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Abstract

In this paper, we introduce two families of general bivariate distributions. We refer to
these families as general bivariate exponential family and general bivariate inverse
exponential family. Many bivariate distributions in the literature are members of the
proposed families. Some properties of the proposed families are discussed, as well as a
characterization associated with the stress-strength reliability parameter, R, is presented.
Concerning R, the maximum likelihood estimators and a simple estimator with an explicit
form depending on some marginal distributions are obtained in case of complete
sampling. When the stress is censored at the strength, an explicit estimator of R is also
obtained. The results obtained can be applied to a variety of bivariate distributions in the
literature. A numerical illustration is applied on some well-known distributions. Finally a
real data example is presented to fit one of the proposed models.

Keywords: Stress-strength reliability, Exponential distribution model, Inverse exponential
distribution model, Maximum likelihood estimator

Mathematics Subject Classifications: 62N05, 62E10, 62F10, 62G05, 62N02
Introduction
Mokhlis et al. [1] presented two forms of survival functions, given by

F u; θ; cð Þ ¼ e−θg1 u;cð Þ; ð1Þ

F u; β; cð Þ ¼ 1−e−βg2 u;cð Þ; ð2Þ

where g1(u; c) does not contain θ, θ ∈Θ, and g2(u; c) does not contain β ∈ β, c ∈C, { Θ,
β, and C} are the parametric spaces, where g1(u; c) is a continuous, monotone increas-

ing, and differential function such that g1(u; c)→ 0 as u→ 0 and g1(u; c)→∞ as u→∞,

while g2(u; c) is continuous, monotone decreasing and differential function such that

g2(u; c)→ 0 as u→∞ and g2(u; c)→∞ as u→ 0. With appropriate choices of gi(u; c),

i = 1, 2, in (1) and (2), many distributions in the literature can be obtained, such as ex-

ponential distribution, Weibull distribution, Rayleigh distribution, Pareto, Lomax, and

others from the first form (1), and inverse exponential distribution, inverse Weibull

distribution, inverse Rayleigh, Burr type III distribution and others from the second

form (2), see Mokhlis et al. [1]. For facilitation we will denote the forms (1) and (2) by

EF(θ, c) and IEF(β; c) and denote its survival functions and probability density function

by FEF(u; θ, c), fEF(u; θ, c) and FIEF(u; β, c), fIEF(u; β, c), respectively.
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In the area of stress-strength models, there have been a large amount of work

regarding estimation of the reliability parameter, R = P(Y < X), when X and Y inde-

pendent random variables belonging to the same univariate family, see for example

Mokhlis [2], Kundu and Gupta [3], Singh et al. [4] and others. Recently, Mokhlis

et al. [1] discussed R, when the variables are independent with survival functions

having forms (1) and (2), respectively. Indeed, many real situations entail that X

and Y are related in some way. However, some authors have studied the stress-

strength reliability parameter, R, for some specified bivariate distributions, see for

example Kotz et al. [5], Mokhlis [6], Nadarajah and Kotz [7], Nguimkeu et al. [8],

Pak et al. [9] and, Abdel-Hamid [10].

There are many methods in the literature for obtaining bivariate distribution.

Some of the popular methods are the copula type, the bivariate pseudo type and

the Marshall-Olkin type. Recently many attempts of obtaining generalized bivari-

ate distributions using these types are presented in the literature. Among those

are Kolesarova et al. [11], Arnold and Arvanitis [12], El-Bassiouny et al. [13] and

Sarhan [14].

In the present paper, we introduce two bivariate models of distributions which

are types of the bivariate Marshall-Olkin distribution. We call these models bivari-

ate exponential and bivariate inverse exponential models. Some properties of the

proposed models are discussed. Many bivariate distributions in the literature can

be considered as special cases or members of our models, for example, Marshall

and Olkin (M-O) bivariate exponential distribution and M-O bivariate Weibull

introduced by Marshall and Olkin [15] and the bivariate Rayleigh distribution

introduced by Pak et al. [9].

An explicit expression of the stress-strength parameter R is obtained showing

that it is not a function of the parameter c (c could be a vector parameter). The

maximum likelihood estimator of R is obtained as well as simple estimators of R

are obtained in a closed form depending on the marginal distribution of X and the

distribution of min{X, Y} or depending on the marginal distribution of Y and the

distribution of max{X, Y}. Since many bivariate distributions in the literature belong

to the proposed families, the results obtained could be applicable to a variety of

bivariate distributions.

The remaining part of the paper is organized as follows: In the “Proposed fam-

ilies of bivariate distributions” section, we introduce two new families (models) of

bivariate distributions. Some characterization of the proposed models such as

marginals and the distribution of min{X, Y} and max {X, Y} are also discussed. The

stress-strength reliability parameter, R, concerning the new models is considered

in the “Stress-strength reliability” section. In the “Point estimation of R” section,

we obtain maximum likelihood estimators of R as well as simple estimators of R

depending on some marginal distributions in case of complete sampling. When

the stress is censored at the strength, an explicit estimator of R is also obtained.

Some bivariate members of the proposed family are presented in the “Special

cases” section. In the “Numerical illustrations” section, a numerical illustration

using some well-known distributions is performed to highlight the theoretical re-

sults. Also an application is introduced using real data example. Finally conclu-

sions of the results obtained are introduced in the “Conclusions” section.
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Proposed families of bivariate distributions
In this section, we introduce two new families of bivariate distributions with marginals

having distributions with forms (1) or (2). We apply a similar technique of that pro-

posed by Marshall and Olkin [15], for obtaining these families.

The construction of the families (models)

Lifetime model

Suppose that a system consists of two subsystems, say A and B. Subsystem A contains

two components, say A1, and C, connected in series (parallel) with lifetimes U1 and

U0 , respectively. Subsystem B contains the two components, say B1 and C, connected

in series (parallel), where the lifetime of component B1 is U2.

Suppose that Ui, i = 0, 1, 2. , are independent random variables following EF(θi, c),

i = 0, 1, 2 for the series case and IEF(βi; c), i = 0, 1, 2. , for the parallel case, i.e.,

FUi uð Þ ¼ FEF u; θ; cð Þ ¼ e−θig1 u;cð Þ; i ¼ 0; 1; 2; for the series case;

F IEF u; β; cð Þ ¼ 1−e−βig2 u;cð Þ; i ¼ 0; 1; 2; for the parallel case:

(
ð3Þ

If X and Y are the lifetimes of the two subsystems A and B, respectively, then we have
X =min {U0,U1} and Y =min {U0,U2}., for the series case, while X =max {U0,U1}

and Y =max {U0,U2}, for the parallel case.

Stress model

Consider a two-component system and consider three independent stresses say U0, U1,

and U2. Each component is subject to an individual stress say U1 and U2, respectively,

while U0 is an overall stress transmitted to both the components equally. Then,

1. The observed stress on the two components is X =max {U0,U1} and Y =max {U0,U2}.,

respectively.

2. If the stresses are always fatal, then the lifetime of the two components are

X =min {U0,U1} and Y =min {U0,U2}.

We can observe that in the two models there is the possibility of having X = Y; thus,

the two models have both an absolute continuous part and a singular part, similar to

M-O bivariate exponential model.

Theorems 1–3 present the survival functions and the probability density functions of

the proposed bivariate families.

Theorem 1 Suppose Ui, i = 0, 1, 2., are independent random variables following

EF(θi; c), i = 0, 1, 2., and let X =min {U0,U1} and Y =min {U0,U2}; then, the bivariate

vector (X, Y) will have the survival function

FBEF X;Yð Þ ¼ exp −θ1g1 x; cð Þ−θ2g1 y; cð Þ−θ0g1 max x; yf g; cð Þ� �
: ð4Þ

Proof Obviously, from FX;Y ðx; yÞ ¼ PðX > x;Y > yÞ, we can write FBEFðX;Y Þ as
P min U0;U1f g > x; min U0;U2f g > yð Þ ¼ P U1 > x;U2 > y;U0 > min x; yð Þð Þ:

Since Ui are independent random variables following EF(θi; c), i = 0, 1, 2.
Hence, (4) holds.
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We will denote the bivariate distribution with survival function having the form (4)

by BEF(θ0, θ1, θ2; c). Clearly, X and Y are independent if and only if (iff) θ0 = 0. The joint

survival function can also written as

FBEF X;Yð Þ ¼ exp − θ0 þ θ1ð Þg1 x; cð Þ−θ2g1 y; cð Þ� �
; if x≥y

exp −θ1g1 x; cð Þ− θ0 þ θ2ð Þg1 y; cð Þ� �
; if y > x

(

Theorem 2 Suppose Ui, i = 0, 1, 2. , are independent random variables following
EIF(βi; c), i = 0, 1, 2. , and let X =max {U0,U1} and Y =max {U0,U2}; then, the bivariate

vector (X, Y) has the cumulative function

FBIEF X;Yð Þ ¼ exp −β1g2 x; cð Þ−β2g2 y; cð Þ−β0g2 min x; yf g; cð Þ� �
: ð5Þ

Proof Similarly as in Theorem 1, using FX, Y(x, y) = P(X < x, Y < y), we can show

that (5) holds.

We will denote the bivariate distribution with cumulative function with the form (5)

by BIEF(β0, β1, β2; c). Clearly, X and Y are independent iff β0 = 0. The joint cumulative

function can also be written as

FBIEF X;Yð Þ ¼ exp −β1g2 x; cð Þ− β0 þ β2
� �

g2 y; cð Þ� �
; if x≥y

exp − β0 þ β1
� �

g2 x; cð Þ−β2g2 y; cð Þ� �
; if y > x

(

Theorem 3 If the vector (X, Y) has either BEF(θ0, θ1, θ2; c) or BIEF(β0, β1, β2; c), then
their joint pdf is given by

f X;Y x; yð Þ ¼
f 1 x; yð Þ; if x > y
f 2 x; yð Þ; if x < y
f 0 xð Þ; if x ¼ y

8<:
ð6Þ

where
f 1ðx; yÞ ¼ θ2ðθ0 þ θ1Þg 0
1ðx; cÞg

0
1ðy; cÞ e−ðθ0þθ1Þg1ðx;cÞ−θ2g1ðy;cÞ; for BEFðθ0; θ1; θ2; cÞ

β1ðβ0 þ β2Þg
0
2ðx; cÞg

0
2ðy; cÞe−β1g2ðx;cÞ−ðβ0þβ2Þg2ðy;cÞ; for BIEFðβ0; β1; β2; cÞ

�
f 2ðx; yÞ ¼ θ1ðθ0 þ θ2Þg 0

1ðx; cÞg
0
1ðy; cÞ e−θ1g1ðx;cÞ−ðθ0þθ2Þg1ðy;cÞ; for BEFðθ0; θ1; θ2; cÞ

β2ðβ0 þ β1Þg
0
2ðx; cÞg

0
2ðy; cÞe−ðβ0þβ1Þg2ðx;cÞ−β2g2ðy;cÞ; for BIEFðβ0; β1; β2; cÞ

�
and

f 0 xð Þ ¼ θ0g
0
1 x; cð Þe−θg1 x;cð Þ; for BEF θ0; θ1; θ2; cð Þ

−β0g
0
2 x; cð Þe−βg2 x;cð ÞÞ; for BIEF β0; β1; β2; c

� �(

With θ = θ0 + θ1 + θ2, β = β0 + β1 + β2 and g
0
iðt; cÞ; i ¼ 1; 2; is the first derivative of gi(t; c)

with respect to t.

Proof Clearly, for the two models, f1(x, y) and f2(x, y) can be easily obtained by using

∂2FX;Y ðx;yÞ
∂x∂y or ∂2 FX;Y ðx;yÞ

∂x∂y for x > y and y > x respectively. For f0(x), we use the relationR∞
0

R x
0 f 1ðx; yÞdydxþ

R∞
0

R y
0 f 2ðx; yÞdxdyþ

R∞
0 f 0ðxÞdx ¼ 1. So, for the BEF, we haveZ ∞

0

Z x

0
f 1 x; yð Þdydx ¼ 1− θ0 þ θ1ð Þ

Z ∞

0
g
0
1 t; cð Þe−θg1 t;cð Þdt

and
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∞

0

y

0
f 2 x; yð Þdxdy ¼ 1− θ0 þ θ2ð Þ

∞

0
g
0
1 t; cð Þe−θg1 t;cð Þdt;

Thus,
Z ∞

0
f 0 xð Þdx ¼ 1− 2− θ0 þ θð Þ

Z ∞

0
g
0
1 t; cð Þe−θg1 t;cð Þdt

� �
¼ θ0

Z ∞

0
g
0
1 t; cð Þe−θg1 t;cð Þdt:

Similarly for the BIEF, we have
R∞ f ðxÞdx ¼ 1þ ðβ þ β Þ R∞ g

0 ðt; cÞe−βg2ðt;cÞdt
0 0 1 2 0 2

¼ −β0
R∞
0 g

0
2ðt; cÞe−βg2ðt;cÞdt.

Hence, the proof is complete.

Notice that both distribution BEF(θ0, θ1, θ2; c) and BIEF (β0, β1, β2; c) are singular on

the line X = Y, since P(X = Y) ≠ 0. Thus the two models have a singular part and an ab-

solute continuous part, similar to Marshall and Olkin’s model. The following theorem

provides explicitly the absolute continuous part and the singular part of BEF and BIEF.

Theorem 4 If the vector (X, Y) has BEF(θ0, θ1, θ2; c) or BIEF(β0, β1, β2; c), then

(i) The survival function for the BEF is

FBEF x; yð Þ ¼ θ1 þ θ2
θ

FBEF að Þ x; yð Þ þ θ0
θ
FBEF sð Þ x; yð Þ; ð7Þ

Where, θ = θ0 + θ1 + θ2, FBEFðsÞðx; yÞ ¼ e−θg1ð maxfx;yg;cÞ is the singular part, and
FBEFðaÞðx; yÞ ¼ θ
θ1þθ2

e−θ1g1ðx;cÞ−θ2g1ðy;cÞ−θ0g1ð maxfx;yg;cÞ− θ0
θ1þθ2

e−θg1ð maxfx;yg;cÞ is the

absolute continuous part.
(ii) The cumulative function for the BIEF is

FBIEF x; yð Þ ¼ β1 þ β2
β

FBIEF að Þ x; yð Þ þ β0
β
FBIEF sð Þ x; yð Þ; ð8Þ

where, β = β0 + β1 + β2, FBIEFðsÞðx; yÞ ¼ e−βg2ð minfx;yg;cÞ is the singular part and
FBIEFðaÞðx; yÞ ¼ β
β1þβ2

e−β1g2ðx;cÞ−β2g2ðy;cÞ−β0g2ð minfx;yg;cÞ− β0
β1þβ2

e−βg2ð minfx;yg;cÞ is the

absolute continuous part.
Proof (i) For the BEF, using the fact that FBEFðx; yÞ ¼ αFBEFðaÞðx; yÞ þ ð1−αÞFBEFðsÞðx; yÞ

∂2FBEF x; yð Þ
∂x∂y

¼ α f BEF að Þ x; yð Þ ¼ f EF x; θ0 þ θ1; cð Þ f EF y; θ2; cð Þ; if x > y
f EF x; θ1; cð Þ f EF y; θ0 þ θ2; cð Þ; if x < y

�
Hence α may be obtained as
α ¼
Z
0

∞Z
0

x

f EF x; θ0 þ θ1; cð Þ f EF y; θ2; cð Þdydxþ
Z
0

∞
Z
0

y
f EF x; θ1; cð Þ f EF y; θ0 þ θ2; cð Þdxdy ¼ θ1 þ θ2

θ
;

and FBEFðaÞðx; yÞ ¼
R∞
y

R∞
x
f BEFðaÞðu; vÞdudv ; hence, with α and FBEFðaÞðx; yÞ known, the

singular part FBEFðsÞðx; yÞ can be obtained by subtraction.

(ii) Similarly for the BIEF, FBIEF(a)(x, y) is computed by using FBIEF(x, y) = γFBIE-

F(a)(x, y) +(1 − γ)FBIEF(s)(x, y), 0 ≤ γ ≤ 1. Using a similar manner as in part (i), we

can show that (8) holds.
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The marginal distributions of X and Y and the conditional distributions are given by

Theorems 5 and 6, while the distributions of min{X, Y}, for the BEF, and max{X, Y}, for

the BIEF, are given by Theorem 7.

Theorem 5 If the vector (X, Y) has either BEF(θ0, θ1, θ2; c) or BIEF(β0, β1, β2; c), then

the marginal distributions of X and Y are either EF(θ0, θi; c) or IEF (β0, βi; c), i=1,2,

respectively.

Proof If (X, Y) has BEF(θ0, θ1, θ2; c), then from (6) we have

f X xð Þ ¼
Zx
0

f 1 x; yð Þdyþ
Z∞
x

f 2 x; yð Þdyþ f 0 xð Þ ¼ θ0 þ θ1ð Þg 0
1 x; cð Þ e− θ0þθ1ð Þg1 x;cð Þ:

Similarly we can derive fY(y). In a similar manner, fX(x) and fY(y) can be shown to

have IEF (β0, βi; c), i=1,2, respectively for the BIEF.

Notice that the marginal distributions of X and Y can also be obtained using the next

lemma.

Lemma 1

(i) Let X =min {U0,U1}, then X ∼ EF(θ0 + θ1; c) iff U0 and U1 are independent and

U0 ∼ EF(θ0; c), U1 ∼ EF(θ1; c).

(ii) Let X =max {U0,U1}, then X ∼ IEF(β0 + β1; c) iff U0 and U1 are independent and

U0 ∼ IEF(β0; c), U1 ∼ IEF(β1; c).

Here “∼” means follows or has the distribution.

Proof (i) for X =min {U0,U1}, we have

P X > xð Þ ¼ P min U0;U1f g > xð Þ ¼ P U0 > x;U1 > xð Þ:

If U0 and U1 are independent and U0 ~ EF(θ0; c) and U1 ~ EF(θ1; c) U1 ∼ EF(θ1; c),
then

P X > xð Þ ¼ P U0 > xð ÞP U1 > xð Þ ¼ e− θ0þθ1ð Þg1 x;cð Þ:

Conversely, if X ∼ EF(θ0 + θ1; c), then
P X > xð Þ ¼ e− θ0þθ1ð Þg1 x;cð Þ ¼ e−θ0g1 x;cð Þe−θ1g1 x;cð Þ:

Then, U0 and U1 are independent and FU0ðxÞ ¼ e−θ0g1ðx;cÞ and FU1ðxÞ ¼ e−θ1g1ðx;cÞ; i.e.
U0 ∼ EF(θ0; c) and U1 ∼ EF(θ1; c).

(ii) Similarly for the BIEF.

Consequently, from Theorems 1 and 2 and Lemma 1, we have the following lemma,

Lemma 2.

Lemma 2

(i) (X, Y) ∼ BEF(θ0, θ1, θ2; c) iff there exist independent EF random variables Ui, i = 0,

1, 2, such that X =min {U0,U1} and Y =min {U0,U2}.

(ii) (X, Y) ∼ BIEF(β0, β1, β2; c) if and only if there exist independent IEF random vari-

ables Ui, i = 0, 1, 2, such that X =max {U0,U1} and Y =max {U0,U2}.

Theorem 6 The conditional distribution of X given Y = y, is given by
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f XjY xjyð Þ ¼

θ2 θ0 þ θ1ð Þ
θ0 þ θ2

g
0
1 x; cð Þ e− θ0þθ1ð Þg1 x;cð Þþθ0g1 y;cð Þ; if x > y

θ1g
0
1 x; cð Þ e−θ1g1 x;cð Þ; if x < y
θ0

θ0 þ θ2
e−θ1g1 x;cð Þ; if x ¼ y

8>>>><>>>>: ð9Þ

for the BEF, while for the BIEF is given by

f XjY xjyð Þ ¼

−β1g
0
2 x; cð Þe−β1g2 x;cð Þ; if x > y

−β2 β0 þ β1
� �
β0 þ β2
� � g

0
2 x; cð Þe− β0þβ1ð Þg2 x;cð Þþβ0g2 y;cð Þ; if x < y

β0
β0 þ β2

e−β1g2 x;cð Þ; if x ¼ y

8>>>>><>>>>>:
ð10Þ

Proof The proof is trivial so it is omitted.

Theorem 7 If (X, Y) is a bivariate vector of continuous random variables, then

(i) min{X, Y}∼ EF(θ; c), if (X, Y)∼ BEF(θ0, θ1, θ2; c),

(ii) max X;Yf g∼IEF β; cð Þ; if X;Yð Þ∼BIEF β0; β1; β2; cð Þ:

Proof (i) if (X, Y) ∼ BEF(θ0, θ1, θ2; c), then using (4), we have

P min X;Yf g > tð Þ ¼ P X > t;Y > tð Þ ¼ e−θ1g1 t;cð Þ−θ2g1 t;cð Þ−θ0g1 t;cð Þ ¼ e−θg1 t;cð Þ:

Similarly by using (5) for the BIEF, we can show that max{X, Y} ∼ IEF(β; c).

Stress-strength reliability
In this section, we present the stress-strength reliability of the two bivariate models.

Many bivariate distributions in the literature have forms of the proposed models, for

example, M-O bivariate exponential distribution, Marshal and Olkin [15], and the bi-

variate Rayleigh distribution introduced by Pak et al. [9] for the BEF and bivariate in-

verse Weibull and bivariate Burr type III for the BIEF. So the following theorem can be

applied to many distributions possessing BEF or BIEF.

Theorem 8 Let (X, Y) be a bivariate vector. Then, the stress-strength reliability func-

tion, R, is given by

(i) R ¼ P Y < Xð Þ ¼ θ2
θ
; ð11Þ

iff (X, Y) BEF(θ0, θ1, θ2; c), where θ = θ0 + θ1 + θ2.

β1
(ii) R ¼ P Y < Xð Þ ¼
β
; ð12Þ

iff (X, Y) BIEF(β0, β1, β2; c), where β = β0 + β1 + β2.

Proof (i) First, suppose that (X, Y) ∼ BEF(θ , θ , θ ; c), then using (6),
0 1 2

R ¼
Z ∞

0

Z x

0
f 1 x; yð Þdydx ¼ θ2

θ
:
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Conversely, suppose that Eq. (11) holds. From Mokhlis et al. ([1], Theorem 1),

since R ¼ θ2
θ0þθ1þθ2

, we have two independent random variables, say, X and U2 where

X ∼ EF(θ0 + θ1; c) and U2 ∼ EF(θ2; c).

From Lemma 1, since X ∼ EF(θ0 + θ1; c), then X =min {U0,U1}, where U0 ∼ EF(θ0; c) and

U1 ∼ EF(θ1; c). Then,

P U2 < xð Þ ¼ P U2 < min U0;U1f gð Þ ≡ P min U0;U2f g < min U0;U1f gð Þ:

Let Y =min {U0,U2}. Thus, using Lemma 2, the proof is completed.
(ii) Similarly, suppose that (X, Y) ∼ BIEF(β0, β1, β2; c), then using (6),

R ¼ P Y < Xð Þ ¼ β1
β
:

Conversely, suppose that Eq. (12) holds. From Mokhlis et al. ([1], Theorem 2), since
R ¼ β1
β0þβ1þβ2

, then we have two independent random variables, say U1 and Y, where U1

must be distributed as IEF(β1; c) and Y must be distributed as IEF(β0 + β2; c). From

Lemma 1, since Y =max {U0,U2}, then U0 ∼ IEF(β0; c) and U2 ∼ IEF(β2; c). Thus, we have

R ¼ P max U0;U2f g < U1ð Þ ≡ P max U0;U2f g < max U0;U1f gð Þ:

Let X =max {U0,U1}. Using Lemma 2, the proof is completed.

Point estimation of R
Let (X1, Y1), …, (Xn, Yn) be a random sample of size n from either BEF(θ0, θ1, θ2; c)

or BIEF (β0, β1, β2; c), assuming c is known. Let n1 be the number of observations

having yi > xi and n2 be the number of observations having yi < xi and n0 be the

number of observations having yi = xi in the sample of size n, where n = n0 + n1 +

n2. Then, the non-parametric estimator of R is given by Ř ¼ n2
n , where n2 is bino-

mial (n, R). Thus, EðŘÞ ¼ R and variance V ðŘÞ ¼ R
n ð1−RÞ:

Maximum likelihood estimators of R

Let (X1, Y1), …, (Xn, Yn) be a random sample of size n from either BEF(θ0, θ1, θ2; c) or

BIEF(β0, β1, β2; c), then the maximum likelihood estimator (MLE), R̂; of R is given by

R̂ ¼
θ̂2

θ̂0 þ θ̂1 þ θ̂2
; for BEF θ0; θ1; θ2; cð Þ

β̂1
β̂0 þ β̂1 þ β̂2

; for BIEF β0; β1; β2; c
� �

8>>><>>>: ð13Þ

Where θ̂ , β̂ are the maximum likelihood estimators of θ , β , i, = 0, 1, 2, respectively.
i i i i

First, suppose that (X1, Y1), …, (Xn, Yn) is a random sample of size n from

BEF(θ0, θ1, θ2; c), then the MLE’s θ̂i of θi, i = 0, 1, 2, can be obtained by writing the

log-likelihood function logL ¼ P2
i¼0ni logθi þ

P2
i¼1ni logðθ0 þ θ3−iÞ þ

Pn
i¼1 logg

0
1ðxi; cÞþPn

i¼1;xi≠yi
logg

0
1ðyi; cÞ−θ1

Xn
i¼1

g1ðxi; cÞ−θ2
Xn
i¼1

g1ðyi; cÞ−θ0
Xn
i¼1

g1ð maxfxi; yig; cÞ:

and solving the likelihood system of equations w.r.t. θi, i = 0, 1, 2.
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n1
θ1

þ n2
θ0 þ θ1

−
Xn

i¼1
g1 xi; cð Þ ¼ 0;

n2
θ2

þ n1
θ0 þ θ2

−
Xn

i¼1
g1 yi; cð Þ ¼ 0;

n0
θ0

þ n1
θ0 þ θ2

þ n2
θ0 þ θ1

−
Xn

i¼1
g1 max xi; yif g; cð Þ ¼ 0:

ð14Þ

Similarly for the BIEF(β , β , β ; c), the MLE’s β̂ of β , i = 0, 1, 2, can be obtained by
0 1 2 i i

writing the log-likelihood function

logL ¼ n0 logβ0 þ
P2

i¼1ni logðβ3−iÞ þ
P2

i¼1ni logðβ0 þ βiÞ þ
Pn

i¼1 logð−g 0
2ðxi; cÞÞPn

i¼1;xi≠yi
logð−g 0

2ðyi; cÞÞ−β1
Pn

i¼1g2ðxi; cÞ−β2
Pn

i¼1g2ðyi; cÞ−β0
Pn

i¼1g2ð minfxi; yig; cÞ;
and solving the likelihood system of equations w.r.t. βi, i = 0, 1, 2.

n2
β1

þ n1
β0 þ β1

−
Xn
i¼1

g2 xi; cð Þ ¼ 0;

n1
β2

þ n2
β0 þ β2

−
Xn
i¼1

g2 yi; cð Þ ¼ 0;

n0
β0

þ n1
β0 þ β1

þ n2
β0 þ β2

−
Xn
i¼1

g2 min xi; yif g; cð Þ ¼ 0:

ð15Þ

However, the previews likelihood systems of equations generated by either BEF(θ0,
θ1, θ2; c) or BIEF(β0, β1, β2; c) are computational inconvenient and can be solved numer-

ically by using a Newton Raphson procedure or by Fisher’s method of scoring.

Now, we introduce a simple estimator of R, depending on the marginal distributions

of X and min{X, Y} for the BEF and depending on the marginal distributions of Y and

max{X, Y} for the BIEF.

Let (X1, Y1), …, (Xn, Yn) be a random sample of size n from either BEF(θ0, θ1, θ2; c) or

BIEF(β0, β1, β2; c) then a simple estimator, ~R, of R is given by

~R ¼

1−

Xn
i¼1

g1 min xi; yif g; cð Þ
Xn
i¼1

g1 xi; cð Þ
; for BEF θ0; θ1; θ2; cð Þ

1−

Xn
i¼1

g2 max xi; yif g; cð Þ
Xn
i¼1

g2 yi; cð Þ
; for BIEF β0; β1; β2; c

� �

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð16Þ

For the BEF, we have X ∼ EF(θ0 + θ1; c); thus, the MLE of (θ0 + θ1), is given by (see

Mokhlis et al. [1])

dθ0 þ θ1ð Þ ¼ nXn
i¼1

g1 xi; cð Þ
: ð17Þ

Similarly, since min{X, Y} ∼ EF(θ; c), hence the MLE of θ is given by
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θ̂ ¼ nXn
i¼1

g1 min xi; yif g; cð Þ
: ð18Þ

Thus,

θ2 ¼ nXn
i¼1

g1 min xi; yif g; cð Þ
−

nXn
i¼1

g1 xi; cð Þ
: ð19Þ

Replacing the parameters in (11) by their estimators in (18) and (19) we get the sim-
ple estimator of R for the BEF.

Similarly for the BIEF model, Y ∼ IEF(β0 + β2; c); thus, the MLE of (β0 + β2) is given by

(see Mokhlis et al. [1])

dβ0 þ β2
	 


¼ nXn
i¼1

g2 yi; cð Þ
; ð20Þ

and since max{X, Y} ∼ IEF(β; c), then the MLE of β is given by

β̂ ¼ nXn
i¼1

g2 max xi; yif g; cð Þ
ð21Þ

Thus,

β̂1 ¼
nXn

i¼1

g2 max xi; yif g; cð Þ
−

nXn
i¼1

g2 xi; cð Þ
: ð22Þ

Again replacing the parameters in (12) by their estimators given by (21) and (22), we

obtain the simple estimator of R for the BIEF.

Estimation of R when the stress is censored at the strength

Sometimes, obtaining the estimate of R based on complete sample is neither possible

nor desirable on account of lack of time or minimization of the experiment cost. Thus,

there are some situations where the stress is censored at the strength (see Hanagel

[16]).

Let (X1, Y1), …, (Xn, Yn) be a random sample of size n from BEF(θ0, θ1, θ2; c); then,

the strength and stress associated with the ith pair of sample is

Xi;Y ið Þ ¼ xi; xið Þ if xi≤yi
¼ xi; yið Þ if xi > yi

and the likelihood function can be written as
L ¼ θ0 þ θ1ð Þnθn22
Yn
i¼1

g
0
1 xi; cð Þ

Yn2
i¼1

g
0
1 yi; cð Þe

− θ0þθ1ð Þ
Pn
i¼1

g1 xi;cð Þ−θ2
Pn
i¼1

g1 min xi;yif g;cð Þ

Easily, the likelihood equations are
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n
θ0 þ θ1

−
Xn
i¼1

g1 xi; cð Þ ¼ 0;

n2
θ2

−
Xn
i¼1

g1 min xi; yif g; cð Þ ¼ 0:

Thus, the MLE’s θ0 þ θ1
―

; θ2
―

of θ0 + θ1 and θ2, respectively, are

θ0 þ θ1 ¼ nXn
i¼1

g1ðxi; cÞ
; and θ2 ¼ n2Xn

i¼1

g1ð minfxi; yig; cÞ
,

then, the MLE, R, of R when the stress is censored at the strength is given by

R ¼ 1þ
n
Xn
i¼1

g1 min xi; yif g; cð Þ

n2
Xn
i¼1

g1 xi; cð Þ

0BBBB@
1CCCCA

−1

: ð23Þ

Special cases
Table 1 present some well-known bivariate distributions as members of the BEF(θ0, θ1,

θ2; c) or BIEF(β0, β1, β2; c) and some other distributions for some choices of θi, βi, i = 0,

1, 2, g1(x; c) and g2(x; c).

Clearly putting c = 1 and 2 in the bivariate inverse Weibull, we get bivariate inverse

exponential and bivariate inverse Rayleigh distributions, respectively.

Notice that the bivariate modified Weibull distribution proposed by El-Bassiouny

[13] is a special case of BEF(θ0, θ1, θ2; c) where θ1 = α1, θ2 = α2, θ0 = α3, and c = (β, λ).

Also, the bivariate generalized Rayleigh distribution introduced by Sarhan [14] with

shape parameter equals 1 is a special case of BIEF(β0, β1, β2; c), where β0 = β1 = β2 = λ2

and c = 1.

Numerical illustrations
For illustrations of the results obtained in the previous sections numerically, a simula-

tion study is performed; 1000 samples each of size, 10, 20, 30, and 50, are generated

from some BEF and BIEF distributions. The reliability, R, is computed for the following

cases.
Table 1 Summary of some special cases of the BEF(θ0,θ1,θ2;c) or BIEF(β0,β1,β2;c)
Distribution BEF(θ0, θ1, θ2; c) BIEF(β0, β1, β2; c) R

θi g1(x; c) βi g2(x; c)

M-O bivariate exponential θi x _ _ θ2
θ0þθ1þθ2

, see [7]

Bivariate Rayleigh λi x2 _ _ λ2
λ0þλ1þλ2

, see [9]

M-O bivariate Weibull 1
θi c

xc _ _ θc0θ
c
1

θc0þθc1þθc2

M-O Pareto ai lnðxcÞ _ _ a2
a0þa1þa2

Bivariate inverse Weibull _ _ 1
θi c

x−c θc0θ
c
2

θc0þθc1þθc2

Bivariate Burr type III _ _ bi lnð1þxc
xc Þ b1

b0þb1þb2
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Case 1 (X, Y) has M-O bivariate exponential distribution with parameters θ0 = 0.15,

θ1 = 0.2 and θ2 = 0.5.

Case 2 (X, Y) has bivariate Rayleigh distribution with parameters θ0 = 0.2, θ1 = 0.25

and θ2 = 0.8.

Case 3 (X, Y) has bivariate inverse exponential distribution with parameters β0 = 0.25,

β1 = 1, and β2 = 0.35.

Case 4 (X, Y) has bivariate inverse Rayleigh distribution with parameters β0 = 0.2,

β1 = 1.2, and β2 = 0.1.

It is to be noted that these values are chosen arbitrary just for illustrating the results

obtained.

Tables 2 and 3 show the true value of R and its corresponding estimate by using

maximum likelihood method, (RM ¼ R̂ ), our simple method of estimation (RS ¼ ~R ),

and when the stress is censored at the strength, the estimate of R is denoted by (RC

¼ �R) and non-parametric estimate ðRN ¼R
^Þ. The values R(M), R(S), R(C)and R(N) that ap-

pear in Tables 2 and 3 are the mean of the 1000 replicates of the corresponding esti-

mates. For comparison, we calculate the bias (b) and mean square error (MSE), of the

different estimates in each case considered. Where bias (b) is the difference of the mean

of the 1000 replicates estimates from the true values of R and MSE is the mean of the

squares of the differences of the 1000 replicates estimates from the true values of R.

The calculations are performed by applying the Maple program.

From Tables 2 and 3, we see that all estimates converge to R, when n increases and

MSE decreases. In Table 2, we see MSE(M) < MSE(C) < MSE(S) < MSE(N), while in Table

3, MSE(M) < MSE(S) < MSE(N). However, the R(C), when the stress is censored at the

strength for the BEF, and R(s), for the BEF and BIEF, both estimators are simple, easier

in computation and provide sufficient results for biasedness and mean square error.
Real data example

In real life, there are many situations where we have X < Y, Y < X or X = Y, such as nu-

clear reactor safety, competing risks, (see Kotz et al. [17]). In the medical field X and Y
Table 2 Reliability of special cases of BEF

N Case 1, R = 0.5882 Case 2, R = 0.6400

10 20 30 50 10 20 30 50

R(M) 0.5475 0.5860 0.5869 0.5886 0.6102 0.6334 0.6395 0.6391

R(C) 0.5429 0.5809 0.5840 0.5862 0.6069 0.6319 0.6377 0.6389

R(S) 0.5353 0.5774 0.5809 0.5831 0.6096 0.6292 0.6355 0.6371

R(N) 0.5458 0.5859 0.5886 0.5905 0.5956 0.6347 0.6416 0.6419

MSE(M) 0.0158 0.0079 0.0048 0.0031 0.0135 0.0062 0.0041 0.0025

MSE(C) 0.0179 0.0079 0.0051 0.0034 0.0147 0.0068 0.0045 0.0026

MSE(S) 0.0259 0.0099 0.0067 0.0043 0.0177 0.0091 0.0054 0.0033

MSE(N) 0.0280 0.0119 0.0081 0.0050 0.0185 0.0105 0.0076 0.0043

b(M) 0.0408 0.0022 0.0012 − .0003 0.0298 0.0066 0.0004 0.0009

b(C) 0.0453 0.0073 0.0042 0.0020 0.0331 0.0081 0.0023 0.0011

b(S) 0.0529 0.0108 0.0073 0.0051 0.0304 0.0108 0.0045 0.0029

b(N) 0.0424 0.0023 − .0004 − .0022 0.0444 0.0052 − 0.0016 − 0.0019



Table 3 Reliability of special cases of BIEF

N Case 3, R = 0.625 Case 4, R = 0.8000

10 20 30 50 10 20 30 50

R(M) 0.5946 0.6172 0.6246 0.6231 0.7494 0.7875 0.7952 0.7988

R(S) 0.5881 0.6114 0.6200 0.6202 0.7607 0.7888 0.7957 0.7982

R(N) 0.5908 0.6211 0.6264 0.6258 0.6986 0.7790 0.7914 0.7994

MSE(M) 0.0135 0.0061 0.0041 0.0025 0.0097 0.0028 0.0017 0.0010

MSE(S) 0.0193 0.0087 0.0061 0.0033 0.0106 0.0034 0.0020 0.0012

MSE(N) 0.0197 0.0105 0.0065 0.0049 0.0202 0.0061 0.0047 0.0031

b(M) 0.0304 0.0078 0.0004 0.0019 0.0506 0.0125 0.0048 0.0012

b(S) 0.0369 0.0136 0.0050 0.0048 0.0393 0.0112 0.0043 0.0018

b(N) 0.0342 0.0039 − .0014 − 0.0008 0.1014 0.0210 0.0086 0.0006
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can represent the blood pressure or count of the white blood cells for patients before

and after a certain operation.

The following data set is from the American Football (National Football League)

matches for three consecutive weekends in 1986. The data was first published in the

“Washington Post” and available in Csörgő and Welsh [18] Table 4.

The bivariate variables X and Y are as follows: X represents the game time to the first

points scored by kicking the ball between goal posts and Y represents the game time to

the first points scored by moving the ball into the end zone. This data was first ana-

lyzed by Csörgő and Welsh [18], by converting the seconds to decimal minutes. Also

Kundu and Gupta [19] and Jamalizadeh and Kundu [20] analyzed this data.

We consider BEF and BIEF for fitting this data set. First, we fit each EF and IEF to X

and Y separately. The data fit two cases, namely exponential which is special case of

the EF and inverse exponential which is special case of the IEF, respectively. In case of

exponential distribution, the MLEs of the scale parameters of X and Y are 0.1102 and

0.0745, respectively, while for the inverse exponential the MLEs of the scale parameters

are 4.4000 and 5.0214, respectively.
Table 4 American Football League data

X Y X Y X Y

2.05 3.98 5.78 25.98 10.40 14.25

9.05 9.05 13.80 49.75 2.98 2.98

0.85 0.85 7.25 7.25 3.88 6.43

3.43 3.43 4.25 4.25 0.75 0.75

7.78 7.78 1.65 1.65 11.63 17.37

10.57 14.28 6.42 15.08 1.38 1.38

7.05 7.05 4.22 9.48 10.35 10.35

2.58 2.58 15.53 15.53 12.13 12.13

7.23 9.68 2.90 2.90 14.58 14.58

6.85 34.58 7.02 7.02 11.82 11.82

32.45 42.35 6.42 6.42 5.52 11.27

8.53 14.57 8.98 8.98 19.65 10.70

31.13 49.88 10.15 10.15 17.83 17.83

14.58 20.57 8.87 8.87 10.85 38.07
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The Kolmogorov-Smirnov distances between the fitted distribution and the empirical

distribution function for X and Y are 0.14997 and 0.1182 respectively for the exponential

case, while those for the inverse exponential case are 0.1530 and 0.1955. The above values

are less than the critical value D0.05 ≅ 0.2099, for n = 42, so that each of exponential distri-

bution and inverse exponential distribution is an appropriate fit for the given data. This

means that there may exist three independent random variables, say Ui, i = 1, 2, 3, with EF

or IEF thus X =min {U0,U1} or max{U0,U1} and Y =min {U0,U2} or max{U0,U2}.

Now, we try to test whether M-O bivariate exponential distribution or bivariate inverse

exponential distribution provides better fit to the above data set. We use the Akaike infor-

mation criterion (AIC) to check the model validity. Based on the above data, the MLEs of

parameters for the M-O bivariate exponential distribution θ0 = 0.0715, θ1 = 0.0456, and

θ2 = 0.0030, and the MLEs of parameters for the bivariate inverse exponential distribution

are β0 = 4.2769, β1 = 0.1746, and β2 = 2.0715. Thus, for the case of M-O bivariate exponen-

tial the log-likelihood value is − 227.9347 and the corresponding AIC is 461.8694, while

for bivariate inverse exponential distribution the log-likelihood value is − 249.6874 and

the AIC is 505.3748. Therefore, M-O bivariate exponential provides better fit than bivari-

ate inverse exponential distribution. We estimate the reliability parameter R using the

corresponding MLEs θ̂i θi, i = 0, 1, 2 for the M-O bivariate exponential distribution

is R = 0.0248, while using the proposed simple estimators, we have RS = 0.0235 and

RC = 0.0238 and the non-parametric estimator RN = 0.0238.

Conclusions
In this paper, we have suggested two forms of bivariate distributions, BEF and BIEF, with

marginal distributions having a general exponential form or inverse exponential form.

Some distributions in the literature belong to these families, such as the M-O bivariate

exponential distribution, Marshall and Olkin [15], and bivariate Rayleigh distribution, Pak

et al. [9]. Other bivariate distributions could belong to these families such as bivariate

Weibull and bivariate Burr type III and others according to the form of g1(x; c) or g2(x; c).

We discussed some properties of the proposed families and studied the stress-strength

reliability parameter, R = P(Y <X). The MLEs of the distribution parameters are derived

and simple estimators of R based on some marginal distributions are introduced in case

of complete sampling. When the stress is censored at the strength, an explicit estimator of

R is also obtained for the BEF distribution. Some bivariate members of the proposed fam-

ilies are presented. A simulation study is performed showing that the proposed simple

estimators of R are easier in computation and provide sufficient results with respect to

biasedness and mean square error. An example of a real data of bivariate variables (X, Y)

belonging to the proposed family is also introduced.
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