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Introduction
Describing the failures of certain systems may be of great importance for researchers, 
engineers, and physical experimenters, especially when the units constituting each sys-
tem are connected in a parallel–series system. Well-known classical distributions may 
fail to give adequate fit to such failures. Therefore, it is needful to construct (generate) 
a distribution for such cases taking into account the parallel–series system combination 
and the number of units in each sub-system which may be a random variable. Com-
pounding of distributions is considered as one of the methods that could be imple-
mented to construct (generate) new distributions. The new distributions include more 
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parameters, and hence, they possess different shapes of the hazard rate function (HRF); 
this feature makes them more flexible to fit the failure data.

Kuş [1] and Tahmasbi and Rezaei [2] proposed the exponential–Poisson and expo-
nential–logarithmic distributions, respectively, which have decreasing hazard rates. 
Louzada et al. [3] discussed the statistical properties of the complementary exponential–
geometric distribution, which has an increasing hazard rate. Abdel-Hamid [4] intro-
duced the Poisson-half-logistic distribution (PHLD), which has an increasing-constant 
hazard rate and investigated its properties. Rezaei et  al. [5], Ristić and Nadarajah [6] 
and Nadarajah et al. [7] discussed the statistical properties of the exponentiated expo-
nential–geometric, exponentiated exponential–Poisson, and geometric–exponential–
Poisson distributions, which have increasing, decreasing and unimodal hazard rates, 
respectively. Abdel-Hamid and Hashem [8, 9] and Nadarajah et al. [10] introduced the 
doubly Poisson–exponential and two exponential–Poisson–geometric and geometric–
Poisson–Rayleigh distributions, respectively, which have monotone increasing, decreas-
ing, bathtub-shaped, unimodal, and increasing–decreasing–increasing hazard rates and 
investigated their properties.

With the permanent development in manufacturing technology, modern products are 
designed and manufactured to run without failure for a long interval of time under nor-
mal functioning conditions. Hence, when applying traditional life testing experiments, 
manufacturers find it difficult to get enough information about the failure times for their 
products in a suitable time. For this reason, accelerated life tests (ALTs) are applied to 
obtain the required information about the product failure time in a short time inter-
val and also to derive the relationship between the external stress variables and product 
lifetimes. In ALTs, products are experimented in such tests under stresses that are more 
severe than those under regular conditions. The information collected from the experi-
ment under accelerated conditions is used to predict product performance in regular 
conditions. The stress applied in ALTs can be widely used in different methods, such 
as constant, step, and progressive stresses. See, for example, Nelson [11], AL-Hussaini 
and Abdel-Hamid [12, 13], Abdel-Hamid and AL-Hussaini [14–16], Yin and Sheng [17], 
Abdel-Hamid and Abushal [18], AL-Hussaini et  al. [19] and Nadarajah et  al. [10], for 
more details on ALTs.

In life testing and reliability experiments, in which items are removed or lost from 
testing before failure due to occasional breakage or an item being tested drops out, the 
experimenter may be unable to get all information about failure time for each experi-
mental item. Data obtained from such tests are named censored data. One of the major 
advantages of censoring may appear in decreasing the total experiment time and the 
associated cost. A censoring scheme (CS), which can balance among the number of 
items used in the experiment, the total experiment time, and the efficiency of statistical 
inference based on the experimental data, is desirable.

The majority in applying censoring are type-I and type-II. The mixing of these two 
types of CSs constitutes a new censoring called hybrid CS. These types of CSs do not 
possess the elasticity of allowing removal of items from the experiment at different 
points other than the end point of the experiment. Hence, to overcome this problem, a 
new generalization of existing plans of censoring named progressive type-I hybrid CS is 
proposed, see Kundu and Joarder [20] and Childs et al. [21]. It can be applied as follows: 
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Assume that the effective sample size m(< n ) and the experimental time T  are fixed 
before starting the experiment with progressive CS ( R1,R2, . . . ,Rm).
R1 functioning units are randomly excluded from the experiment at the first failure 

time z1 . R2 functioning units are randomly excluded from the experiment at the second 
failure time z2 . The experiment continues in the same way until the m-th failure zm or 
time T  whichever occurs first. In the case of the m-th failure time, zm occurs before time 
T  , and the remaining functioning units Rm = n−m− m−1

i=1 Ri will be excluded from 
the experiment, thereby finishing the experiment at zm . But, if the experimental time 
T  is reached before occurring the m-th failure time zm and only D failures occur before 
fixed time T  , D < m , then at the time T  exclude all the remaining functioning units 
R∗
D = n− D −

∑D
i=1 Ri from the experiment, thereby finishing the experiment at T .

One of the drawbacks of the progressive type-I hybrid CS is that the effective sample 
size is random and may be quite small (up to zero). Therefore, statistical inference proce-
dures may not be applicable or will be less efficient. For increasing the desired efficiency 
of statistical analysis, Ng et al. [22] and Lin et al. [23] proposed an adaptive type-II pro-
gressive hybrid CS, in which the effective sample size m was constant. In this CS, we 
may also allow the experiment to run over time T  , which is considered fixed before the 
experiment, and modify the CS adaptively through the experiment. The main objective 
of the current scheme is to accelerate the test as much as possible when the test period 
exceeds a predetermined time T  . For this scheme, in the case of the m-th failure time 
zm occurs before time T  , and the remaining functioning units Rm = n−m−

∑m−1
i=1 Ri 

will be excluded from the experiment, thereby finishing the experiment at zm . But, if the 
experimental time T  is reached before occurring the m-th failure time zm and only D 
failures occur before time T  , D < m , then we will not remove any functioning unit from 
the experiment immediately following the (D + 1)-th ...(m− 1)-th failure time and at the 
m-th failure time zm , we remove the remaining functioning units R∗

m = n−m−
∑D

i=1 Ri 
from the experiment, thereby finishing the experiment at zm . Here, D is a discrete ran-
dom variable representing the number of observed failure times up to time T .

The last CS provides the experimenter a guarantee to acquire m observed failure times 
for the efficacy of statistical inference and also to control the total test time to be near 
to the proposed time T  . Moreover, the value of experimental time T  may have a role in 
determining the censoring values Ri . This value of T  enables the experimenter flexibility 
between stopping the experiment in a short period of time and a higher opportunity to 
detect some large failure times, see Ng et al. [22].

In this paper, we propose a new distribution, named Poisson–logarithmic half-logistic 
distribution (PLHLD), based on a parallel–series system’s failure times and study some of 
its important properties. The new proposed distribution can be obtained by compound-
ing zero-truncated Poisson and logarithmic distributions with half-logistic distribution 
(HLD). The progressive-stress ALT is applied using an increasing exponential function of 
time to units whose lifetimes are supposed to have the PLHLD at normal stress conditions. 
Different methods of estimation, based on adaptive type-II progressive hybrid censoring, 
are used to estimate the parameters involved in the PLHLD under progressive-stress ALT.

The remaining sections of the article are structured according to the following: In the 
“The Poisson–logarithmic half-logistic distribution” section, we propose the PLHLD and 
study some of its important properties, in addition to the application to two real data 
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sets. In the “PLHLD under progressive-stress model” section, we consider the PLHLD 
under progressive-stress ALT. Some estimation methods are applied in the “Different 
methods of estimation” section. To assess the performance of the estimation methods, 
some simulation studies are presented in the “Simulation study” section followed by the 
significant results with their discussion in the “Results and discussion” section. Finally, 
some important remarks are given in the “Concluding remarks” section.

The Poisson–logarithmic half‑logistic distribution
Compounding of distributions based on failure times of a parallel–series system is con-
sidered as one of the physical motivations to introduce the new distribution. According 
to the parallel–series system structured in Fig. 1 and as shown in Nadarajah et al. [10], 
suppose a is a realization of a random variable (RV) A. The distribution of A is assumed 
to be a zero-truncated Poisson distribution with probability mass function (PMF)

Suppose that the l-th system, l = 1, 2, . . . ,A , has Bl series items, where Bl is a RV having 
the logarithmic distribution with PMF

The motivation for assuming A and Bl as RVs comes from a practical point of view in 
which the failure system sometimes occurs due to existence of an unknown number of 
initial defective items in the system.

The failure times of the bl series items, say Y1l ,Y2l , . . . ,Ybll , are assumed to be independ-
ent and identically distributed (iid) RVs. The lifetime of the l-th series system is given by 
the minimum lifetime of its items, i.e., Tl = min(Y1l ,Y2l , . . . ,YBll), l = 1, . . . ,A . Since the 
a systems constitute a parallel system, the entire system structured in Fig. 1 is in operation 
when at least one series system operates. In other words, the entire system terminates if 
all of the series systems fail. Therefore, the lifetime of the parallel–series system is given by

(1)P(A = a; θ) =
e−θ θa

a!(1− e−θ )
, a = 1, 2, . . . , (θ > 0).

(2)P(Bl = bl; p) =
(1− p)bl

−bl ln(p)
, bl = 1, 2, . . . , (0 < p < 1).

(3)Z ≡ ZA = max
1≤l≤A

Tl = max
1≤l≤A

min
1≤i≤Bl

Yil ,

Fig. 1 Description of a parallel–series system
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where Yil , i = 1, . . . ,Bl , l = 1, . . . ,A are iid RVs.
In the following theorem, the probability density function (PDF) and cumulative 

distribution function (CDF) of the RV Z are given.

Theorem  1 For i = 1, . . . ,Bj , l = 1, . . . ,A , suppose that Yil are iid RVs with common 
PDF gY (y; �) and CDF GY (y; �) , where � = {�1, �2, . . . , �ξ } is a vector of parameters of 
dimension ξ . Suppose also that A and Bj are two independent zero-truncated Poisson and 
logarithmic RVs with PMFs (1) and (2), respectively. Then, the PDF and CDF of Z, given 
by (3), are given, respectively, by

Proof
Since Tl = min

1≤i≤Bl
Yil , l = 1, . . . ,A , the conditional PDF of Tl , given Bl = bl , is given by

Thus, the unconditional PDF of Tl takes the form

The corresponding CDF of Tl , l = 1, . . . ,A, is given by

Since Z = max
1≤l≤A

min
1≤i≤Bl

Yil = max
1≤l≤A

Tl , the conditional PDF of Z given A = a is given by

Therefore, the unconditional PDF of Z takes the form

The corresponding CDF of Z is given by

(4)
g(z) ≡ g(z; θ , p, �) =

θ(1− p)p
θ

ln(p)

(1− eθ ) ln(p)

gY (z; �)
(
1− (1− p)[1− GY (z; �)]

) θ
ln(p)

+1
,

(5)G(z) ≡ G(z; θ , p, �) =
1

eθ − 1

[(
p

1− (1− p)[1− GY (z; �)]

) θ
ln(p)

− 1

]
.

g(tl |bl; �) = bl[1− GY (tl; �)]
bl−1gY (tl; �).

(6)

gT (tl; p, �) =

∞∑

bl=1

g(tl |bl; �)P(Bl = bl; p)

=
−(1− p)

ln(p)

gY (tl; �)

1− (1− p)[1− GY (tl; �)]
.

(7)GT (tl; p, �) = ln

(
p

1− (1− p)[1− GY (tl; �)]

) 1
ln(p)

, tl ≥ 0.

g(z|a; p, �) = a[GT (z; p, �)]
a−1gT (z; p, �).

gZ(z; θ , p, �) =

∞∑

a=1

g(z|a; p, �)P(A = a; θ)

=
θ

eθ − 1
gT (z; p, �) e

θGT (z;p,�).
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where GT (z; p, �) is given by (7). From Equations (6) and (7), the PDF (4) and the corre-
sponding CDF (5) of Z hold.  �

The new class of distributions (5) includes several lifetime distributions as special 
cases by assuming different forms of the CDF G(.). Many real-life systems do not have 
constant hazard rates. So, we consider here the HLD as a distribution with increasing 
hazard rate. There, we suppose that the lifetimes of the items presented in the l-th 
system have HLD. Assume, in Equations (4) and (5), that the lifetimes of the items 
included in the l-th system are independent and identical half-logistic RVs with PDF 

g(y; �) =
2�e−�y

(1+ e−�y)2
 and CDF G(y; �) =

1− e−�y

1+ e−�y
 . Thus, the lifetime Z of the paral-

lel–series system has a PLHLD with PDF and CDF given, respectively, by

where

We have mentioned before that 0 < p < 1 , but it can be noticed here that function (8) is 
still a PDF for p > 1 . Clearly, � is a scale parameter of PLHLD.

The HRF of the PLHLD is given by

Notice that the CDF (9) of the PLHLD reduces to CDF of the 

1 PHLD, proposed by Abdel-Hamid [4], as p → 0+,
2 logarithmic half-logistic distribution (LHLD) as θ → 0+,
3 HLD as p → 0+ and θ → 0+.

GZ(z; θ , p, �) =
eθGT (z;p,�) − 1

eθ − 1
, z > 0,

(8)

g(z) ≡ g(z; θ , p, �) = C(θ , p, �)
e−�z

(1+ e−�z)2

[
η(z)

] θ
ln(1/p)

−1

, z, θ , p, � > 0, p �= 1,

(9)G(z) ≡ G(z; θ , p, �) =
1

eθ − 1

[(
1

p
η(z)

) θ
ln(1/p)

− 1

]
,

(10)C(θ , p, �) =
2θ�(1− p)p

θ
ln(p)

(1− eθ ) ln(p)
,

(11)η(z) ≡ η(z; p, �) = 1−
2(1− p)

1+ e�z
.

(12)

h(z) ≡ h(z; θ , p, �) = C(θ , p, �)
(1− eθ )e−�z

(1+ e−�z)2

[
η(z)

] θ
ln(1/p)

−1

(
1

p
η(z)

) θ
ln(1/p)

− eθ

, z, θ , p, � > 0, p �= 1.
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Statistical properties of PLHLD

Here, we discuss some important statistical properties of the PLHLD, such as its PDF, 
shapes of the HRF, q-th quantile, moments, mean, variance, kurtosis, skewness, mean 
residual lifetime, PDF and CDF of the i-th order statistic, Lorenz and Bonferroni curves, 
and Shannon’s and Rényi entropies.

Modality and quantiles of PLHLD

In Fig. 2, the PDF (8) of PLHLD is drawn for different values of θ and p with � = 1.5 . 
It can be noticed, from Figure  2, that the PDF (8) may be decreasing or increasing–
decreasing (unimodal). This can be concluded as follows:

The first derivative of ℑ(z) = ln(g(t)) takes the form

Then, ℑ′(t) = 0 ⇒

(
e�z +

θ(p− 1)

ln(1/p)

)2

=

(
θ(p− 1)

ln(1/p)

)2

+ 2p− 1.

This yields the unique solution

Then, z∗ > 0 ⇒ 2p− 1 > 1+
2θ(p−1)
ln(1/p)

⇒ peθ > 1 . So, the PDF (8) is unimodal, with 
mode satisfied at z = z∗ , if peθ > 1 and is decreasing if peθ < 1.

In Fig.  3, the HRF (12) of PLHLD is drawn for different values of θ and p with 
� = 1.5 . Different shapes of the HRF can be noticed in Fig. 3, such as decreasing-con-
stant, increasing-constant, and v-shaped. It can be noticed also that, at the end of 
the constant failure rate, sudden fluctuations are exhibited. Usually, these fluctuations 
indicate that product performance has deteriorated over time. Such a phenomenon 
can be observed in non-stationary data; thus, the PLHLD can kindly represent such 
data. The non-stationary nature of the failure times may be useful to the experimenter 
in predicting the environmental behavior of some products. The different shapes of 
HRF (12) supply another motivation for selecting the PLHLD as a likely candidate for 
data analysis.

ℑ′(t) =
�

1+ e−�z



e
−�z +

2(1− p)

�
θ

ln(1/p)
− 1

�

e�z + 2p− 1
− 1



.

z∗ =
1

�
ln



−θ(p− 1)

ln(1/p)
+

��
θ(p− 1)

ln(1/p)

�2

+ 2p− 1



.

Fig. 2 PDF of the PLHLD for different values of θ and p with � = 1.5
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The q-th quantile zq of the PLHLD with CDF (9) can be obtained by solving the 
equation G(zq)− q = 0 , which is given by

Particularly, the median of the PLHLD with CDF (9) can be obtained from Eq. (13) by 
putting q = 0.5 as

Moments and mean residual lifetime

Let the RV Z have the PLHLD with PDF (8). Then, the rth moment of Z can be readily 
obtained by applying the Legendre–Gauss quadrature formula (LGQF), see Canuto 
et al. [24].

(13)zq =
1

�
ln

(
2(1− p)

1− p[q(eθ − 1)+ 1]
ln(1/p)

θ

− 1

)
, 0 < q < 1.

z0.5 =
1

�
ln

(
2(1− p)

1− p[0.5(eθ + 1)]
ln(1/p)

θ

− 1

)
.

(14)

µr =

∫ ∞

0

zrg(z) d z

= C(θ , p, �)

∫ 1

−1

2

(1− x)2
�r

(
1+ x

1− x

)
d x

= 2 C(θ , p, �)

M∑

j=0

πj

(1− xj)2
�r

(
1+ xj

1− xj

)
,

Fig. 3 HRF of the PLHLD for different values of θ and p with � = 1.5
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where C(θ , p, �) is given by (10) and

where η(.) is given by (11) and xj and πj are the zeros and corresponding Christoffel 
numbers of the LGQF on the interval (−1, 1),

and LM denotes the Legendre polynomial of degree M. The relationship between the 
degree M of Legendre polynomial and mean of the PLHLD is drawn in Fig. 4 in which 
one can select the value of M required to obtain stable results for true mean.

Equation (14) could be used to calculate the mean, variance, kurtosis, and skew-
ness of the PLHLD. Those four quantities against θ are drawn in Fig. 5 for different 
values of p with � = 1.5 . From Figure 5, it can be noticed that the mean for fixed val-
ues of p is increasing, while, for fixed values of θ , higher values of the mean can be 
obtained as p increases. The variance is unimodal and tends to be increasing-constant 
as p decreases. Also, the kurtosis and skewness are decreasing–increasing and tend to 
be decreasing-constant as p decreases.

The mean residual lifetime is very important in the study of survival analysis. It is 
defined as the expected residual lifetime given that the system has survived to time z. 
It can be obtained for the PLHLD using LGQF as follows:

(15)�r(z) =
zre−�z

(1+ e−�z)2

[
η(z)

] θ
ln(1/p)

−1

,

(16)πj =
2

(1− x2j )[L
′
M+1(xj)]

2
and L′M+1(xj) =

d LM+1(x)

d x
at x = xj ,

m(z0) = E[Z − z0 | Z > z0]

=
1

S(z0)

∫ ∞

z0

S(z) d z

=
2z0

eθ −

(
1

p
η(z0)

) θ
ln(1/p)

∫ 1

−1

1

(1− x)2

[
eθ −

(
1

p
η

(
2z0

1− x

)) θ
ln(1/p)

]
d x

=
2z0

eθ −

(
1

p
η(z0)

) θ
ln(1/p)

M∑

j=0

πj

(1− xj)2

[
eθ −

(
1

p
η

(
2z0

1− xj

)) θ
ln(1/p)

]
,

Fig. 4 The relationship between the degree M of Legendre polynomial and mean of the PLHLD for θ = 6.0 
and � = 4.5 and different values of p 



Page 10 of 33Hashem et al. Journal of the Egyptian Mathematical Society           (2022) 30:15 

where S(.) is the survival function of PLHLD, and xj and πj are defined as in (16).

Order statistics

Order statistics play an important role in different fields of statistical applications. They 
have a major role in quality control and reliability, in which an experimenter wants to pre-
dict with the failure of future units based on the times of past failures. Now, let Z1, . . . ,Zn 
be a random sample of size n from the PLHLD with PDF (8) and CDF (9). The PDF of the 
ith order statistic, say Zi:n , is given by, see, for example, Arnold et al. [25],

The corresponding CDF, Gi:n , is given by

gi:n(z) = i

(
n
i

)
g(z)[G(z)]i−1[1− G(z)]n−i

= i

(
n
i

)
2θ�(1− p)p

θ
ln(p)

ln(p)

e−�z

(1+ e−�z)2

n−i∑

j1=0

i+j1−1∑

j2=0

[
(−1)j1+j2

(
n− i
j1

)

×

(
i + j1 − 1

j2

)
p

j2θ

ln(p)

(1− eθ )i+j1

(
η(z)

) θ(j2+1)

ln(1/p)
−1]

.

Gi:n(z) =

n∑

j3=i

(
n
j3

)
[G(z)]j3 [1− G(z)]n−j3

=

n∑

j3=i

n−j3∑

j4=0

j3+j4∑

j5=0

(−1)j4+j5

(
n
j3

)(
n− j3
j4

)(
j3 + j4
j5

)
(
1

p
η(z)

) θ j5
ln(1/p)

(1− eθ )j3+j4
,
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Fig. 5 The mean, variance, kurtosis, and skewness of the PLHLD against θ for different values of p with 
� = 1.5
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where η(.) is given by (11).

Lorenz and Bonferroni curves

The Lorenz and Bonferroni curves have important meanings in economics to study 
income and poverty. They also have meanings in reliability, demography, insurance, and 
medicine. Let the RV Z have the PLHLD with PDF (8). Then, the Lorenz curve is given 
by

where C(θ , p, �) is given by (10), qǫ = G−1(ǫ) , µ1 is the mean of PLHLD, �1 is given, at 
r = 1 , by (15), and xj and πj are defined as in (16) (Fig. 6).

The Bonferroni curve of the PLHLD is given by

Shannon’s and Rényi entropies

Entropy plays an essential role in the field of information theory. It can be used to 
measure the randomness or uncertainty of dynamical systems, and it is widely used 
in science and engineering. Two commonly entropy measures are known as the Shan-
non’s and Rényi entropies, see Shannon [26] and Rényi [27]. Now, let the RV Z have 
the PLHLD with PDF (8). Then, Shannon’s entropy of Z is given by

where C(θ , p, �) is given by (10), �0(.) is given, at r = 0 , by (15), and

Based on PDF (8), the Rényi entropy of Z is given by

L(ǫ) =
1

µ1

∫ qǫ

0

zg(z) d z

=
C(θ , p, �)

µ1

∫ qν

0

�1(z) d z

=
qǫ C(θ , p, �)

2µ1

∫ 1

−1

�1

(qǫ
2
(x + 1)

)
d x

=
qǫ C(θ , p, �)

2µ1

M∑

j=0

πj �1

(qǫ
2
(xj + 1)

)
,

B(ǫ) =
1

ǫµ1

∫ qǫ

0

zg(z) d z

=
qǫ C(θ , p, �)

2ǫµ1

M∑

j=0

πj �1

(qǫ
2
(xj + 1)

)
.

ϒ = E[− ln
(
g(z)

)
]

= − ln (C(θ , p, �))+ 2C(θ , p, �)

M∑

j=0

πj

(1− xj)2
�

(
1+ xj

1− xj

)
�0

(
1+ xj

1− xj

)
,

�(z) = �z + 2 ln(1+ e−�z)−

(
θ

ln(1/p)
− 1

)
ln(η(z)).
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where k > 0 , k  = 1 , C(θ , p, �) is given by (10), xj and πj are defined as in (16), and

Application of PLHLD to real data

Five distributions are used to fit two real data sets. The distributions are PLHLD, 
PHLD, half-logistic generated Weibull distribution (HLGWD) (suggested by AL-Hus-
saini and Abdel-Hamid [28]), HLD, and Weibull distribution (WD). The CDFs of the 
last four distributions are given, respectively, by

Four numerical methods such as Nelder–Mead (NM), BFGS (it is a quasi-Newton 
method introduced by Broyden, Fletcher, Goldfarb, and Shanno, simultaneously), 
conjugate gradients (CG), and L-BFGS-B (it is a modification of BFGS with box con-
straints) are used to obtain estimates of the distribution’s parameters. These methods 
can be applied by “optim” function in R. In the tables, p1, p2 and p3 stand for θ , � and p,  
respectively.

The maximum likelihood estimates (MLEs) of parameters are attained by numerical 
methods to maximize the log-likelihood function. 5000 initial values are uniformly 
generated from a subset of parameter space. The four numerical methods are per-
formed with these initials values of parameters to maximize the likelihood function. 

J (k) =
1

1− k
ln

�� ∞

0

gk(z) d z

�

=
1

1− k



k ln (C(θ , p, �))+ ln




M�

j=0

2πj

(1− xj)2
�k

�
1+ xj

1− xj

�





,

�k(z) =
e−k�z

(1+ e−�z)2k

[
η(z)

]k
(

θ
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−1
)

.

GPHLD =
exp

{
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(
1−exp (−p2z)
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)}
−1
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2{1−exp (−p1z
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Fig. 6 Left (Right) panel: The Lorenz (Bonferroni) curve of the PLHLD for θ = 6.0, � = 4.5 and different values 
of p 
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The likelihood values for all estimates are ordered from large to small. The estimates 
that give the largest likelihood value are treated as MLEs of parameters.

The PLHLD, PHLD, HLGWD, HLD, and WD are now fitted to two real data sets. The 
first real data set is taken from Aarset [29]. It represents the failure times of 50 devices 
that have been put to life test at time 0. The data are given as follows: 3.70, 2.74, 2.73, 
2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 
4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 
3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92.

The second real data set is taken from Choulakian and Stephen [30]. It consists of 72 
exceedances for the years from 1958 to 1984, rounded to one decimal place. The data are 
given as follows: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 
11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 
0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 
11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0.

For the first and second data sets, the MLEs of parameters with their corresponding 
standard errors under PLHLD, PHLD, HLGWD, HLD, and WD are given in Tables 1 
and 2, respectively, in which several comparison criteria are also shared. Calculations 
of log-likelihood ℓ , −2ℓ , the Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), consistent AIC (CAIC), Hannan–Quinn information criterion 
(HQIC), Kolmogorov–Smirnov statistic (K-S), Anderson–Darling statistic (A-D), 
Cramér–von Mises statistic (CvM) with their associated p values, and the MLE p̂i 
(i = 1, 2, 3) of parameter pi with standard error SE

(
p̂i
)
 are presented also in Tables 1 

and 2. In that tables, initial parameters and the related numerical method are given to 
get MLEs for all models included in the analysis. It can be noticed, from Tables 1 and 
2, that the PLHLD has the smallest values of −2ℓ , AIC, CAIC, HQIC, K-S, A-D, and 
CvM for the all data sets. Furthermore, the goodness-of-fit tests K-S, A-D, and CvM 
confirm the PLHLD model validity (p values>0.05). It is concluded that the PLHLD is 
better to fit the given data than the other distributions in terms of almost all criteria. 
Figures 7 and 8 present the fitted CDFs with the empirical CDF. From Figs. 7 and 8, it 
is concluded that fitted CDF of PLHLD exhibits better than the others.

PLHLD under progressive‑stress model
Several authors, such as Abdel-Hamid and AL-Hussaini [16], Yin and Sheng [17], 
Abdel-Hamid and Abushal [18], and AL-Hussaini et  al. [19], studied progressive-
stress ALTs assuming that the applied stress is expressed as a linear increasing func-
tion of time, V (z) = kz, k > 0 . Nadarajah et al. [10] proposed progressive-stress ALTs 
supposing that the applied stress is expressed as a nonlinear increasing function of 
time, V (z) = kza, k , a > 0 . The main goal of this section is to consider an exponen-
tially increasing stress with time, V (z) = ekz , k > 0 . Here are some basic assumptions 
for applying the progressive-stress ALT.
Assumptions:

1. Under design stress, the lifetime of a unit follows the PLHLD with CDF (9).
2. The inverse power law controls the relationship between the scale parameter � in 

CDF (9) and the applied stress V, i.e., 
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 where µ and δ are two positive parameters should be estimated.
3. The stress V(z) is an increasing exponential function of time z with the form 

4. The testing process starts with dividing the N tested units into �(> 1 ) groups each of 
them containing nj units operating under progressive-stress ALT. Thus, 

5. The lifetimes of units, Z1j , . . . ,Znjj with realizations z1j , . . . , znjj , j = 1, . . . , � , are iid 
RVs.

6. Under any stress level, the failure mechanisms of the units do not change.

Based on Assumptions 2 and 4, the cumulative exposure model, see Nelson [11], is given 
by

�[z] = �[V (z)] =
1

µ [V (z)]δ
,

V (z) = ekz , k > 0.

Vj(z) = ekjz , j = 1, . . . , �, k1 < k2 < · · · < k�.

Fig. 7 Plots of fitted and empirical CDFs for the first data set

Fig. 8 Plots of fitted and empirical CDFs for the second data set
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Therefore, CDF (9) of PLHLD under progressive-stress ALT becomes

where G(.) is the supposed CDF with scale parameter value 1 and

The corresponding PDF is given by

where C(θ , p,µ),̟j(z) and Qj(z) are given, respectively, by (10), (17) and (19).

Different methods of estimation
Under progressive-stress ALT, the adaptive type-II progressive hybrid censoring may be 
applied under the following assumptions: 

(17)̟j(z) =

∫ z

0

1

�[Vj(u)]
du =

µ

kjδ
(ekjδz − 1), j = 1, . . . , �.

(18)Fj(z) = G(̟j(z)) =
1

eθ − 1

[(
1

p
Qj(z)

) θ
ln(1/p)

− 1

]
,

(19)Qj(z) = 1−
2(1− p)

1+ e̟j(z)
.

(20)fj(z) = C(θ , p,µ)
ekjδz+̟j(z)

(1+ e̟j(z))2

[
Qj(z)

] θ
ln(1/p)

−1

,

Table 1 Data analysis results for the first real data set

PLHLD PHLD HLGWD HLD WD

ℓ − 46.5507 − 50.0825 − 51.2945 − 95.0418 − 50.0752

− 2ℓ 93.1014 100.1650 102.5890 190.0836 100.1503

AIC 99.1014 104.1650 108.5890 192.0836 104.1503

BIC 104.8375 107.9890 114.3251 193.9956 107.9743

CAIC 99.6232 104.4203 109.1108 192.1669 104.4056

HQIC 101.2858 105.6212 110.7734 192.8117 105.6065

K‑S 0.0712 0.1141 0.1200 0.4432 0.1299

A‑D 0.2208 1.0201 1.1767 13.8602 0.9453

CvM 0.0273 0.1609 0.1767 2.9365 0.1453

p‑value (K‑S) 0.9618 0.5336 0.4677 0.0000 0.3675

p‑value (A‑D) 0.9836 0.3465 0.2764 0.0000 0.3868

p‑value (CvM) 0.9849 0.3589 0.3182 0.0000 0.4053

p̂1 8.6078 42.1315 1.3734 0.5184 4.7833

p̂2 2.7786 1.6689 55.6645 – 0.0038

p̂3 1355.9139 – 0.9999 – –

SE(p̂1) 2.3069 16.5562 1.3374 0.0569 0.2501

SE(p̂2) 0.5230 0.1597 99.4232 – 0.0011

SE(p̂3) 2874.8663 – 0.4989 – –

Numerical Methods L‑BFGS‑B L‑BFGS‑B BFGS CG NM

Initial value for p̂1 96.2858 12.0576 60.6673 46.2549 1.0779

Initial value for p̂2 4.5543 0.2161 87.5668 – 3.6835

Initial value for p̂3 79.4243 – 0.9679 – –
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1. Assume that nj units are placed on a life testing experiment, j = 1, ..., �.
2. Assume that the effective sample size mj(< nj ) is fixed before the experiment with 

progressive CS ( R1j , R2j , ..., Rmjj ), j = 1, ..., �.
3. Assume that the experimental time Tj is fixed before the experiment but we may per-

mit the experiment to run over time Tj . So, some of the Rij values may be changed 
through the experiment, j = 1, ..., �.

4. In group j, R1j functioning units are randomly excluded from the experiment at the 
first failure time z1j . R2j functioning units are randomly excluded from the experi-
ment at the second failure time z2j . The experiment continues in the same way until 
the mj-th failure zmjj or time Tj whichever occurs first.

5. Case I: In group j, if the mj-th failure time zmjj occurs before time Tj , then all the 
remaining functioning units Rmjj = nj − mj − 

∑mj−1

i=1  Rij are excluded from the 
experiment, thereby finishing the experiment at zmjj , see Fig. 9.

6. Case II: In group j, if the experimental time Tj is reached before occurring the mj-th 
failure time zmjj and only Dj failures occur before time Tj . Then, we will not exclude 
any functioning unit from the experiment immediately following the (Dj + 1)-th 
...(mj − 1)-th failure time and exclude the remaining functioning units 
R∗
mjj

= nj −mj −
∑Dj

i=1 Rij from the experiment, thereby finishing the experiment at 

zmjj . That is, RDj+1j = · · · = Rmj−1j = 0 , see Fig. 9.

Table 2 Data analysis results for the second real data set

PLHLD PHLD HLGWD HLD WD

ℓ − 250.1338 − 255.7655 − 252.0314 − 255.1664 − 251.4986

− 2ℓ 500.2676 511.5310 504.0628 510.3328 502.9972

AIC 506.2675 515.5528 510.0627 512.3328 506.9973

BIC 513.0975 520.1062 516.8927 514.6095 511.5506

CAIC 506.6205 515.7267 510.4157 512.3900 507.1712

HQIC 508.9866 517.3655 512.7818 513.2392 508.8100

K‑S 0.0870 0.2030 0.1019 0.1969 0.1054

A‑D 0.5465 3.8577 0.9028 3.4854 0.8450

CvM 0.0944 0.5319 0.1683 0.4856 0.1488

p‑value (K‑S) 0.6464 0.0053 0.4427 0.0075 0.4004

p‑value (A‑D) 0.6994 0.0103 0.4121 0.0157 0.4492

p‑value (CvM) 0.6146 0.0328 0.3389 0.0431 0.3939

p̂1 1.6567 0.1681 0.0556 0.1082 0.9011

p̂2 0.0796 0.1116 0.9727 – 0.1096

p̂3 0.0261 – 0.9985 – –

SE(p̂1) 1.5216 0.5792 0.0678 0.0109 0.0855

SE(p̂2) 0.0142 0.0156 0.4156 – 0.0301

SE(p̂3) 0.0407 – 0.3020 – –

Numerical Method NM CG NM CG BFGS

Initial value for p̂1 52.0855 0.8000 14.0013 2.6950 0.6077

Initial value for p̂2 0.5705 0.8000 16.1198 – 37.2225

Initial value for p̂3 42.8379 – 0.6379 – –
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The data obtained from adaptive type-II progressive hybrid censoring are presented in 
the following two cases:

• Case I: (z1j;R1j), . . . , (zmjj;Rmjj) , if zmjj < Tj.
• Case II: (z1j;R1j), . . . , (zDjj;RDjj), (zDj+1j; 0), . . . , (zmj−1j; 0), (zmjj;R

∗
mjj

) , if zmjj > Tj,

where z1j < · · · < zmjj denote the mj ordered observed failure times in group j and 
R1j , . . . , Rmjj (or R1j , . . . ,RDjj , 0, . . . , 0,R

∗
mjj

 ) denote the number of units excluded from 

the experiment at failure times z1j , . . . , zmjj (or z1j , . . . , zDjj , . . . , zmjj ). Notice that the 
adaptive type-II progressive hybrid censoring reduces to the progressive type-II censor-
ing, as Tj → ∞, and reduces to type-II censoring, as Tj = 0.

In the following subsections, based on adaptive type-II progressive hybrid censoring, 
we discuss four methods of estimation to estimate the parameters θ , p,µ and δ.

Maximum likelihood estimation

For Dj = dj , j = 1, . . . , � , and based on adaptive type-II progressive hybrid censoring under 
progressive-stress ALT, the likelihood function is then given by

where z = (z1, . . . , z�) , zj = (z1j , . . . , zmjj) , R∗
mjj

= nj −mj −
∑dj

i=1 Rij and dj = 0, 1, . . . ,mj.

Using Eqs. (18) and (20), the log-likelihood function takes the form

L(θ , p,µ, δ; z) ∝

�∏

j=1

([ mj∏

i=1

f (zij)

][ dj∏

i=1

[1− F(zij)]
Rij

]
[1− F(zmjj)]

R∗mj j

)
,

Fig. 9 Generation process of order statistics under adaptive type‑II progressive hybrid censoring
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The MLEs θ̂ , p̂, µ̂ and δ̂ of θ , p,µ and δ could be obtained by solving simultaneously the 
likelihood equations, 

∂£

∂αr
= 0 , r = 1, 2, 3, 4 , with respect to αr , where 

(α1 = θ ,α2 = p,α3 = µ,α4 = δ) . These MLEs cannot be obtained in closed forms, so a 
numerical iteration technique to solve the likelihood equations should be applied.

Percentile estimation

Kao [31] introduced the percentile estimation to estimate the unknown parameters. If the 
data are obtained from a closed form of a CDF, then it is just normal to estimate the param-
eters by fitting a straight line to the theoretical points obtained by the CDF and the sample 
percentile points. The empirical CDF used in this method may be written as

where

The percentile estimates (PEs) θ̌ , p̌, µ̌ and δ̌ of θ , p,µ and δ can be obtained by minimiz-
ing the following quantity with respect to θ , p,µ and δ

where

Minimization of the quantity � could be obtained by solving the equations 
∂�

∂αr
= 0 with 

respect to αr , r = 1, 2, 3, 4.

Least squares and weighted least squares estimations

The least squares and weighted least squares estimation methods are considered by 
Swain et  al. [32] to estimate the unknown parameters of Beta distribution. Based on 

£ = ln(L(θ , p,µ, δ; z))

∝

( �∑

j=1

mj

)
ln (C(θ , p,µ))+

�∑

j=1

mj∑

i=1

[
kjδzij +̟j(zij)− 2 ln

(
1+ e̟j(zij)

)

+

(
θ

ln(1/p)
− 1

)
ln

(
Qj(zij)

)]
+

�∑

j=1

dj∑

i=1

Rij ln

(
eθ −

(
1

p

[
Qj(zij)

]) θ
ln(1/p)

)

+

�∑

j=1

R∗
mjj

ln

(
eθ −

(
1

p

[
Qj(zmjj)

]) θ
ln(1/p)

)
− ln

(
eθ − 1

) �∑

j=1

(nj −mj).

F̂j(zij) = 1−

i∏

s=1

(1− q̂sj), i = 1, . . . ,mj , j = 1, . . . , �,

q̂sj =
1

nj −
[∑min(s−1,dj)

k=1 Rkj

]
− s + 1

, s = 1, . . . ,mj , j = 1, . . . , �.
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mj�
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1

kjδ
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kjδ
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θ
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+ 1








2

,

̺ij =
F̂j(zi−1j)+ F̂j(zij)

2
.
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progressive type-II censoring, Abdel-Hamid and Hashem [8] used these two methods to 
estimate the parameters included in the doubly Poisson–exponential distribution.

Aggarwala and Balakrishnan [33] obtained the expectation and variance of the empiri-
cal CDF F̂(.) under progressive type-II censoring. Their procedure may be modified to 
adaptive type-II progressive hybrid censoring as follows: Let ( Z1j , . . . ,Zmjj ), j = 1, . . . , � , 
be the ordered sample of size mj from the PLHLD with CDF (18) under adaptive type-II 
progressive hybrid censoring. Thus, the expectation and variance of the empirical CDF 
F̂j(.) , j = 1, . . . , � , are given, respectively, by

where

The least squares estimates (LSEs) θ̃ , p̃, µ̃ and δ̃ of θ , p,µ and δ could be determined by 
minimizing the next quantity with respect to θ , p,µ and δ

The weighted LSEs (WLSEs) θ̈ , p̈, µ̈ and δ̈ of θ , p,µ and δ could be determined by mini-
mizing the next quantity with respect to θ , p,µ and δ

where ̟ j is the weight factor given by

E[�Fj(zij)] = 1−

mj�

l=mj−i+1

Wlj , i = 1, . . . ,mj , j = 1, . . . , �,

V [�Fj(zij)] =




mj�

l=mj−i+1

Wlj








mj�

l=mj−i+1

Hlj −

mj�

l=mj−i+1

Wlj



, i = 1, . . . ,mj , j = 1, . . . , �,

Wlj =
Ulj

1+Ulj
, l = 1, . . . ,mj , j = 1, . . . , �,

Olj =
1

(Ulj + 1)(Ulj + 2)
, l = 1, . . . ,mj , j = 1, . . . , �,

Ulj =






l +
�mj

s=mj−l+1 Rsj , mj < dj ,

l + R∗
mjj

+
�dj

s=mj−l+1 Rsj , mj − l + 1 < dj < mj ,

l + R∗
mjj

, dj < mj − l + 1 < mj ,

R∗
mjj

= nj −mj −

dj�

i=1

Rij , j = 1, . . . , �,

Hlj = Wlj + Olj , l = 1, . . . ,mj , j = 1, . . . , �.

S∗ ≡ S∗(α; z) =

�∑

j=1

mj∑

i=1

[
Fj(zij)− E[F̂j(zij)]

]2
.

S∗∗ ≡ S∗∗(α; z) =

�∑

j=1

mj∑

i=1

̟j

(
Fj(zij)− E[F̂j(zij)]

)2
,

̟j =
1

V [F̂j(zij)]
.
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Minimizations of the two quantities S∗ and S∗∗ could be determined by solving the equa-
tions 

∂S∗

∂αr
= 0 and 

∂S∗∗

∂αr
= 0 with respect to αr , r = 1, 2, 3, 4.

Simulation study
The performance of the four estimation methods cannot be compared theoretically. 
Consequently, a Monte Carlo simulation study is applied to compare the proposed 
methods. In this section, the MLE, PE, LSE, and WLSE of the parameters θ , p,µ and 
δ are calculated in order to compare the performance of these methods via Monte 
Carlo simulation according to the following algorithm:
Algorithm:

1. Assign the values of nj ,mj(1 < mj < nj), Tj and (R1j , . . . ,Rmjj) , j = 1, . . . , �.
2. For given values of the parameters (θ , p,µ, δ) and values of the stress rates 

kj , j = 1, . . . , � , generate an adaptive type-II progressively hybrid censored sample of 
size mj ( z1j , . . . , zmjj ) from PLHLD with CDF (18) based on the method introduced 
in Ng et al. [22].

3. The MLE, PE, LSE, and WLSE of the parameters θ , p,µ and δ are calculated as shown 
in the “Different methods of estimation” section.

4. Repeat the above steps K(= 1, 000) times.
5. Evaluate the average of estimates, relative absolute biases (RABs) and mean squared 

errors (MSEs) of ξ̂ over K samples as follows: 

 where ξ̂ is an estimate of ξ.
6. Evaluate the average of estimates of the parameters θ , p, µ and δ with their RABs and 

MSEs as shown in Step 5.
7. Evaluate the average of the RABs (ARAB) and the average of the MSEs (AMSE).

The following four CSs are considered in the generation of samples:

• CS1: For j = 1, . . . , �

• CS2: For j = 1, . . . , �

• CS3: For j = 1, . . . , �

ξ̂ =
1

K

K∑

i=1

ξ̂i, RAB(ξ̂ ) =
1

K

K∑

i=1

|ξ̂i − ξ |

ξ
, MSE(ξ̂ ) =

1

K

K∑

i=1

(ξ̂i − ξ)2,

Rij = 1, i = 1, . . . , nj −mj ,

Rij = 0, otherwise.

Rij = 1, i = 2mj − nj + 1, . . . ,mj ,

Rij = 0, otherwise.
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 where [ν] indicates the greatest integer value less than or equal ν.
• CS4: For j = 1, . . . , �

Results and discussion
The results due to the simulation study are shown in Tables 3 and 4 considering the fol-
lowing values for the population parameters: θ = 1.5 , p = 0.9 , µ = 0.7 and δ = 0.3 . For 
comparison among the MLEs, PEs, LSEs, and WLSEs, the following values have been 
taken into consideration:

From Tables 3 and 4, we observe: 

1. The LSEs are the best estimates through the AMSEs and ARABs.
2. The WLSEs are better than the MLEs and PEs through the AMSEs and ARABs.
3. The MLEs are better than the PEs through the AMSEs and ARABs.
4. For fixed Tj and nj , by increasing mj , j = 1, . . . , � , the MSEs and RABs decrease.
5. For fixed Tj and mj (= 60%, 80% and 100% of the sample size), by increasing nj , 

j = 1, . . . , � , the MSEs and RABs decrease.
6. For fixed nj and mj by increasing Tj , j = 1, . . . , � , the MSEs and RABs decrease for 

the MLEs and PEs, while the MSEs and RABs increase for the LSEs and WLSEs.
7. For fixed nj and mj by increasing Tj , j = 1, . . . , � , the dj  increases, where dj  is the 

average number of observed failure up to time Tj.

The above results are true except for some rare states, and this may be due to data 
fluctuation.

Concluding remarks
In this article, we have proposed a new lifetime distribution, named PLHLD, which has 
been derived by compounding zero-truncated Poisson and logarithmic distributions 
with HLD based on parallel–series system’s failures. We have discussed some statistical 
properties of the PLHLD, including the PDF, shapes of the HRF, q-th quantile, moments, 
mean, variance, kurtosis, skewness, mean residual lifetime, PDF and CDF of the i-th 

Rij =

[
nj −mj

2

]
, i = 1,

Rij = n−m−

[
nj −mj

2

]
, i =

mj

2
ifmj is even or i =

mj + 1

2
ifmj is odd,

Rij = 0, otherwise,

Rij = nj −mj i = 1,

Rij = 0, otherwise.

� = 2, and n1 = n2 = N/2,

m1 = m2 = 60%, 80% and 100% of the sample size,

k1 = 0.3 and k2 = 0.5,

(T1 = 2.0 and T2 = 1.5) or (T1 = 4.0 and T2 = 3.5).
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Table 3 MLEs and PEs of θ , p,µ and δ with their MSEs, RABs, AMSE, and ARAB based on 1000 
simulations. Population parameter values are θ = 1.5 , p = 0.9 , µ = 0.7 and δ = 0.3

MLE PE

ˆθ MSE( ˆθ) RAB( ˆθ) ˇθ MSE( ˇθ) RAB( ˇθ)

p̂ MSE(p̂) RAB(p̂) p̌ MSE(p̌) RAB(p̌)

n1 m1 τ1 µ̂ MSE(µ̂) RAB(µ̂) AMSE µ̌ MSE(µ̌) RAB(µ̌) AMSE d1

� N n2 m2 τ2 CS ˆδ MSE(ˆδ) RAB(ˆδ) ARAB ˇδ MSE(ˇδ) RAB(ˇδ) ARAB d2

2 40 20 12 2.0 1 1.6730 1.3543 0.6052 0.8181 1.9700 1.9392 0.7162 0.8777 4

20 12 1.5 1.2687 1.6291 0.9871 0.6452 1.2806 1.1538 0.8549 0.6884 3

0.9020 0.2620 0.5551 0.8620 0.3790 0.6633

0.2882 0.0272 0.4333 0.3258 0.0390 0.5194

2 1.6311 1.4646 0.6173 0.8457 1.9318 1.8072 0.7000 0.8168 5

1.2757 1.5808 0.9732 0.6624 1.2724 0.9941 0.7553 0.6709 4

0.9426 0.3096 0.6122 0.8665 0.4271 0.7028

0.2836 0.0277 0.4467 0.3310 0.0389 0.5254

3 1.6712 1.4729 0.6305 0.8978 1.9398 1.9019 0.7180 0.8884 4

1.2952 1.8535 1.0302 0.6584 1.3529 1.3099 0.8947 0.6856 3

0.8792 0.2380 0.5396 0.8182 0.3014 0.5965

0.2931 0.0268 0.4334 0.3390 0.0405 0.5332

4 1.7065 1.7162 0.6601 0.8627 1.9678 2.0097 0.7290 1.0619 4

1.1531 1.5287 0.9602 0.6203 1.4402 1.9704 1.1555 0.7415 3

0.8705 0.1812 0.4505 0.8002 0.2200 0.5208

0.2803 0.0248 0.4102 0.3393 0.0474 0.5608

4.0 1 1.6928 1.5273 0.6463 0.8407 1.8039 1.8936 0.7118 1.0184 9

3.5 1.2119 1.5853 0.9712 0.6414 1.4490 1.9375 1.1282 0.7130 10

0.8849 0.2200 0.5039 0.7927 0.2014 0.4925

0.2899 0.0302 0.4440 0.3300 0.0413 0.5195

2 1.6372 1.4802 0.6265 0.8358 1.8762 1.6516 0.6602 0.7989 10

1.2821 1.6117 0.9817 0.6434 1.3216 1.2642 0.8760 0.6426 11

0.8955 0.2238 0.5304 0.7598 0.2426 0.5389

0.2881 0.0275 0.4350 0.3390 0.0373 0.4955

3 1.7198 1.7149 0.6779 0.8360 1.8362 1.6565 0.6687 0.9691 9

1.1298 1.3961 0.9223 0.6290 1.4399 1.9561 1.1345 0.7129 9

0.8799 0.2049 0.4838 0.8258 0.2219 0.5198

0.2869 0.0280 0.4318 0.3272 0.0420 0.5285

4 1.7301 1.7304 0.6755 0.8908 1.9738 2.0424 0.7448 1.0624 8

1.1796 1.6190 0.9880 0.6380 1.4244 1.9400 1.1306 0.7359 8

0.8658 0.1864 0.4581 0.8202 0.2202 0.5164

0.2870 0.0274 0.4304 0.3356 0.0471 0.5516
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Table 3 (continued)

MLE PE

ˆθ MSE( ˆθ) RAB( ˆθ) ˇθ MSE( ˇθ) RAB( ˇθ)

p̂ MSE(p̂) RAB(p̂) p̌ MSE(p̌) RAB(p̌)

n1 m1 τ1 µ̂ MSE(µ̂) RAB(µ̂) AMSE µ̌ MSE(µ̌) RAB(µ̌) AMSE d1

� N n2 m2 τ2 CS ˆδ MSE(ˆδ) RAB(ˆδ) ARAB ˇδ MSE(ˇδ) RAB(ˇδ) ARAB d2

16 2.0 1 1.7740 1.7492 0.6753 0.8599 1.9366 2.0243 0.7324 0.9353 4

16 1.5 1.1741 1.5386 0.9603 0.6105 1.3195 1.4664 0.9845 0.6890 3

0.8283 0.1289 0.4028 0.7822 0.2095 0.5107

0.2914 0.0230 0.4035 0.3378 0.0408 0.5283

2 1.7122 1.4990 0.6293 0.8688 2.0237 2.0485 0.7289 0.8426 5

1.2894 1.7734 1.0304 0.6401 1.2392 1.0784 0.8190 0.6398 4

0.8381 0.1753 0.4704 0.7388 0.2053 0.5075

0.2981 0.0274 0.4305 0.3496 0.0383 0.5039

3 1.7405 1.7201 0.6719 0.8748 1.9591 1.9860 0.7076 0.8724 4

1.2320 1.5721 0.9839 0.6365 1.3258 1.2692 0.9021 0.6542 4

0.8519 0.1810 0.4657 0.7372 0.1940 0.4924

0.2930 0.0260 0.4245 0.3516 0.0403 0.5145

4 1.7411 1.7510 0.6781 0.8804 1.9956 1.9497 0.7186 1.0211 4

1.1861 1.5967 0.9806 0.6223 1.4485 1.9413 1.1363 0.7061 3

0.8401 0.1489 0.4153 0.7410 0.1502 0.4378

0.2895 0.0250 0.4150 0.3543 0.0431 0.5318

4.0 1 1.6991 1.6230 0.6567 0.8130 1.8916 1.9040 0.7084 0.9759 10

3.5 1.1513 1.4709 0.9615 0.6023 1.4230 1.7970 1.0925 0.6865 11

0.8449 0.1364 0.4048 0.7798 0.1643 0.4473

0.2815 0.0216 0.3863 0.3351 0.0384 0.4978

 2 1.7754 1.7039 0.6628 0.9496 1.9611 2.0128 0.7325 0.8514 12

1.3530 1.9060 1.0952 0.6616 1.2904 1.1442 0.8519 0.6527 13

0.8120 0.1598 0.4491 0.7649 0.2099 0.5166

0.3097 0.0288 0.4393 0.3427 0.0389 0.5097

3 1.7685 1.5754 0.6348 0.8235 1.9091 1.9200 0.7227 0.9759 11

1.2176 1.5609 0.9753 0.6024 1.4201 1.7721 1.0651 0.6933 11

0.8096 0.1342 0.3961 0.7712 0.1684 0.4565

0.2996 0.0236 0.4035 0.3438 0.0433 0.5288
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Table 3 (continued)

MLE PE

ˆθ MSE( ˆθ) RAB( ˆθ) ˇθ MSE( ˇθ) RAB( ˇθ)

p̂ MSE(p̂) RAB(p̂) p̌ MSE(p̌) RAB(p̌)

n1 m1 τ1 µ̂ MSE(µ̂) RAB(µ̂) AMSE µ̌ MSE(µ̌) RAB(µ̌) AMSE d1

� N n2 m2 τ2 CS ˆδ MSE(ˆδ) RAB(ˆδ) ARAB ˇδ MSE(ˇδ) RAB(ˇδ) ARAB d2

4 1.8024 1.8721 0.6942 0.8770 1.9223 1.8233 0.7006 0.9365 10

1.1156 1.4602 0.9356 0.6143 1.3787 1.7363 1.0638 0.6725 11

0.8457 0.1513 0.4150 0.7579 0.1476 0.4264

0.2858 0.0244 0.4123 0.3400 0.0390 0.4993

20 – – 1.7299 1.6335 0.6462 0.8400 1.8386 1.8867 0.7036 0.9090 –

20 1.2046 1.5875 0.9791 0.5963 1.3425 1.5659 0.9996 0.6548 –

0.8167 0.1175 0.3741 0.7699 0.1476 0.4262

0.2918 0.0215 0.3858 0.3323 0.0358 0.4899

2 60 30 18 2.0 1 1.6728 1.3786 0.6020 0.8709 1.7983 1.4493 0.6256 0.6511 6

30 18 1.5 1.3715 1.9030 1.0647 0.6416 1.2409 0.9017 0.7216 0.5879 5

0.8187 0.1741 0.4675 0.7448 0.2192 0.5241

0.3086 0.0280 0.4324 0.3433 0.0340 0.4804

2 1.6123 1.2288 0.5665 0.8167 1.8619 1.4103 0.6276 0.6580 7

1.4298 1.8067 1.0597 0.6421 1.2308 0.9283 0.7017 0.5865 5

0.8341 0.2025 0.5068 0.7788 0.2607 0.5510

0.3122 0.0287 0.4354 0.3377 0.0328 0.4657

3 1.6468 1.4402 0.6099 0.8593 1.8520 1.6317 0.6668 0.7227 6

1.3810 1.8079 1.0692 0.6380 1.2709 1.0052 0.7755 0.614 4

0.8128 0.1641 0.4576 0.7512 0.2168 0.5194

0.3063 0.0251 0.4155 0.3437 0.0369 0.4941

4 1.6504 1.4739 0.6327 0.7964 1.9315 1.8738 0.7011 0.9253 5

1.2069 1.5570 0.9844 0.5969 1.4008 1.6418 1.0536 0.6681 4

0.8347 0.1334 0.3910 0.7475 0.1475 0.4167

0.2838 0.0214 0.3794 0.3449 0.0379 0.5011

4.0 1 1.6366 1.4533 0.6200 0.7896 1.8192 1.5981 0.6567 0.8564 13

3.5 1.2730 1.5443 0.9683 0.5942 1.3970 1.6377 1.0218 0.6470 14

0.8143 0.1381 0.4052 0.7608 0.1539 0.4328

0.3007 0.0225 0.3832 0.3358 0.0359 0.4768
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Table 3 (continued)

MLE PE

ˆθ MSE( ˆθ) RAB( ˆθ) ˇθ MSE( ˇθ) RAB( ˇθ)

p̂ MSE(p̂) RAB(p̂) p̌ MSE(p̌) RAB(p̌)

n1 m1 τ1 µ̂ MSE(µ̂) RAB(µ̂) AMSE µ̌ MSE(µ̌) RAB(µ̌) AMSE d1

� N n2 m2 τ2 CS ˆδ MSE(ˆδ) RAB(ˆδ) ARAB ˇδ MSE(ˇδ) RAB(ˇδ) ARAB d2

2 1.6537 1.3527 0.6009 0.7755 1.8108 1.5108 0.6383 0.7006 15

1.3281 1.5589 0.9806 0.6111 1.3009 1.0742 0.7997 0.5964 16

0.8141 0.1650 0.4519 0.6963 0.1829 0.4734

0.3087 0.0256 0.4111 0.3519 0.0345 0.4741

3 1.6658 1.5330 0.6394 0.8148 1.8197 1.6630 0.6664 0.8904 13

1.2249 1.5567 0.9816 0.6027 1.4373 1.7196 1.0615 0.6627 13

0.8394 0.1481 0.4124 0.7447 0.1411 0.4215

0.2914 0.0212 0.3776 0.3438 0.0379 0.5013

4 1.7420 1.4577 0.6233 0.7935 2.0186 2.0407 0.7311 1.0060 11

1.2581 1.5853 1.0158 0.5984 1.3924 1.7977 1.0800 0.6861 12

0.7858 0.1071 0.3567 0.7473 0.1466 0.4258

0.3072 0.0238 0.3979 0.3470 0.0390 0.5076

24 2.0 1 1.6811 1.4593 0.6177 0.8396 1.8312 1.5713 0.6398 0.8140 6

24 1.5 1.2960 1.7597 1.0449 0.6105 1.3955 1.5108 0.9905 0.6329 5

0.7948 0.1153 0.3785 0.7145 0.1362 0.4124

0.3032 0.0240 0.4011 0.3534 0.0378 0.4888

2 1.6710 1.4174 0.6147 0.8031 1.8316 1.4141 0.6202 0.6162 7

1.3185 1.6533 1.0194 0.6028 1.2030 0.8599 0.7410 0.5656 5

0.7853 0.1190 0.3870 0.7197 0.1597 0.4483

0.3065 0.0228 0.3902 0.3427 0.0309 0.4530

3 1.6895 1.5036 0.6309 0.8307 1.8869 1.6566 0.6704 0.7610 6

1.3103 1.6813 1.0314 0.6069 1.3089 1.1992 0.8704 0.6161 5

0.7855 0.1161 0.3787 0.7170 0.1526 0.4427

0.3060 0.0220 0.3865 0.3514 0.0355 0.4811

4 1.7448 1.5816 0.6397 0.7986 1.8661 1.7059 0.6816 0.8623 6

1.1782 1.4921 0.9625 0.5765 1.3616 1.5881 1.0120 0.6378 5

0.7968 0.1018 0.3428 0.7430 0.1210 0.3873

0.2941 0.0190 0.3609 0.3383 0.0341 0.4701
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MLE PE

ˆθ MSE( ˆθ) RAB( ˆθ) ˇθ MSE( ˇθ) RAB( ˇθ)

p̂ MSE(p̂) RAB(p̂) p̌ MSE(p̌) RAB(p̌)

n1 m1 τ1 µ̂ MSE(µ̂) RAB(µ̂) AMSE µ̌ MSE(µ̌) RAB(µ̌) AMSE d1

� N n2 m2 τ2 CS ˆδ MSE(ˆδ) RAB(ˆδ) ARAB ˇδ MSE(ˇδ) RAB(ˇδ) ARAB d2

4.0 1 1.7346 1.5235 0.6292 0.8181 1.8295 1.5036 0.6429 0.8263 15

3.5 1.2895 1.6386 1.0045 0.5827 1.4068 1.6608 1.0560 0.6319 16

0.7732 0.0908 0.3342 0.7265 0.1097 0.3752

0.3060 0.0195 0.3629 0.3415 0.0312 0.4534

2 1.7481 1.6436 0.6558 0.8600 1.8407 1.5361 0.6418 0.6987 18

1.3444 1.6573 1.0315 0.6167 1.2780 1.0618 0.8052 0.5925 19

0.7743 0.1144 0.3811 0.7111 0.1636 0.4532

0.3151 0.0245 0.3984 0.3490 0.0333 0.4697

3 1.8187 1.7826 0.6679 0.8806 1.8190 1.6746 0.6677 0.8485 16

1.2442 1.6276 0.9909 0.5929 1.3730 1.5593 1.0010 0.6328 17

0.7739 0.0921 0.3384 0.7482 0.1268 0.3988

0.3056 0.0200 0.3743 0.3354 0.0334 0.4638

4 1.7345 1.5845 0.6395 0.8099 1.8163 1.5654 0.6473 0.8374 15

1.2444 1.5417 0.9765 0.5802 1.3890 1.6319 1.0282 0.6316 16

0.7838 0.0933 0.3384 0.7303 0.1183 0.3838

0.3018 0.0201 0.3664 0.3432 0.0341 0.4671

30 – – 1.7431 1.6372 0.6556 0.8263 1.8132 1.5076 0.6381 0.7707 –

30 1.2965 1.5735 0.9866 0.5715 1.3232 1.4382 0.9650 0.6011 –

0.7604 0.0775 0.3054 0.7347 0.1084 0.3652

0.3068 0.0168 0.3382 0.3348 0.0287 0.4363

Table 3 (continued)

order statistic, Lorenz and Bonferroni curves, and Shannon’s and Rényi entropies. Two 
real data sets have been considered to compare among PLHLD, PHLD, HLGWD, HLD, 
and WD. The comparison shows that the PLHLD is better to fit the considered data than 
the other four distributions. The progressive-stress ALT with an increasing exponential 
function of time has been applied when the lifetime of a unit under use stress follows the 
PLHLD. Based on adaptive type-II progressive hybrid censoring, some estimation meth-
ods, such as maximum likelihood, percentile, least squares, and weighted least squares 
estimations, have been discussed to estimate the parameters involved in the PLHLD 
under progressive-stress ALT. Based on four different progressive CSs, a simulation 
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study accompanied by numerical computations has been done to assess the performance 
of these methods. The numerical results indicate that the LSEs are the best estimates 
among the other estimates. In summary, the features of PLHLD can be summarized as 
follows: 

1. The CDF of PLHLD has closed form.
2. The three parameters included in the CDF of PLHLD give it the ability to fit several 

data.
3. The CDF of PLHLD includes the CDFs of PHLD, LHLD, and HLD as special cases.

Table 4 LSEs and WLSEs of θ , p,µ and δ with their MSEs, RABs, AMSE, and ARAB based on 1000 
simulations. Population parameter values are θ = 1.5 , p = 0.9 , µ = 0.7 and δ = 0.3

LSE WLSE

˜θ MSE( ˜θ) RAB( ˜θ) ¨θ MSE( ¨θ) RAB( ¨θ)

p̃ MSE(p̃) RAB(p̃) p̈ MSE(p̈) RAB(p̈)

n1 m1 τ1 µ̃ MSE(µ̃) RAB(µ̃) AMSE µ̈ MSE(µ̈) RAB(µ̈) AMSE

� N n2 m2 τ2 CS ˜δ MSE(˜δ) RAB(˜δ) ARAB ¨δ MSE(¨δ) RAB(¨δ) ARAB

2 40 20 12 2.0  1 1.7476 1.5643 0.6488 0.5771 1.7429 1.4233 0.6136 0.5773

20 12 1.5 0.7821 0.5388 0.5801 0.5383 0.8788 0.6592 0.6281 0.5466

0.6917 0.1788 0.4880 0.7045 0.2022 0.5177

0.3068 0.0266 0.4365 0.3051 0.0245 0.4269

2 1.6528 1.2170 0.5766 0.5291 1.6206 1.2292 0.5766 0.5044

0.8894 0.6853 0.6175 0.5289 0.8171 0.5731 0.5829 0.5109

0.6604 0.1919 0.5165 0.7282 0.1960 0.5073

0.3098 0.0224 0.4050 0.2832 0.0192 0.3768

3 1.7242 1.2915 0.5668 0.4920 1.9930 1.8233 0.6570 0.6624

0.7856 0.5071 0.5622 0.4899 0.8444 0.6413 0.6390 0.5425

0.6562 0.1469 0.4386 0.6539 0.1587 0.4551

0.3147 0.0224 0.3919 0.3313 0.0262 0.4188

4 1.7651 1.5152 0.6400 0.5933 1.9459 1.8754 0.6922 0.7619

0.8507 0.6383 0.6313 0.5661 0.9998 0.9535 0.7771 0.6131

0.6679 0.1854 0.5012 0.7051 0.1824 0.4854

0.3308 0.0343 0.4920 0.3325 0.0363 0.4978

4.0  1 1.7739 1.4100 0.6148 0.5786 1.8638 1.6331 0.6546 0.7122

3.5 0.8594 0.6942 0.6596 0.5574 0.9860 0.9724 0.7730 0.6025

0.6732 0.1790 0.4855 0.7328 0.2098 0.5009

0.3238 0.0313 0.4697 0.3257 0.0337 0.4814

2 1.7279 1.4832 0.6302 0.5641 1.7624 1.5691 0.6286 0.6103

0.8110 0.5749 0.6078 0.5363 0.8723 0.6610 0.6436 0.5450

0.6588 0.1721 0.4815 0.7057 0.1875 0.4916

0.3158 0.0261 0.4259 0.3028 0.0235 0.4163

3 1.7636 1.2841 0.5804 0.5183 1.9637 1.6699 0.6390 0.6745

0.8549 0.5821 0.6200 0.5290 0.9595 0.8231 0.6934 0.5579

0.6731 0.1794 0.4790 0.6812 0.1777 0.4723

0.3280 0.0275 0.4365 0.3386 0.0275 0.4268

4 1.7543 1.5024 0.6309 0.6068 1.9761 1.9618 0.7047 0.7834

0.8351 0.6990 0.6573 0.5666 0.9421 0.9514 0.7876 0.6139

0.7114 0.1932 0.5017 0.7247 0.1874 0.4867

0.3154 0.0325 0.4768 0.3222 0.0330 0.4764
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Table 4 (continued)

LSE WLSE

˜θ MSE( ˜θ) RAB( ˜θ) ¨θ MSE( ¨θ) RAB( ¨θ)

p̃ MSE(p̃) RAB(p̃) p̈ MSE(p̈) RAB(p̈)

n1 m1 τ1 µ̃ MSE(µ̃) RAB(µ̃) AMSE µ̈ MSE(µ̈) RAB(µ̈) AMSE

� N n2 m2 τ2 CS ˜δ MSE(˜δ) RAB(˜δ) ARAB ¨δ MSE(¨δ) RAB(¨δ) ARAB

16 2.0  1 1.8238 1.5582 0.6453 0.5936 1.9250 1.6210 0.6419 0.6518

16 1.5 0.8371 0.6289 0.6232 0.5489 0.9175 0.7954 0.7021 0.5693

0.6753 0.1557 0.4584 0.7033 0.1585 0.4594

0.3276 0.0316 0.4685 0.3300 0.0324 0.4739

2 1.8333 1.4968 0.6290 0.5560 1.8974 1.7667 0.6747 0.6420

0.8027 0.5415 0.5719 0.5270 0.7988 0.5995 0.6124 0.5518

0.6491 0.1580 0.4639 0.7178 0.1740 0.4811

0.3314 0.0276 0.4431 0.3142 0.0279 0.4390

3 1.8035 1.3400 0.6031 0.4966 1.9787 1.5802 0.6362 0.6237

0.7910 0.4769 0.5515 0.5068 0.9199 0.7494 0.6798 0.5462

0.6321 0.1422 0.4372 0.6285 0.1362 0.4271

0.3367 0.0272 0.4356 0.3510 0.0292 0.4416

4 1.7836 1.5947 0.6478 0.5893 1.9350 1.8131 0.6864 0.7090

0.8229 0.5817 0.6132 0.5405 0.9666 0.8331 0.7122 0.5836

0.6708 0.1528 0.4535 0.6936 0.1553 0.4507

0.3218 0.0280 0.4476 0.3364 0.0344 0.4851

4.0  1 1.8652 1.6027 0.6511 0.6191 1.9406 1.7167 0.6680 0.7036

3.5 0.8753 0.6691 0.6470 0.5643 1.0255 0.8987 0.7596 0.5974

0.6657 0.1711 0.4767 0.6866 0.1628 0.4651

0.3364 0.0337 0.4825 0.3443 0.0362 0.4970

2 1.7382 1.3469 0.6062 0.5441 1.8507 1.6026 0.6422 0.6484

0.8014 0.6247 0.6006 0.5323 0.9015 0.7581 0.6558 0.5601

0.6766 0.1765 0.4775 0.6788 0.2020 0.4861

0.3172 0.0281 0.4448 0.3300 0.0310 0.4563

3 1.8569 1.5358 0.6364 0.5812 1.9194 1.6035 0.6444 0.6573

0.8475 0.5918 0.6106 0.5485 0.9481 0.8290 0.7185 0.5805

0.6663 0.1646 0.4740 0.6834 0.1615 0.4673

0.3350 0.0326 0.4731 0.3359 0.0350 0.4918

4 1.8105 1.5793 0.6354 0.6093 1.9559 1.7478 0.6750 0.7322

0.8786 0.6662 0.6399 0.5486 0.9942 0.9803 0.7647 0.6004

0.6763 0.1621 0.4630 0.6912 0.1650 0.4676

0.3266 0.0297 0.4559 0.3401 0.0356 0.4942
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Table 4 (continued)

LSE WLSE

˜θ MSE( ˜θ) RAB( ˜θ) ¨θ MSE( ¨θ) RAB( ¨θ)

p̃ MSE(p̃) RAB(p̃) p̈ MSE(p̈) RAB(p̈)

n1 m1 τ1 µ̃ MSE(µ̃) RAB(µ̃) AMSE µ̈ MSE(µ̈) RAB(µ̈) AMSE

� N n2 m2 τ2 CS ˜δ MSE(˜δ) RAB(˜δ) ARAB ¨δ MSE(¨δ) RAB(¨δ) ARAB

20 – – 1.8430 1.3954 0.6189 0.5286 2.0121 1.5934 0.6340 0.6314

20 0.8430 0.5503 0.5813 0.5181 0.9993 0.7949 0.6939 0.5341

0.6781 0.1407 0.4366 0.6509 0.1109 0.3859

0.3315 0.0280 0.4354 0.3511 0.0266 0.4227

2 60 30 18 2.0  1 1.8088 1.4489 0.6264 0.5422 1.8590 1.6434 0.6531 0.6239

30 18 1.5 0.7982 0.5207 0.5637 0.5274 0.8883 0.6660 0.6397 0.5436

0.6821 0.1720 0.4818 0.6875 0.1616 0.4658

0.3173 0.0271 0.4376 0.3185 0.0244 0.4160

2 1.7355 1.2457 0.5717 0.5086 1.6656 1.2524 0.5853 0.5187

0.8270 0.5941 0.5791 0.5153 0.8191 0.6097 0.6068 0.5169

0.6625 0.1713 0.4962 0.7335 0.1943 0.4989

0.3146 0.0234 0.4141 0.2870 0.0185 0.3767

3 1.7526 1.3844 0.6036 0.5384 1.8925 1.6218 0.6545 0.5934

0.7971 0.5768 0.5706 0.5194 0.8082 0.5667 0.5988 0.5339

0.6870 0.1659 0.4687 0.6826 0.1594 0.4577

0.3158 0.0266 0.4348 0.3203 0.0257 0.4248

4 1.8456 1.5166 0.6345 0.6206 2.0217 1.8712 0.7045 0.7279

0.9106 0.7609 0.6628 0.5656 0.9326 0.8366 0.7215 0.5954

0.6792 0.1712 0.4755 0.6907 0.1686 0.4674

0.3380 0.0336 0.4895 0.3396 0.0350 0.4881

4.0  1 1.8596 1.4955 0.6249 0.5931 1.9388 1.5929 0.6496 0.6812

3.5 0.8500 0.6795 0.6477 0.5510 1.0126 0.9343 0.7473 0.5823

0.6981 0.1667 0.4709 0.6857 0.1651 0.4601

0.3245 0.0307 0.4605 0.3407 0.0323 0.4723

2 1.8757 1.5150 0.6276 0.5844 1.8301 1.3882 0.6042 0.5590

0.8299 0.6353 0.6042 0.5352 0.8749 0.6640 0.6394 0.5276

0.6455 0.1593 0.4652 0.6707 0.1607 0.4600

0.3301 0.0281 0.4439 0.3138 0.0232 0.4067

3 1.8612 1.4240 0.6101 0.5516 1.9589 1.6194 0.6331 0.6848

0.8439 0.5827 0.6164 0.5443 0.9870 0.9215 0.7652 0.5873

0.6934 0.1676 0.4742 0.6929 0.1637 0.4638

0.3307 0.0321 0.4765 0.3385 0.0347 0.4870
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Table 4 (continued)

LSE WLSE

˜θ MSE( ˜θ) RAB( ˜θ) ¨θ MSE( ¨θ) RAB( ¨θ)

p̃ MSE(p̃) RAB(p̃) p̈ MSE(p̈) RAB(p̈)

n1 m1 τ1 µ̃ MSE(µ̃) RAB(µ̃) AMSE µ̈ MSE(µ̈) RAB(µ̈) AMSE

� N n2 m2 τ2 CS ˜δ MSE(˜δ) RAB(˜δ) ARAB ¨δ MSE(¨δ) RAB(¨δ) ARAB

4 1.7979 1.5242 0.6381 0.6256 1.9212 1.6542 0.6509 0.6902

0.9322 0.7836 0.6589 0.5509 1.0042 0.9179 0.7549 0.5821

0.6626 0.1644 0.4515 0.7005 0.1565 0.4496

0.3352 0.0303 0.4552 0.3358 0.0322 0.4727

24 2.0  1 1.8412 1.4738 0.6282 0.5732 1.8890 1.5936 0.6540 0.6182

24 1.5 0.8553 0.6413 0.6167 0.5357 0.9296 0.7080 0.6709 0.5540

0.6877 0.1469 0.4390 0.6997 0.1401 0.4322

0.3288 0.0306 0.4589 0.3305 0.0311 0.4588

2 1.8718 1.4285 0.6220 0.5653 2.0369 1.7420 0.6764 0.6619

0.8530 0.6547 0.6035 0.5298 0.8632 0.7354 0.6509 0.5506

0.6621 0.1499 0.4517 0.6625 0.1414 0.4355

0.3333 0.0282 0.4419 0.3382 0.0288 0.4397

3 1.9248 1.6900 0.6624 0.5986 2.0166 1.8173 0.6867 0.6801

0.7865 0.5470 0.6015 0.5264 0.8532 0.7359 0.6617 0.5517

0.6725 0.1303 0.4135 0.6802 0.1372 0.4213

0.3274 0.0269 0.4281 0.3321 0.0298 0.4370

4 1.8486 1.5039 0.6348 0.6216 1.8923 1.5359 0.6414 0.6473

0.9268 0.8073 0.6802 0.5538 0.9861 0.8774 0.7198 0.5693

0.6733 0.1431 0.4360 0.6986 0.1420 0.4358

0.3356 0.0320 0.4642 0.3347 0.0337 0.4802

4.0  1 1.8830 1.5098 0.6307 0.5971 2.0012 1.7325 0.6838 0.6509

3.5 0.9221 0.7109 0.6405 0.5384 0.9413 0.7187 0.6805 0.5547

0.6609 0.1372 0.4248 0.6788 0.1226 0.4036

0.3401 0.0305 0.4575 0.3377 0.0297 0.4510

2 1.8442 1.4598 0.6168 0.5515 1.9614 1.5925 0.6500 0.5932

0.8180 0.5777 0.5853 0.5144 0.8339 0.5984 0.6158 0.5343

0.6652 0.1430 0.4378 0.6851 0.1557 0.4455

0.3269 0.0255 0.4177 0.3278 0.0264 0.4258

3 1.9149 1.5559 0.6474 0.6105 1.9565 1.6471 0.6542 0.6461

0.8756 0.7152 0.6457 0.5460 0.9536 0.7882 0.7052 0.5477

0.6712 0.1407 0.4349 0.6837 0.1214 0.3991

0.3355 0.0302 0.4560 0.3330 0.0274 0.4322
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LSE WLSE

˜θ MSE( ˜θ) RAB( ˜θ) ¨θ MSE( ¨θ) RAB( ¨θ)

p̃ MSE(p̃) RAB(p̃) p̈ MSE(p̈) RAB(p̈)

n1 m1 τ1 µ̃ MSE(µ̃) RAB(µ̃) AMSE µ̈ MSE(µ̈) RAB(µ̈) AMSE

� N n2 m2 τ2 CS ˜δ MSE(˜δ) RAB(˜δ) ARAB ¨δ MSE(¨δ) RAB(¨δ) ARAB

4 1.9539 1.6475 0.6665 0.6388 2.0221 1.7197 0.6650 0.6751

0.8935 0.7104 0.6451 0.5642 0.9599 0.8241 0.7061 0.5588

0.6754 0.1626 0.4633 0.6746 0.1243 0.4061

0.3420 0.0345 0.4821 0.3447 0.0325 0.4581

30 – – 1.8967 1.5395 0.6380 0.5831 1.9899 1.5518 0.6327 0.6309

30 0.8613 0.6485 0.6000 0.5178 0.9956 0.8520 0.6957 0.5246

0.6737 0.1161 0.3978 0.6633 0.0925 0.3514

0.3353 0.0283 0.4354 0.3465 0.0273 0.4187

Table 4 (continued)

4. The PLHLD can describe the failure times of parallel–series systems. This feature is 
very important for physical experimenters and engineers.

5. The HRF of PLHLD has various shapes such as decreasing-constant, increasing-con-
stant, and v-shaped. This feature gives it more flexibility to fit and analyze several 
data.

6. The PLHLD can represent the non-stationary data. This feature may be useful for the 
experimenter to predict the environmental behavior of some products.

7. The PLHLD fits the data better than some other distributions, such as PHLD, 
HLGWD, HLD, and WD.

Abbreviations
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AIC  Akaike information criterion
ALT  Accelerated life test
AMSE  Average of mean squared errors
ARAB  Average of relative absolute biases
BIC  Bayesian information criterion
CAIC  Consistent AIC
CDF  Cumulative distribution function
CS  Censoring scheme
CvM  Cramér–von Mises statistic
HQIC  Hannan–Quinn information criterion
HLD  Half‑logistic distribution
HLGWD  Half‑logistic generated Weibull distribution
HRF  Hazard rate function
KS  Kolmogorov–Smirnov
LGQF  Legendre–Gauss quadrature formula
LSE  Least squares estimate
MLE  Maximum likelihood estimate
MSE  Mean squared error
PDF  Probability density function
PE  Percentile estimate
PLHLD  Poisson–logarithmic half‑logistic distribution
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PHLD  Poisson‑half‑logistic distribution
PMF  Probability mass function
RAB  Relative absolute bias
RV  Random variable
SE  Standard error
WD  Weibull distribution
WLSE  Weighted least squares estimate.
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