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Abstract
LetWn be the set of smooth complete simply connected n-dimensional manifolds
without conjugate points. The Euclidean space and the hyperbolic space are examples
of these manifolds. LetW ∈ Wn and let A and B be two convex subsets ofW. This note
aims to investigate separation and slab horosphere separation of A and B. For example,
sufficient conditions on A and B to be separated by a slab of horospheres are obtained.
Existence and uniqueness of foot points and farthest points of a convex set A in
W ∈ W are considered.
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An introduction
Let ω be a unit tangent vector to a smooth complete simply connected manifold without
conjugate points W ∈ Wn at a point p ∈ W . Let α be the unique geodesic with tangent
ω = α′ (0) and p = α (0). The Busemann function bω : W ∈ Wn → R is defined by

bω (x) = lim
t→∞ [t − d (x,α (t))] , (1)

where d is the distance function. The right hand side is well-defined and the Busemann
function bω is smooth in a complete simply connected manifold without conjugate point
W ∈ Wn whereas bω is at least C2 given that W has no focal points(see [1, Theorem
2]). The level set of a Busemann function, that is b−1

ω (0), is called a horosphere Hω (p)
where p = α (0). Likewise, the open and the closed horoballs in W ∈ Wn are defined as
the sets Dω (p) = b−1

ω ((0,∞)) and D̄ω (p) = b−1
ω ([0,∞)) respectively. Let α (t) be the

geodesic passing through a point p ∈ W ∈ Wn with α′ (0) = ω. It is well-known that
the horosphereHω (p) is the limit of the geodesic spheres S (α (t) , t) passing through p =
α (0) and having center α (t) as t → ∞. The horospheres Hu (p) , u = α′ (0) , p = α (0)
and Hv (q) v = α′ (a) , q = α (a) are called co-directional or parallel horospheres and
parallel horospheres touch each other at infinity. Notice that the horopsheres Hω (p) and
H−ω (p) have p as their unique common point; otherwise, they coincide. Hyperplanes are
horospheres in the Euclidean space En. The horosphere Hω (p) with a given direction ω

and a given point p is unique. Finally, the horospheres, as a level surfaces of a Busemann
function, are equidistant family of surfaces whose orthogonal trajectories are geodesics.
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It is noted that, thanks to the well-known Hopf-Rinow theorem, there is a length mini-
mizing geodesic segment joining each pair of points in a complete connected Riemannian
manifoldW. If, in addition,W is simply connected and has no conjugate points, then the
exponential map is a covering map and each pair of points is joined by a unique and hence
minimal geodesic(see Section 10.7 of [2]). Finally, a set A of W ∈ Wn is compact if and
only if it is closed and bounded. All manifolds with negative curvature are members of
Wn. For example, the hyperbolic Poincare upper half-plane model

H2 = {(x, y) ∈ R
2 : y > 0},

equipped with themetric g11 = g22 = y−2 and g12 = 0 lies inW2 (see [3] formore details);
however, the unit sphere S2 does not lie in W2 since all antipodal points are conjugate
points.
A subset A of W ∈ Wn is convex if the geodesic segment

[
pq

]
joining any two points

p, q ∈ A lies in A. Three different definitions of convex sets in general Riemannian mani-
folds were studied in [4]. The whole manifoldW geodesics are all convex sets. Also, open
and closed geodesic balls of manifolds with negative curvature are convex sets. On the
other hand, the union of two different geodesics is not convex and the complement of a
convex set is not necessarily convex. Note that the existence and uniqueness of geodesic
segments in these manifolds is trivial; however, for example, the whole sphere Sn is not
convex since antipodal points have many minimal geodesic segments joining them. Con-
vex functions are also deeply studied in Riemannian geometry (the reader is referred to
[5] for a detailed study of convex functions on manifolds with negative curvature).
Let p be a point in a complete simply connected manifold without conjugate pointW ∈

Wn. The point p has a foot point f in subset A of W if the distance function l : A → R

defined by l (x) = d (p, x) , x ∈ A attains its minimum at f. The point p is said to have a
farthest point F in A if the function l attains its maximum at F [6, 7]. The geodesic ray
starting at p and passing through q is denoted by R (pq), and the entire geodesic passing
through them is denoted by G (pq).
Convex sets, foot, and farthest points play a very important role in both convex analysis

and optimization (see for example [8–10] and references therein). Generalizations and
extensions of convex sets and their separation and supporting surfaces are of particular
interest [11, 12]. Each pair of points in a simply connected smooth Riemannian manifold
without conjugate points has a unique and hence minimal geodesic joining them whereas
manifolds without focal points has convex geodesic spheres [13–17]. It is well-known
that the class of complete simply connected manifolds without focal points is a proper
subclass of Wn. Manifolds with non-positive sectional curvatures have no focal points
[18–22]. Horospheres and totally geodesic hypersurfaces in W ∈ Wn play a significant
role in defining both supporting and separation theorems for convex sets.
In this note, the concepts of separation and horosphere slab separation of convex sets

are studied in W ∈ Wn. Sufficient conditions for two disjoint closed convex sets to be
separated by a slab of horosheres are given. Foot and farthest points of a convex set in
W ∈ Wn are considered.

Foot and farthest points of a convex set A inW ∈ Wn

This section is devoted to the study of foot and farthest points of a convex set A in W ∈
Wn. The geodesic sphere with the center at p and radius r is denoted by S (p, r) and the
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corresponding open and closed geodesic balls are denoted by B (p, r) and B̄ (p, r).
Let us begin with the following simple but important result.

Proposition 1 In a complete simply connected Riemannian manifold without conjugate
points W ∈ Wn, the following statements are true.

1. If α is the unique geodesic parameterized by arc length with α (0) = x, α′ (0) = ω,
and α (r) = p, then the geodesic segment

[
xy

]
intersects B (p, r) for any y ∈ Dω (x).

2. Let B (p, r) be a geodesic ball with the center at p and radius r, then any point
x �= p has a foot point f = S (p, r) ∩ R (px) in S (p, r).

Theorem 1 Let W ∈ Wn be a manifold without focal points and A be a non-empty
closed convex subset of W. Then, each point p of W has a unique foot point.

Proof Since W has no focal points, the geodesic ball B̄ (p, r) is convex and hence A ∩
B̄ (p, r) is either convex or empty. The result follows easily if p ∈ A. So, assume that p /∈ A.
Let q be in A and r = d (p, q). It is clear that G = A ∩ B̄ (p, r) is a closed no-empty convex
subset of B̄ (p, r). Then, G is compact. Define the real-valued function f (x) = d (p, x) on
G. f is continuous function and consequently attains its minimum at a point f in A. To
show that f is unique, assume that p has two foot points f1 and f2 in A. Then, the closed
ball B̄ (p, r) touches A twice where d

(
p, f1

) = d
(
p, f2

) = r (see Fig. 1). The open segment
(
f1f2

)
is contained in G since G is convex, and so both f1 and f2 are not foot points of p.

This contradiction shows that f is unique(see Fig. 1).

Corollary 1 Let W ∈ Wn be a manifold without focal points and A be a non-empty
closed convex subset of W and let p /∈ A. If f is a foot point of the point p, then f is the unique
foot point of any q ∈ (

pf
)
in A. Likewise, if p has a farthest point F in A from and p ∈ (Fq)

for some point q, then q has F as its unique farthest point in A.

The following theorems represent two analogous results to the above ones.

Theorem 2 Let W ∈ W2 and A be a non-empty convex subset of W. If p ∈ W \ A has a
foot point f in A, then f is a foot point in A for every point of R

(
fp

)
.

Fig. 1 Uniqueness of foot points in a convex set
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Proof There is a geodesic γ supporting A at f since A is convex. Let α be the unique
geodesic with f = α (0) and p = α (r). Let Hv

(
f
)
be the horosphere with v = α′ (0). The

closed ball B̄ (q, l), l = d
(
q, f

)
is contained in D̄v for any point q ∈ R

(
fp

)
. Thus, f is the

unique foot point of q in A (see Fig. 2).

Theorem 3 Let W ∈ Wn and A be a non-empty compact subset of W. Then, every point
p /∈ A has a farthest point in A.

Proof The function l : A → R defined on A by l (x) = d (p, x) for every x ∈ A is a real-
valued continuous function. Since A is compact, l attains its maximum at a point in A say
F. Thus, F is the farthest from p in A.

Separation of convex sets inW ∈ Wn

Separation of two convex sets in the Euclidean space En is widely used in optimization.
The most well-known separation theorem says that any two non-empty disjoint convex
sets in the Euclidean space are separated by a hyperplane. There are more restrictive
separation theorems for different types of convex and non-convex sets.
In Riemannian geometry, it is natural to ask the following question. What is the best

candidate for a hyperplane in separation theorems? Horospheres in complete simply Rie-
mannianmanifolds without conjugate points play this significant role in separation of two
convex sets.
A slab in the Euclidean space is the region bounded by two parallel hyperplanes. Here,

a slab of horospheres along a geodesic α is the region bounded by Hα′(0) and Hα′(r). It is
denoted by Sα [0, r] (see Fig. 3). Two sets A and B are said to be separated by a slab of
horospheres if there is a geodesic α such that A and B lie in two different sides Sα [0, r].

Theorem 4 LetW ∈ Wn be a complete simply connected Riemannian manifold without
conjugate points and A, B be two non-empty disjoint convex subsets of W. A and B are

Fig. 2 Supporting at foot points
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Fig. 3 A slab

separated by a slab of horospheres if one of them is bounded and the second is supported
by a horosphere at every boundary point.

Proof Assume that A is bounded and B has a supporting horosphere at each point p ∈
∂A. The real-valued function l defined on A by l (x) = d (x,B) for every x ∈ A. l attains
its minimum value at a point p ∈ A since A is compact and l is continuous. The point p
has a foot point f ∈ B where p �= f . B has a supporting horosphere Hα′(r) (q) where α be
the unique geodesic with α (0) = q and α (r) = p. ince B is convex and hence supported
by a totally geodesic hypersurface at q that separates B and Hα′(0). Now, the slab Sα [0, r]
separates A and B (see Fig. 4).

Corollary 2 Let W ∈ Wn and A, B be two non-empty disjoint convex subsets of W. A
and B are strictly separated if one of them is compact and the other one is closed.

The Euclidean version of the above theorem is as follows (see Theorem 7.6 in [12]).
Note that the term convex is replaced by the term compact.

Fig. 4 Slab separation
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Theorem 5 Let A, B be two non-empty disjoint compact subsets of the Euclidean space
En. A and B are strictly separated by a slab if and only if for each set T of n + 2 or fewer
points of A ∪ B the sets A ∩ T and B ∩ T are separated by a slab.
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