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Introduction
Differential equations with non-local conditions were considered in many works (see [1],
[2], [3], and [4]). Also, anti-periodic problems can be found in [5] and [6].

Here, we study the existence of at least one solution for the boundary value problem

with non-local and periodic conditions:

X)) = f(&t x(t), ' (t)) aet € (0,27), 1)
x(0) = x(2m) and Y ;L axx(tp) = %o
wherexg e R,O< 11 <7y < - <Ty <2manday #O0forallk=1,2,--- ,m.
Also, the boundary value problem with integral and periodic conditions:
K'(t) = f(¢, x(@), ¥ () ae. t € (0,27), @
x(0) = x(27) and [77 x(t)dt = xo

will be considered.

Problem (2) was studied in [7], but the author has not shown the equivalence between
the differential problem (2) and the integral equation equivalent with it.

Here, we prove, by using nonlinear alternative of Leray-Schauder type, the existence of
at least one solution for problem (1) such that the functionf : I x R x R — R, I =[0, 2x]
satisfies the growth conditions.

Preliminaries

Theorem 1 (Nonlinear alternative of Leray-Schauder type) [8] Let E be a Banach
space and Q be a bounded open subset of E, 0 € Q and T : Q@ — E be a completely
continuous operator. Then, either there exists x € 92, . > 1 such that T (x) = Ax, or there
exists a fixed point x* € Q.
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Denote by C(I) the space of all continuous functions defined on the interval I with
norm

llullc = sup [u(D)]
tel

and by L; (/) the space of all Lebesgue integrable functions on the interval / with norm

lullL, = / |lu(®)| dt.
1
The growth condition on the function f means that

f(&uw)| < at) + blul,

where a(t) € L1, b is a nonnegative constant.

Main results

Let the function f : I x R x R — R satisfy the following assumptions:

(1) f:1xRxR— Rismeasurablein ¢ € [ for any (u1,u2) € R X R
(2) f:1IxRxR— Riscontinuous in (#1,u3) € R x Rforanyt e[
(3) There exist two positive constants b1, by and a function ¢(¢) € Ly () such that

f@t ur, u2)| < c@® + bilurl + by ual.

Integral representation

Lemma 1 Let the assumptions (1)—(3) be satisfied. If the solution of the boundary value
problem (1) exists, then it can be represented by

m T
x(t) = A (xo - ) / (e — $) ¥(s) ds)
k=1 0
m -1 2 t
+(t - A Z ay Tk ( / Qr — s)y(s) ds) + / (t — s) y(s) ds,
( k=1 ) 2 Jo 0

where
y@) = f @& @),520), (3)
m o
yi(t) = A (xo — Z ay /0 (tx — 8) y(s) ds)
k=1

m _1 2
+ (t — A ,; ax rk) (2]_[ /0 Q2r — 5) y(s) ds)

t
+ / (t — s)y(s)ds
0
-1 27 t
and y)(t) = — @Qr — s)y(s)ds + / y(s)ds, tel.
2r 0 0

Proof Lety = x"(¢) = f (¢, x,%). O
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Integrating both sides, we obtain
t
X (@) — £ 0) = f y(s) ds.
0
Integrating again, we get

x(t)

t s
2(0) + tx(0) + / / ¥(0) do ds
o Jo

t
x(0) + tx'(0) + / t — 5)y(s) ds.
0

From the boundary condition, we obtain

-1 2
X(0) = — / Q2 — s) y(s) ds,
2 0

then
¢
X () = £ (0) + / y(s) ds
0
-1 27 t
= — Qr — s)y(s)ds + / y(s) ds. (4)
2 Jo 0
Now,

¢
x() = x(0) + tx'(0) + / t — s)y(s) ds,
0

then x(tx) = x(0) + 7 ' (0) + /Tk (tx — 8) y(s) ds
0

m m m m i
and Y arx(t) = x0) Y ax + Y a0 + Y a /O (tx — $) y(s) ds.

k=1 k=1 k=1 k=1

Take A = (}_}L, ax)~!, then

m m T
x(0) = A (xo — Z ay 1 %' (0) — Z ax /0 (tx — 5) y(s) ds).
k=1 k=1

Substituting the values of ' (0) and x(0) in x(¢), we get

m Tk
x(t) = A (xo - > / (tx — ) ¥(s) ds)
k=1 0
m -1 2 t
+ (t — A Z ay l'k> ( / Q@ — s)y(s) ds) + / (t — s) y(s) ds.
P 2 Jo 0

(5)
Inserting (4) and (5) inx”(¢) = f(¢, x(¢), ¥'(¢)), we get

m %
=f (t, A (xo — Z ay /0 (zx — ) y(s) ds)
k=1
m -1 21
+ (t — A kX_; ay rk> (2” /0 @r — s) y(s) ds>

t _ 2 t
+ / (t — 5) y(s) ds, -1 / Qr — s)y(s)ds + / y(s) ds) , t€l0,2x].
0 2m Jo 0
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Existence of solution
Define the operator T by

Ty®) =f& y1(t), y2(0)), tel

where
m %
7 = A (xo - > fo (tx — $)y(s) ds)
k=1
m -1 2
+ (t — A ,(Z:; ay rk) <271 /0 @ — s) y(s) ds)
t
+ / (t — s)y(s)ds
0
and

-1 2r t
y2(2) = o / @Qr — s)y(s)ds + / y(s) ds.
T Jo 0

Firstly, we prove that the functional Eq. (3) has at least one solution y € L;(J); in order to
do that, we will show that the operator T has a fixed point y € Ly (I).

Theorem 2 Let the function f : I x R x R — R satisfy the assumptions (1)—(3) and the
following assumption:

(4) Every solution y(.) € L1(I) to the equation

y&) = yf (& y1(1), y2(t)) ae.onl, y € (0,1)

satisfies ||y||z, # r (r is arbitrary but fixed).

Then the operator T has a fixed pointy € Li(I), which is a solution to Eq. (3).

Proof Let y be an arbitrary element in the open set B, = {y : ||y|l1, <1,
llellz, +27b1|A|lxo]

T = I-(8n%bi+27 by A [y, ax ol +4 7 by)

> 0}. Then from the assumptions (1)—(3), we
have
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2
NTyllL, =/O |Ty(t)| dt
2
- f If 6310, 7200)| de
0
2
5/0 [lec®] + b1 @) + by ya(®)l] dt

21

2
<llell, + blf ) de + b2[ bl dt
0 0

2 m Tk
<llelle, + b f A <xo - Y @ f (@ — )y ds)
0 k=1 0
m ~1 2
— A — 27 — d
+ (t ](X:; ax rk> (271 /0 (V24 s) y(s) s)

2
dt + by /
0

-1
— dt
2

t 2w t
+/ t — s) y(s) ds / Q2r — s) y(s) ds + / y(s) ds
0 0 0

2 m Tk
<llell, + blf Afxo - Y akf (e — 5) y(s) ds || dt
0 k=1 0
27 m -1 2
b t— A — 2 — ds)| dt
+ lfo ( kgam>(2’f fo @7 = 9y s)

-1

— dt
2

2
/ 2 — s) y(s) ds
0

2w
dt + bz/
0

2 t
+b1[ / t — s) y(s) ds
0 0

2 t
+ by / f ly(s)| ds dt
0 0

o 2 m T
<licliny + b [ A xol dt + by f 4y / (% — 9 y(s) ds| dt
0 0 et 0
2 1 2
+ b / t|— / Q2r — s) y(s) ds| dt
0 2 Jo
2 m 1 2
b A — 27 — ds| dt
+ 1/0 ];“kfk ’Zn [0 2 — ) y(s) ds
2T p2mw 2 2w s
+b1/ / (t — s) |y(s)| dt ds + by / / (11— =—) |y(s)| ds dt
0o Js 0 0 27
2m 2
+ by / f ly(s)| dt ds
0 s
2 m 2
<lill + 2x bl + by [ 4w [ @x - 956 d
0 0

k=1

2 2 s 2
+ by / t / (1= =) |y(s)| ds dt + by /
0 0 2 0

2w 2

& -9
b - 7
+1/(; 5

2
+ by / 2 — ) |y(s)| ds
0

m

A Z ar Tk
k=1

2 2
2 y(s)l ds + by /0 /0 ly(s)| ds de

2 s
|7 a-ordsa
0 J

2
/ 27n) |y(s)| ds dt
0

2
/ |y(s)| ds dt
0

2
dt + 27w by / ly(s)| ds
0

2
<llell + 27 by Al Inol + by /
0

2 2 2
+ by / t / |y(s)| ds dt + by /
0 0 0

2 o — 5‘2
+h / = s ds + b bl
0

m
A Z ar
k=1

m

A Z ar Tk
k=1
21

2 2n)?
< llellz, + 2m by |Al vl + @m)” by [l + b1 Il ——
S @n)?
+2m by ALY ag el Iyl + 5 bl + 27 by (Wl + 27 b2 [y

k=1

<\llelly, + 27 b1 |A] lxol + 4 7% by |yl + 272 by |IyllL,

m
+21 by ALY a el Iyl + 27% b Iyl + 47 by [yl
k=1
m
=llell, + 27 b1 Al [xol + 87 by Iylle, +27 ba Al 1Y ax wl Iyl + 47 by [yl
k=1
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The above inequality means that the operator T maps B, into L;. O

Also, from assumption (2), we deduce that 7" maps B, continuously into L; (J).

Now, we will use Kolmogorov compactness criterion (see [9]) to show that T is compact.
So, let ¥ be a bounded subset of B,. Then T'(R) is bounded in L; (/). Now we show that
(Ty)p, — Tyin L1(I) as h — 0, uniformly with respect to Ty € T X.

Indeed:

2
N(T»n — D, = /0 | (Ty)n() — (Iy)@) | dt

2w 1 t+h
=A L/’(mmw—awom

t
2 1 t+h
5/ (h/ umw—awm%)m
0 t
1
A

2
S—/
0

m
Al < Hlellz, +27 b |A] x| +8 w2 by [Iyllz, +27 by AI1Y ax wl Iz, +47 by [l
k=1

t+h
/ [ (5,510, y2(5)) — f(&31(0), y2(D)) | ds dt.
t

Since

we have that f in L; (/). So, we have (see [10])

1 t+h
7 / [f(s,91(5), y2(5)) — f(&,y1(2), y2(t)) | ds — O,
t

fora.e. £ € I. So, T(R) is relatively compact, that is, T' is a compact operator.
Now from assumption (4) and Theorem 1, we get that T has a fixed point y € L1 ().

Theorem 3 If the assumptions of Theorem 2 are satisfied, then the periodic and non-
local boundary value problem (1) has at least one solution x € C(I).

Proof Let x(t) be a solution of (5)

m %
x(t) =A (xo - Z ay /0 (tx — 8) y(s) ds)

k=1

m _ 27 t
+ (t — A Z ax rk) (27: /0 Qr — 5) y(s) ds) + /0 (t — s)y(s) ds,

k=1

by differentiation, we obtain

-1 [ ¢
X)) = — / Q2r — s) y(s) ds + / y(s) ds.
21 0 0
Since Theorem 2 proved that y € L;(J), then by differentiating again, we get
&) = y(t) = [t x(1), &' (D).

Substituting respectively by x = 0 and x = 27 in (5), we get

m T m _ 21
x(0)=A (xo—z “k/ ‘ (tx — s) y(s) ds) + (—A Z“k@) (2711 / 2r —3) y(s) ds)
k=1 0 k=1 0

(6)
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and

xQ2r)=A (xo - Z ax /Tk (tk — ) y(s) ds)
k=1 0
m -1 2w 2w
+ (271 — A kz:; ay rk> (E /0 Q2r — ) y(s) ds) + /0 @r — 5)y(s) ds

m T m _ 2
=A (xo — Zﬂk/ ¢ (tx — 5) ¥(s) ds) + <— A Zﬂkfk> (2—; / Qm —5) y(s) ds) .
k=1 Y0 k=1 0

(7)
From (6) and (7), we get x(0) = x(27). O
Also,
m %
w10 = A (xo - a [C @ -9 ds)
k=1
m -1 2 T
T — A Z ay Tk (g /(; Qr — s)y(s) ds) ‘/(; (tx — ) y(s) ds,
ap x(tx) =ar A (x ax / (tx — 8) y(s) ds)
4 0

21 .
+ ay (Tk -4 Z ak ‘Ek> 2m — 8)y(s) ds) + ay / k(,k — $)y(s) ds,
0 0
Z a x(tx) = Z ax A (xo - Z ak / (tx — 9)y(s) ds)
k=1 k=1 k=1 0
= " _ 2 m .
+ /(2:; 4k (Tk -4 kX:; ax Tk) (2711/0 2m — 5)y(s) ds) + ](Z:; ak/(; k(rk — 8)y(s) ds

= X0 .

Then the periodic and non-local boundary value problem (1) is equivalent to the integral
Eq. (5). Hence problem (1) has at least one solution x € C*(I).

Theorem 4 If f : I x R X R — R satisfies the assumptions of Theorem 2, then the
boundary value problem (2) has at least one solution x € C'(I), and its solution is given by

1 21 T — 2
x(t) = o <xo - /0 %y(s) ds)

_ 2 ¢
-1 / Q2r — 5) y(s) ds) + / (t — ) y(s) ds. (8)
0 0

+ (- m) <271

Also,

t
& () = £ (0) + / y(s) ds
0

-1 2

t
= — Q2r — s)y(s)ds + f y(s) ds.
2 Jo 0

Proof If we take ay =ty — tx—1, Tk € (tr—1,tx) and 0 < t; < £p < ... < 27, we get

>t~ te-)x(m) = 0.

k=1
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By taking the limit as m — 00, we get fozﬂ x(t)dt = xy. O
Also, take the limit as m — oo in (5):

m %
x(t) = A [x — Z ai /o (tx — s) y(s) ds
k=1

m _ o t
+ |t — A Z ai Tk (1 / Q2r — 5) y(s) ds) + / (t — s) y(s) ds,
Pt 27 Jo 0

we obtain (8):

1 2 20T — 2
x(t) = o (xo — /0 %y(s) ds)

2w t
+ (t — m) (Zn fo Q2r — ) y(s) ds> + /0 (t — s)y(s) ds.

This completes the proof.
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