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The need for time‑fractional differential operators
The random motion, the erratic motion, of a small particle immersed in a fluid is called 
the Brownian motion and is mathematically modelled by the diffusion equation

where its solution is

which is typical Gaussian distribution. Albert Einstein deduced the value of the diffusion 
constant D as

(1.1)∂ u(x, t)

∂t
= D

∂2 u(x, t)

∂x2
, u(x, 0) = δ(x − x0) ,

u(x, t) = 1

2
√
πDt

e−(x−x0)
2/(4Dt),

D = RT

6NAπηr
= kBT

6πηr
,

Abstract 

In this review paper, I focus on presenting the reasons of extending the partial differen‑
tial equations to space‑time fractional differential equations. I believe that extending 
any partial differential equations or any system of equations to fractional systems with‑
out giving concrete reasons has no sense. The experiments agrees with the theoretical 
studies on extending the first order‑time derivative to time‑fractional derivative. The 
simulations of some processes also agrees with the theory of continuous time random 
walks for extending the second‑order space fractional derivative to the Riesz–Feller 
fractional operators. For this aim, I give a condense review the theory of Brownian 
motion, Langevin equations, diffusion processes and the continuous time random 
walk. Some partial differential equations that are successfully extended to space‑time‑
fractional differential equations are also presented.
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where R is the gas constant, NA is the Avogadro number, T is the temperature, η is the 
liquid’s velocity, and r is the radius of the Brownian particle. Let m be the mass of the 
Brownian particle, see [1, 2], the Newton’s equation of motion reads

where F(t) is the instantaneous force of the particle at time t. Let F(t) = −γ v(t) , i.e. it 
represents the friction force. By Stoke’s law, the friction coefficient is γ = 6πηr . Now let 
ζ(t) be the random force of the random fluctuation of the fluid, then (1.2), takes the form

This equation is called the Langevin equation of motion. Here ζ(t) , is a stochastic vari-
able representing the noise due to the fluid on the Brownian erratic particle. Neglecting 
the effect of ζ(t) and solve Eq. (1.3), to get

where v(0) is the initial velocity of the suspended erratic particle. If τB >> t , then 
v(t) = 1− t

τB
 . Integrating (1.4) with respect to t, one gets

, and consequently, the average displacement reads

That means the Langevin equation (1.3) with zero noise is equivalent to the diffusion 
equation (1.1) under the natural assumptions

If the noise at the Langevin equation (1.3) is not neglected, and by taking into consid-
eration the same natural assumptions, Eq. (1.3) turns to the Fokker–Plank equation (the 
forward Kolmogorov equation ), namely

Suppose that the functions a(x, t) and b(x, t) are power functions of x only or constants, 
to be able to use the natural properties, namely (1.6). The first moment of equation (1.7) 
is gotten by multiply each sides of Eq. (1.7) by x and integrate over x ∈ R , to get the ini-
tial value problem

(1.2)m
dv(t)

dt
= F(t),

(1.3)
dv(t)

dt
= − γ

m
v(t)+ ζ(t)

m
.

(1.4)v(t) = v(0) e
− t

τB , τB = m

γ
,

x(t) = x0 +
t∫

0

v(s)ds,

(1.5)< x(t) >= x0 + v(0)τB(1− e
(− t

τB
)
).

(1.6)u(x, t) → 0, xnu(x, t) → 0 as |x| → ∞ and

∞∫

−∞

u(x, t)dx = 1.

(1.7)∂ u(x, t)

∂t
= 1

2

∂2 a(x, t)u(x, t)

∂x2
− ∂b(x, t)u(x, t)

∂x
= Lfpu(x, t), u(x, 0) = δ(x).
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whose solution is

This equation is considered as a Markov process with exponential waiting time. For 
more details about the theory of the Brownian motion, the passage limit to diffusion 
processes and the Fokker Planck equations, see [3–11]. The partial differential equations 
of type (1.7) and their solutions have the previous natural properties that covers a huge 
number of applications on biology, physics, chemistry, medicine and engineering.

So far, I have reviewed the relation between the stochastic Langevin equation and the 
classical Diffusion process. Not only the diffusion equations are associated with the Fokker-
Planck operator and its special cases but also the movement of the potential and current in 
an electric transmission line (Cable equation), namely

with the resistance R, inductance L, capacitance c and leakage conductance G, the resist-
ance k, and the function I(x, t) to represent the electric transmitted current. If I(x, t) → 0 
and xnI(x, t) → 0 as |x| → ∞ , then it could be specified as stochastic processes, see [14].

Consider the natural generalisation of the first-order-time derivative, namely the Caputo-
time-fractional operator that reads

where

is its kernel and is called the memory function. This kernel enables reflects the memory 
effects of many physical, biological, etc., processes. The Caputo-time fractional deriva-
tive Dβ

0 t
 can also be defined through its image in the Laplace transform domain, which is

Now, rewrite the classical diffusion equation (1.7) as

This equation could be written as

d�x(t)�
dt

= −�x(t)�,

m(t) = �x(t)� ≈ �x0�e−t .

(1.8)∂2I(x, t)

∂t2
+ kc2

∂I(x, t)

∂t
= c2

∂2I(x, t)

∂x2
+ bc2I(x, t) = LfpI(x, t),

(1.9)D
0 t

β f (t) =





1
Ŵ(m−β)

{
t�
0

f (m)(τ )

(t−τ)β+1−m dτ for m− 1 < β < m ,

dm

dtm
f (t) for β = m ,

Kβ(t − τ ) = (t − τ )β+1−m

Ŵ(m− β)
,

L{Dβ

0 t
f (t); s} = sβ f̃ (s)− sβ−1f (0)− f̀ (0)sβ−2 − · · · − f (m−1)(0)sβ−m , s > 0.

(1.10)Dβ

0 t
u(x, t) = Lfpu(x, t) , u(x, x0) = δ(x − x0), 0 < β ≤ 1.

(1.11)u(x, t)− u(x, 0) = D
−β
t (Lfpu(x, t)),
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where D−β
t = Jβ is the Riemman–Liouville fractional integral operator, see [15–17]. The 

first moment of this time fractional diffusion equation satisfies

, and its solution is

where Eβ(−tβ) is the Mittag-Leffler function of order β , see [12] for the basic properties 
of the Mittag-Leffler function. The general form of the infinite series of the Mittag–Lef-
fler function of order α and β is defined as

where E0,1(z) = ez . Gorenflo et. al. [13] introduced the very important role of Mit-
tag–Leffler function and its asymptotic behaviours on simulating the continuous time 
random walks. Therefore, the processes that their velocities and first moments behave 
asymptotically as t−β and 0 < β < 1 , and their solutions have the same stated natural 
properties (1.6) that can be extended to time-fractional differential equations, see also 
[17]. Even the time-fractional Cable equation with time-fractional damping term that 
reads

is a natural generalisation of its classical version (1.8) only if its solution I(x, t) satisfies 
the condition (1.6), and its average is

where E(n)
(1+β−γ ),(1+nβ)(−kt(β−γ )) is the nth derivative of E(1+β−α),(1+nβ)(−kt(β−α)) . That 

means its velocity variations are also asymptotically behaves as t−(β−α) , see [18]. The 
processes that are satisfied that the previous properties can be extended to time-frac-
tional differential equation. In some cases as the genetic drift process of asexual popula-
tion, that is mathematically modelled by the following equation

where N is the total population size, µ+ is the mutator mutation rate per genome, µ− is 
the wild-type mutation rate per genome, ζ is the fraction of beneficial mutations, and 
s is the selection coefficient of mutation, one cannot extend its first time derivative to 
the Caputo time-fractional derivative. Abdel-Rehim et. al. [19] proved that although this 
process satisfies the natural conditions (1.6), imposed on its solution but as asexual self 

Dβ

0 t
�x(t)� = −�x(t)�,

m(t) = �x(t)� ≈ �x0�Eβ(−tβ) ,

(1.12)Eα,β(z) =
∞∑

k=0

zk

Ŵ(β + kα)
, α ∈ R, β ∈ R, z ∈ C ,

(1.13)Dβ

0 t
I(x, t)+ kDγ

0 t
I(x, t) = Lfpu(x, t) 0 < β < 2 , 0 < γ < 1

m(t) = �x(t)� = �x0�
mn

n! t
−nβ+β−γ E

(n)
(1+β−α),(1+nβ)(−kt(β−α)) ,

(1.14)

∂u(p, x; t)
∂t

= 1

N

∂2

∂x2
{x(1− x)u(p, x; t)}

+ (µ+ − µ−)[1− ζ(1− s)] ∂
∂x

{x(1− x)u(p, x; t)}

− Nζ s[xµ+ + (1− x)µ−]u(p, x; t),
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proliferation, the parent inherits all its genes and characteristics to his offspring. Also 
the simulation shows that the effects on the memory are neglect because only the wild-
type mutator plays the significant rule on this asexual diffusion process

The need for space‑fractional differential operators
One needs the space–fractional operators to mathematically model many physical, bio-
logical, chemical, medical, etc., phenomena that move through fractal media and usually 
exhibit large deviations from the Brownian motion ( 1.1) and do not require finite veloc-
ity. The extension to Lévy stable [20] motion is a straight forward generalisation, namely

D
0 x,θ

α is called the Riesz–Feller fractional operator. Gorenflo and Mainardi [21], proved 

that the Riesz–Feller operator as, θ = 0 , is formally a power of the positive definitive 
operator D

0 x

2 = − d2

dx2
 , i.e. −(−D

0 x

2)α/2 = D
0 x

α , i.e. the generalisation to the fractional dif-

ferential operator is natural. The Fourier transform of (2.1) reads

where θ is the parameter of asymmetry (skewness) which is introduced by Feller, see 
Feller [5], Gorenflo et. al. [21, 22]. These pioneer researchers proved that the characteris-
tic function û(κ , t) belongs to the class of α-stable probability densities that reads

where ĝα(κ , t; θ) is the Fourier transform of the Green function corresponding to the 
initial condition gα(x, 0; θ) = δ(x) . The solution of Eq. (2.1) can be written as

and the special case as θ = 0 ,one has

The asymptotic behaviour of this solution is

, and this is called the Lévy long tail. This agrees with the theory of stochastic processes 
having α-stable distribution. In which the jump density function for the random jump X 
is denoted by p(x), and its characteristic function p̂(κ) , see [23], is defined as

(2.1)
∂ u(x, t)

∂t
= D

0 x,θ

α u(x, t) ,u(x, 0) = f (x) = δ(x − x0) , 0 < α ≤ 2 .

∂ ˆu(κ , t)

∂t
= −D|κ|αe iθπ

2 sig(κ) ˆu(κ , t),

(2.2)ĝα(κ , t; θ) = exp[−t|κ|α e iθπ
2 sig(κ)] , û(κ , 0) = p̂(κ) ,

u(x, t) =
∞∫

−∞

gα(x − ζ , t; θ)f (ζ ) dζ , ∀t > 0 ,

(2.3)ˆu(κ , t) = e−Dt|κ|α .

(2.4)u(x, t) ≈ Dt

|x|1+α
,

p̂(κ) =
∞∫

−∞

eiκxp(x)dx.
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It is known that the Feller–Riesz operator is symmetric as 
p(x) = 1− p(−x) p̂(−κ) = p̂(κ) . Gendenko and Kolmogorov [24] proved that the jump 
width density function of Feller–Riesz operator belongs to the α-stable distribution of 
the form

where κ ∈ R , c ≥ 0 , µ′ > 0 and |β ′| ≤ 1 . β ′ is the symmetry parameter. It determines the 
skewness of the distribution. β ′ = 0 is corresponding to a symmetric distribution. c is 
the scale parameter. It determines the spread of the samples from a distribution around 
the mean. µ′ is the location parameter, and Exp[iµ′κ] basically corresponds to the shift 
in the x − axis of the probability density function. For 1 < α ≤ 2 , µ′ represents the mean 
and for 0 < α ≤ 1 , it represents the median. The stable distribution is said to be standard 
if µ′ = 0 and c = 1 . The function w(κ ,α) is defined as

Abdel-Rehim [25] studied the fundamental solutions of the space-fractional diffusion 
and that are driven by using the Lévy convergent distribution functions Lα . One can 
notes that the regular Brownian motion differs than the Lévy flights by the occurrence of 
extremely long jumps ∼ |x|−1−α , 0 < α < 2 . Abdel-Rehim [17, 26] studied the theory of 
the continuous random walk and its relation to the space-fractional operators. Abdel-
Rehim [17] and [26] presented the simulation of the continuous time random walk of the 
space fractional differential equation (2.1) and equation (1.7) after replacing Lfp by Lαfp 
that reads

for all values of α and β . The simulations are consistent with the theory of the Brownian 
motion i.e. as α = 2 and the Lévy distribution as 0 < α < 1 , α = 1 and 1 < α < 2 . Sofar, 
the processes that their random walks exhibit Lévy flights and satisfy that the natural 
properties (1.6) could be mathematically modelled by space-fractional differential equa-
tions. Theses processes are always related to the diffusion of particles, solutes or gases in 
fractal medias.

Finally, Not any partial differential equation should be extended to space-fractional 
differential equation.
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(2.5)Lα = logp̂(κ) =
{
iµ′κ − c |κ|α{1+ iβ ′ κ

|κ|w(|κ|,α)} if α �= 1 ,

iµ′κ − c |κ|{1+ iβ ′ κ
|κ|w(|κ|,α)} if α = 1 ,

(2.6)w(|κ|,α) =
{
tan πα

2 if α �= 1 ,
(2/π)log |κ| if α = 1 ,∈ R .

Lαfp = D
0 x

α (a(x, t)u(x, t))− ∂b(x, t)u(x, t)

∂x
,
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