMEs composition of M. convolutum cultures grown on 

both 12mg L
-1

 calcium nitrate (control culture) and ammonium acetate (alternative 

nitrogen source) of modified Navicula medium. The algal culture grown on calcium 

nitrate had the following distribution; monounsaturated fatty acid methyl esters 

(MUFAMEs)> polyunsaturated fatty acid methyl esters (PUFAMEs)> saturated fatty acid 

methyl esters (SFAMEs)> Diunsaturated fatty acid methyl esters (DUFAMEs). 

MUFAMEs were mainly represented by C17:1 (methyl 9, hexadecenoate), (14.38%), 

C18:1 (methyl 10, heptadecenoate), (12.57%), C19:1 (methyl 13, octadecenoate), 

(12.51%). PUFAMEs were mainly as C19:3 (methyl alpha linolenate), (31.3%). 

DUFAMEs were mainly categorized by C19:2 (methyl 9,12 octadecadienoate), (6.06%), 

while the SFAMEs were mainly C17:0 (methyl hexadecanoate), (12.46%), C18:0 (methyl 
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heptadecanoate), (3.94%), C19:0 (methyl octadecanoate), (3.4%), and C16:0 (methyl 

pentadecanoate), (3.36%). Whereas the algal culture grown on ammonium acetate 

displayed the following distribution: SFAMEs> MUFAMEs> PUFAMEs> DUFAMEs. It 

was observed that the highest values refered to SFAMEs, mainly C24:0 (methyl 

tricosanoate), (29.6%) and C19:0 (methyl octadecanoate), (13.78%). In relation to 

MUFAMEs, it was observed to be mainly represented by C17:1 (methyl 9, 

hexadecenoate), (16.39%), C19:1 (methyl 13, octadecenoate), (10.62%), and C23:1 

(methyl 11, docosenoate), (6.94%). PUFAMEs were mainly represented by C21:5 

(methyl 5,8,11,14,17 eicosapentaenoate), (0.53%), while DUFAMES were mainly 

symbolized by C19:2 (methyl 9,12 octadecadienoate ), (0.22%). 

7. Dry weight and lipid content of M. convolutum cultivated on low different 

phosphorous concentrations 

 It is worthy to mention that, 12mg L
-1

 of  ammonium acetate was used as 

alternative nitrogen source of modified Navicula medium to be tested with low different 

P concentrations. The dry wt. and lipid content of M. convolutum cultivated on low 

different P concentrations are illustrated in Fig. (7). It was indicated that, the 

concentration of 19mg L
-1

 P (control culture) exhibited a significant increase (0.28± 

0.004g L
-1

) in dry wt., while the concentration of 0.475mg L
-1

 P induced a significant 

increase in lipid content (38.4± 1.5%) compared to 19mg L
-1

 P (35.23± 1.1%). Therefore, 

the concentration of  0.475mg L
-1

 P seemed to be an optimum concentration for algal 

cultivation since it maintained the highest lipid content and reduced the high phosphorous 

concentration in the modified Navicula medium. 

 

Fig. 7. Dry weight (g L
-1

) and lipid content (%) of M. convolutum grown on low different 

phosphorous concentrations of modified Navicula medium under lab-controlled 

conditions 
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Table 3. Composition of FAMEs resulted from cultivation of M. convolutum on both 

12mg L
-1

 calcium nitrate and ammonium acetate of modified Navicula medium 

 
Carbon 

no. FAMEs 

% of total algal lipid cultivated on 12mg L
-1

 N 

FAME 
Calcium 

nitrate 

Ammonium 

acetate 

S
F

A
M

E
 

C15 Methyl tetradecanoate ND
*
 3.81 

C16 Methyl pentadecanoate 3.36 1.02 

C17 Methyl hexadecanoate 12.46 0.05 

C18 Methyl heptadecanoate 3.94 0.05 

C19 Methyl octadecanoate 3.40 13.78 

C21 Methyl eicosanoate ND 0.57 

C22 Methyl heneicosanoate ND 0.63 

C23 Methyl docosanoate ND 2.41 

C24 Methyl tricosanoate ND 29.6 

C25 Methyl lignocerate ND 3.57 

S
u

m
 

  23.16 55.49 

M
U

F
A

M
E

 

C15:1n-5 Methyl 9, tetradecenoate ND 0.24 

C17:1n-7 Methyl 9, hexadecenoate 14.38 16.39 

C18:1n-7 Methyl 10, heptadecenoate 12.57 1.48 

C19:1n-5 Methyl 13, octadecenoate 12.51 10.62 

C21:1n-11 Methyl 9, eicosenoate ND 0.09 

C23:1n-11 Methyl 11, docosenoate ND 6.94 

C25:1n-9 Methyl 15, nervonate ND 2.53 

S
u

m
 

 

 39.46 38.29 

D
U

F
A

M
E

 

C19:2n-6 
Methyl 9,12 

octadecadienoate 
6.06 0.22 

C23:2n-6 
Methyl 13,16 

docosadienoate 
ND 0.13 

S
u

m
 

  6.06 0.35 

P
U

F
A

M
E

 

C18:3n-3 
Methyl 8,11,14 

heptadecatrienoate 
ND 0.11 

C19:3n-3 Methyl alpha linolenate 31.30 0.04 

C21:5n-3 
Methyl 5,8,11,14,17 

eicosapentaenoate 
ND 0.53 

C23:6n-3 
Methyl 4,7,10,13,16,19 

docosahexaenoate 
ND 0.19 

S
u

m
 

 

 31.30 0.87 

ND
*
: Not detected. 
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7.1. GC/MS analyses of M. convolutum FAMEs grown on the concentrations of 19 

and 0.475mg L
-1

 of phosphorous and 12mg L
-1

 ammonium acetate of modified 

Navicula medium  

 The M. convolutum cultures grown on both concentrations of 19 (control culture) 

and 0.475mg L
-1

 of  P had variations of  FAMEs with C15-C25 chain lengths, as shown 

in Table (4). In general FAMEs of algal culture grown on 19mg L
-1

 P were dominated by 

SFAMEs> MUFAMEs> PUFAMEs> DUFAMEs. SFAMEs were principally represented 

by C24:0 (methyl tricosanoate), (29.6%) and C19:0 (methyl octadecanoate), (13.78%). In 

relation to MUFAMEs, mainly symbolized by C17:1 (methyl 9, hexadecenoate) 

(16.39%), C19:1 (methyl 13, octadecenoate), (10.66%) and C23:1 (methyl 11, 

docosenoate), (6.94%). PUFAMEs were principally dominated by C21:5 (methyl 5, 8, 11, 

14, 17 eicosapentaenoate), (0.529%). while DUFAMEs were mainly exemplified by 

C19:2 (methyl 9,12 octadecadienoate), (0.22%). 

 The dominant FAMEs of algal culture grown on 0.475mg L
-1

 P were: 

MUFAMEs> SFAMEs> PUFAMEs> DUFAMEs. The highest values referred to 

MUFAMEs, mainly dominated by C17:1 (methyl 9, hexadecenoate), (22.41%), C19:1 

(methyl 13, octadecenoate), (24.28%) and C23:1 (methyl 11, docosenoate), (3.28%). 

SFAMEs were principally represented by C24:0 (methyl tricosanoate), (19.58%) and 

C15:0 (methyl tetradecanoate), (1.77%). PUFAMEs were mainly symbolized by C23:6 

(methyl 4, 7, 10, 13, 16, 19 docosahexaenoate), (15.89%) and C21:5 (methyl 5,8,11,14,17 

eicosapentaenoate), (2.93%), while DUFAMEs were mainly dominated by C19:2 (methyl 

9,12 octadecadienoate), (0.91%). 
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Table 4. Composition of  FAMEs resulted from cultivation of M. convolutum on 19 and 

0.475mg L
-1

 of phosphorous of modified Navicula medium 

 Carbon no.                        

             % of total algal lipid cultivated on 

FAME 
19mg L

-1
 

P 

0.475m

g L
-1

 P 
S

F
A

M
E

 
C15 Methyl tetradecanoate 3.81 1.77 

C16 Methyl pentadecanoate 1.02 0.14 

C17 Methyl hexadecanoate 0.05 0.04 

C18 Methyl heptadecanoate 0.05 0.03 

C19 Methyl octadecanoate 13.78 0.06 

C21 Methyl eicosanoate 0.57 0.37 

C22 Methyl heneicosanoate 0.63 0.14 

C23 Methyl docosanoate 2.41 0.93 

C24 Methyl tricosanoate 29.6 19.58 

C25 Methyl lignocerate 3.57 1.08 

S
u

m
 

  55.49 24.14 

M
U

F
A

M
E

 

C15:1n-5 Methyl 9, tetradecenoate 0.24 0.18 

C17:1n-7 Methyl 9, hexadecenoate 16.39 22.41 

C18:1n-7 Methyl 10, heptadecenoate 1.48 1.22 

C19:1n-5 Methyl 13, octadecenoate 10.62 24.28 

C21:1n-11 Methyl 9, eicosenoate 0.09 0.06 

C23:1n-11 Methyl 11, docosenoate 6.94 3.28 

C25:1n-9 Methyl 15, nervonate 2.53 0.97 

S
u

m
 

  38.29 52.4 

D
U

F
A

M
E

 C19:2n-6 Methyl 9,12 octadecadienoate 0.22 0.91 

C23:2n-6 Methyl 13,16 docosadienoate 0.13 0.1 

S
u

m
 

  0.35 1.01 

P
U

F
A

M
E

 

C18:3n-3 Methyl 8,11,14 heptadecatrienoate 0.11 0.08 

C19:3n-3 Methyl alpha linolenate 0.04 0.21 

C21:5n-3 
Methyl 5,8,11,14,17 

eicosapentaenoate 
0.53 2.93 

C23:6n-3 
Methyl 4,7,10,13,16,19 

docosahexaenoate 
0.19 15.89 

S
u

m
 

  0.87 19.11 
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8. Dry weight and lipid content of M. convolutum cultivated on low different iron 

concentrations 

 It is relevant to mention that 12mg L
-1

 of ammonium acetate was used as an 

alternative nitrogen source with the standard phosphorous concentration of modified 

Navicula medium to be tested with low different Fe
3+

 concentrations. The illustrated 

results in Fig. (8) indicate that the culture of M. convolutum cultivated on 0.75mg L
-1 

Fe
3+

 

exhibited a significant increase in lipid content (39.1± 0.14 %) compared to 1.0mg L
-1

 

Fe
3+

 (control culture), (35.8± 0.14 %), respectively. Consequently, the concentration of 

0.75mg L
-1 

Fe
3+

 was recommended to be the optimum concentration for algal cultivation. 

 

Fig. 8. Dry weight (g L
-1

) and lipid content (%) of M. convolutum cultivated on low 

different iron concentrations of modified Navicula medium under lab-controlled 

condition 

 

8.1. GC/MS analyses of M. convolutum FAMEs grown on both concentrations of 

1.0 and   0.75mg L
-1 

 of iron of modified Navicula medium  

The FAMEs resulted from cultures of M. convolutum cultivated on 1.0 and 

0.75mg L
-1

 Fe
3+

 displayed the following distribution, SFAMEs> MUFAMEs> 

PUFAMEs> DUFAMEs, as illustrated in Table (5). According to the culture grown on 

1.0mg L
-1

 Fe
3+

, SFAMEs were mainly categorized as C24:0 (methyl tricosanoate), 

(29.6%), C19:0 (methyl octadecanoate), (13.78%) and C15:0 (methyl tetradecanoate), 

(3.81%). MUFAMEs were represented by C17:1 (methyl 9, hexadecenoate), (16.39%), 

C19:1 (methyl 13, octadecenoate), (10.62%) and C23:1 (methyl 11, docosenoate), 

(6.94%). PUFAMEs were mainly dominated by C21:5 (methyl 5, 8, 11, 14, 17 

eicosapentaenoate), (0.53%), while DUFAMEs were principally C19:2 (methyl 9, 12 

octadecadienoate), (0.22%). 
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 Similarly, the FAMEs of algal culture grown on 0.75mg L
-1

 Fe
3+

 were SFAMEs> 

MUFAMEs> PUFAMEs> DUFAMEs. SFAMEs were mainly dominated by C24:0 

(methyl tricosanoate), (34.25%), C19:0 (methyl octadecanoate), (14.06%) and C15:0 

(methyl tetradecanoate), (3.36%). MUFAMEs were represented by C17:1 (methyl 9, 

hexadecenoate) (16.71%), C21:1 (methyl 9, eicosenoate), (5.73%) and C23:1 (methyl 11, 

docosenoate), (3.76%). PUFAMEs were principally represented by C21:5 (methyl 5, 8, 

11, 14, 17 eicosapentaenoate), (2.56%), while DUFAMEs were mainly, C23:2 (methyl 

13, 16 docosadienoate), (0.15%). 

9. Phylogenetic analysis and placement of M. convolutum 

 The local pairwise orientation (http://www.ebi.ac.uk/Tools/psa/emboss_water/ 

nucleotide.html) and Smith-Waterman algorithm with a 100% bootstrap value of two 

sequences construct the phylogenetic tree. The Egyptian isolate M. convolutum belongs to 

a clade with Monoraphidium sp HDMA-11 (accession number MH340049.1) (Fig. 9). 

The tested results indicated that the two sequences are similar (100%). The submitted 

isolate known as M. convolutum was entered into the GenBank database under accession 

number OQ420741.1. 

 

 
Fig. 9. The construction of 18S rRNA of M. convolutum phylogenetic tree using 

maximum-likelihood (ML) technique 

 

 

 

http://www.ebi.ac.uk/Tools/psa/emboss_water/%20nucleotide.html
http://www.ebi.ac.uk/Tools/psa/emboss_water/%20nucleotide.html
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Table 5. Composition of  FAMEs resulted from cultivation of M. convolutum on 1.0 and 

0.75mg L
-1

 of iron of modified Navicula medium 

 Carbon no.                   FAME 

% of total algal lipid cultivated on 

  
1.0mg 

L
-1

 Fe
3+

 

0.75mg 

L
-1

 Fe
3+

 

S
F

A
M

E
 

C15 Methyl tetradecanoate 3.81 3.36 

C16 Methyl pentadecanoate 1.02 1.46  

C17 Methyl hexadecanoate 0.05 0.06 

C18 Methyl heptadecanoate 0.05 1.6 

C19 Methyl octadecanoate 13.78 14.06 

C21 Methyl eicosanoate 0.57 0.31 

C22 Methyl heneicosanoate 0.63 0.22 

C23 Methyl docosanoate 2.41 1.2 

C24 Methyl tricosanoate 29.6 34.25 

C25 Methyl lignocerate 3.57 1.38 

S
u

m
 

  55.49 57.9 

M
U

F
A

M
E

 

C15:1n-5 Methyl 9, tetradecenoate 0.24 0.45 

C17:1n-7 Methyl 9, hexadecenoate 16.39 16.71 

C18:1n-7 Methyl 10, heptadecenoate 1.48 1.2 

C19:1n-5 Methyl 13, octadecenoate 10.62 0.1 

C21:1n-11 Methyl 9, eicosenoate 0.09 5.73 

C23:1n-11 Methyl 11, docosenoate 6.94 3.76 

C25:1n-9 Methyl 15, nervonate 2.53 1.53 

S
u

m
 

  38.29 29.48 

D
U

F
A

M
E

 

C19:2n-6 Methyl 9,12 octadecadienoate 0.22 0.04 

C23:2n-6 Methyl 13,16 docosadienoate 0.13 0.15 

S
u

m
 

  0.35 0.19 

P
U

F
A

M
E

s 

C18:3n-3 Methyl 8,11,14 heptadecatrienoate 0.11 0.14 

C19:3n-3 Methyl alpha linolenate 0.04 0.48 

C21:5n-3 
Methyl 5,8,11,14,17 

eicosapentaenoate 
0.53 2.56 

C23:6n-3 
Methyl 4,7,10,13,16,19 

docosahexaenoate 
0.19 0.21 

S
u

m
 

  0.87 3.39 
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DISCUSSION 

 

The necessity for the production of biofuels from renewable resources has 

increased due to the depletion of oil and petroleum reserves. Microalgal lipids are the best 

precursors exploited for biodiesel production. In order to produce huge amounts of 

biomass and lipids, it is imperative to choose the optimal strains and advance the growth 

routes technically (Pineda-Camacho et al., 2019). 

M. convolutum maintained relatively higher dry weight, lipid content, growth 

characteristics (µ, Dd
-1

, and Td), and wt.% of FAMEs, as shown in Fig. (3) and Tables (1, 

2). The potency of biomass and lipid of Monoraphidium species have gained great 

attention of numerous researchers and have concluded that the Selenastraceae family 

have a viable possibility for the production of biodiesel (Pineda-Camacho et al., 2019; 

Lakatos et al., 2023). The GC/MS analyses results (Table 2) are in excellent accordance 

with many similar reported studies (Knothe, 2009; Engin et al., 2018). Palmitic (16:0), 

stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids are most generally 

acceptable for biodiesel. Accordingly, M. convolutum  appeared promising for biodiesel 

of adequate quality since it possessed a majority of saturated and unsaturated fatty acid 

methyl esters. 

It has been well recognized that macronutrients and micronutrients vary from one 

growth medium to another, which is crucial for algal constituents and the production of 

particular metabolites (Hong & Lee, 2008; Refaay et al., 2022a). The experimental 

findings (Fig. 4) exhibit that the modified Navicula medium maintained the greatest 

growth and lipid content among all tested nutrient growth media. The presence of 

Na2SiO3, as a source of silicon element (Si), which is necessary for many organisms from 

unicellular algae to vascular plants, is responsible for the significant increase in dry 

weight and lipid content of all tested Monoraphidium species (Sharma et al., 2011; 

Knight et al., 2016). Moreover, Idenyi et al. (2016) stated that the alkaline buffering of 

the medium caused by Na2SiO3 resulted in the enhancement of algal growth. 

Consequently, a modified Navicula medium was established for further growth 

experiments. 

It has been well documented (Arumugam et al., 2013; Goncalves et al., 2016; 

Shin et al., 2018; Zhuang et al., 2018) that algal cells can accumulate oil and influence 

directly by a critical nitrogen element. Ammonium acetate was the optimum nitrogen 

source and external organic carbon for lipid production of M. convolutum, as shown from 

Fig. (5). It has been proposed that acetate can detoxify ammonium when used as a 

substrate because of the transformation to acetyl- CoA throughout acetyl-CoA synthase. 

Subsequently, the formation of ATP and NAD(P)H occurred after the entrance to the 

tricarboxylic acid cycle (Collos & Harrison, 2014; Gutierrez et al., 2016; Lauersen et 

al., 2016; Lin et al., 2017).  

Our findings are in harmony with those attained by Dittamart et al. (2014), 

Chandra et al. (2016) and Lin et al. (2017), who employed ammonium acetate in 
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mixotrophic cultivation of Nanochloropsis oculata, Scenedesmus, and Chlorella strains 

for lipid production. The various sources of nitrogen concentrations influence the 

biochemical constituents and microalgal growth (Zhuang et al., 2018). Therefore, 

different concentrations of ammonium acetate were studied (Fig. 6A). The experimental 

data revealed that the concentration of 12mg L
-1

 N maintained the highest lipid 

productivity (Fig. 6B). It has been well documented that microalgal lipids can increase 

through nutrient-deficit strategies, however the lipid concentration and productivity are 

unaffected. Hence, low biomass reduces the lipid productivity in microalgal cells. It 

appears challenging to grow microalgae with huge amounts of biomass and lipids 

simultaneously (Liu et al., 2020; Poh et al., 2020; Gomez-De la Torre et al., 2023; 

Touliabah & Refaay, 2023). 

 Earlier studies revealed that microalgae possess C14:0, C16:0, C18:1, C18:2 and 

C18:3 fatty acids (Tejeda-Benitez et al., 2015). As illustrated from the experimental data 

(Table 3), SFAMEs and MUFAMEs enhanced noticeably in the existence of ammonium 

acetate as an alternate source of nitrogen. Liu et al. (2018) assumed that PUFAMEs were 

transformed more proportionately into SFAMEs and MUFAMEs. In the meantime, the 

NH
+4

 improved the absorption of acetate, causing more PUFAMEs to shift to SFAMEs 

and MUFAMEs. Although SFAMEs lower the flow characteristics at low temperatures, 

they increase biodiesel's burning ability (Jeong et al., 2008). The fluidity of biodiesel is 

increased by high PUFAMEs concentrations; however, the antioxidant activity is 

decreased (D’Alessandro & Antoniosi Filho, 2016). MUFAMEs, as C18:1, can 

significantly minimize the oxidation characteristics of PUFAMEs and improve the flow 

performance of biodiesel. As a result, ammonium acetate in culture media may affect the 

FAMEs composition and enhance the quality of the biodiesel. 

One of the most crucial nutrients, phosphorus, is essential for cellular 

development and metabolic functions, particularly energy transmission, signal 

transduction, macromolecule production, and photosynthesis (Yang et al., 2018). The 

experimental findings (Fig. 7) reveal that M. convolutum maintained a high lipid content 

at low 0.475mg L
-1

 of P concentration. In this respect, Yang et al. (2018) observed that 

decreased phosphorus concentrations trigger the lipid content of Scenedesmus sp. 

Limiting phosphorus availability is a strong environmental pressure that indices lipid 

buildup. It was hypothesized that phosphorus stress could stop the synthesis of starch or 

proteins, increasing the carbon flux towards lipids. The signalling mechanisms, however, 

by which phosphorus stress causes lipid accumulation. Furthermore, it appears that the 

relationship between biomass productivity and lipid content is contradictory (Griffiths et 

al., 2014). According to this study, MUFAMEs of C17:1 (methyl 9, hexadecenoate) and 

C19:1 (methyl 13, octadecenoate) significantly increased in the nutrient deficit-P 

compared to SFAMEs (Table 4). Similarly, Sakarika & Kornaros (2017) reported that 

the microalga Chlorella vulgaris had an increase in MUFAMEs due to the limited 

availability of PO4
3+

. The quality of lipids such as SFAMEs or MUFAMEs could affect 
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the properties of biodiesel (Arias et al., 2013) that primarily reduce hazardous emissions 

while enhancing the oxidative stability and cetane number of biofuel without influencing 

its lubricity, viscosity, or flow qualities (Arias et al., 2013). 

The absorption of nitrogen, photosynthetic activity, and cellular respiration process 

require the trace metal iron (Che et al., 2015; Marchetti & Maldonado, 2016). The 

concentration of 0.75mg L
-1

 Fe
3+ 

exhibited the utmost lipid content, as illustrated in Fig. 

(8). Researchers have concentrated on how iron concentrations in the culture medium 

cause lipid buildup in microalgae (Rajabi Islami & Assareh, 2019). Our findings are 

consistent with those of Sun et al. (2014) and Che et al. (2015) who stated that 

Neochloris oleoabundans produces the maximum levels of triacylglyceride at low Fe
3+

 

concentrations. However, subsequent supplementation had little effect on lipid content, 

which is typically unrelated to the maximum biomass. As discussed in Table (5), the 

amounts of SFAMEs and PUFAMEs in the treated culture of M. convolutum  increased, 

compared with the control culture.  

Moreover, many scientists (Ramos et al., 2009; Urzica et al., 2013; Sun et al., 

2014; Pádrová et al., 2015) informed that, iron deficiency had a substantial impact on 

lipid accumulation as well as the percentage of SFAMEs and PUFAMEs. According to 

Ramos et al. (2009), the significant accumulation of PUFAMEs decreases the oxidative 

stability of biodiesel but enhances cold-flow properties of biodiesel. In contrast, while 

oxidative stability and cetane number are highly improved when biodiesel is produced by 

saturated fatty acids (SFAs), it tends to have relatively poor low-temperature 

characteristics (Hu et al., 2008). 

 

CONCLUSION 

 

             This study revealed that the cultivation of M.convolutum on a modified Navicula 

medium with ammonium acetate as an alternative nitrogen source and a concentration of 

0.475mg L
-1

 of phosphorous or 0.75mg L
-1

 of iron significantly induced high 

accumulation of MUFAMEs and SFAMEs which were recommended for large-scale 

applications of biodiesel. Consequently, M.convolutum is mainly nominated as a robust 

applicant for biodiesel production. 
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