ORIGINAL RESEARCH

Open Access

Generalized wclosed sets in biweak structure spaces

H. M. Abu-Donia^{*} and Rodyna A. Hosny

*Correspondence: donia_1000@yahoo.com Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Abstract

As a generalization of the classes of *gw*closed (resp. *gw*open, *sgw*closed) sets in a weak structure space (*X*, *w*), the notions of *ij*-generalized *w*closed (resp. *ij*-generalized *w*open, *ij*-strongly generalized *w*closed) sets in a biweak structure space (*X*, *w*₁, *w*₂) are introduced. In terms of these concepts, new forms of continuous function between biweak spaces are constructed. Additionally, the concepts of *ij*-wnormal, *ij*-gwnormal, *ij*-w $T_{\frac{1}{2}}$, and *ij*-w $^{\sigma}T_{\frac{1}{2}}$ spaces are studied and several characterizations of them are acquired.

Keywords: Biweak structures, *ij-gw*closed sets, *ij-g(w, w**)-continuous functions, *ij-w*normal spaces

(2020) 28:24

AMS classification: 54A05-54C08-54C10-54C20

Introduction

In recent years, many researchers studied bitopological, bigeneralized, biminimal, and biweak spaces due to the richness of their structure and potential for doing a generous area for the generalization of topological results in bitopological environment. The concept of a bitopological space was built by Kelly [1], and thereafter, an abundant number of manuscripts was done to generalize the topological notions to bitopological setting. Fukutake [2] presented the concept of generalized closed sets and in bitopological spaces. The notion has been studied extensively in recent years by many topologists. Csaszar and Makai Jr. proposed the concept of bigeneralized topology [3]. In 2010, Boonpok [4, 5] provided the concept of bigeneralized topological spaces and biminimal structure spaces, respectively. Csaszar [6] defined the concept of weak structure which is weaker than a supra topology, a generalized topology, and a minimal structure and then offered various properties of it. Ekici [7] have investigated further properties and the main rules of the weak structure space. In order to extend many of the important properties of wclosed sets to a larger family, Zahran et al. [8] characterized the concepts of generalized closed and generalized open sets in weak structures and achieved a number of properties of these concepts. As a generalization of bitopological spaces, bigeneralized topological spaces, and biminimal structure spaces, Puiwong et al. [9] in 2017 defined a new space, which is known as biweak structure. The concept of biweak structure can substitute in

© The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

many situations, biminimal structures and bigeneralized topology. A new space consists of a nonempty set *X* equipped with two arbitrary weak structures w_1, w_2 on *X*. A triple (X, w_1, w_2) is called a biweak structure space (in short, biwss).

The interior (resp. closure) of a subset *A* with respect to w_j are denoted by $int_{w_j}(A)$ (resp. $cl_{w_j}(A)$), for (j = 1, 2). A subset *A* of a biwss (X, w_1, w_2) is called *ij*-wclosed if $cl_{w_i}(cl_{w_j}(A))=A$, where i, j=1 or 2 and $i \neq j$. The complement of an *ij*-wclosed set is called *ij*-wopen.

The concepts of generalized closed sets in weak structures [8] and biweak structure spaces [9] motivated us to define a new class of sets which is called generalized wclosed sets in a biweak structure space which are found to be effective in the study of digital topology. The purpose of this article is introducing the notions of *ij*-generalized wclosed (written henceforth as *ij*-gwclosed), *ij*-generalized wopen (written henceforth as *ij*-gwclosed), *ij*-generalized wopen (written henceforth as *ij*-gwclosed, *ij*- σ gwclosed, for short) sets in a biwss (*X*, *w*₁, *w*₂) as a generalization of the concept of gwclosed, gwopen, and sgwclosed sets, respectively, in a weak structure space (*X*, *w*) which presented in [8] and determining some of their behaviors. In terms of *ij*-gwclosed and *ij*-gwopen sets, new forms of continuous function between biweak spaces are constructed. Additionally, we try to extend the concepts of separation axioms on weak structures [8] to biwss and study some of their features. Some considerable results in articles [2, 8, 10] can be treated as particular cases of our outcomes.

Preliminaries

To prepare this article as self-contained as possible, we recollect the next definitions and results which are due to various references [8, 9, 11].

Definition 1 [8] Let w be a weak structure on X. Then,

- (1) A subset A is called generalized wclosed (gwclosed, for short) if $cl_w(A) \subseteq U$, whenever $A \subseteq U$ and U is wopen.
- (2) The complement of a generalized wclosed set is called generalized wopen (gwopen, for short), i.e, a subset A is gwopen if and only if int_w(A)⊇F, whenever A⊇F and F is wclosed.

The family of all gwclosed (resp. gwopen) sets in a weak structure X will be denoted by GWC(X) (resp. GWO(X)).

Definition 2 [11] Let w and w^{*} be weak structures on X and Y, respectively. A function $f : (X, w) \longrightarrow (Y, w^*)$ is called (w, w^*) -continuous if for $x \in X$ and w^* open set V containing f(x), there is wopen set U containing x s.t. $f(U) \subseteq V$.

Theorem 1 [11] Let w and w^{*} be weak structures on X and Y, respectively. For a function $f : (X, w) \longrightarrow (Y, w^*)$, the following statements are equivalent:

- (1) $f is (w, w^*)$ -continuous,
- (2) $f^{-1}(B) = int_w(f^{-1}(B))$, for every w^* open set B in Y,
- (3) $f(cl_w(A)) \subseteq cl_{w^*}(f(A))$, for every set A in X,
- (4) $cl_w(f^{-1}(B)) \subseteq (f^{-1}(cl_{w^*}(B)))$, for every set *B* in *Y*,
- (5) $f^{-1}(int_{w^*}(B)) \subseteq int_w(f^{-1}(B))$, for every set B in Y,

(6) $cl_w(f^{-1}(F)) = f^{-1}(F)$, for every w^* closed set *F* in *Y*.

Theorem 2 [9] Let (X, w_1, w_2) be a biwss and A be a subset of X. Then, the following are equivalent:

- (1) A is ij-wclosed,
- (2) $A = cl_{w_i}(A)$ and $A = cl_{w_i}(A)$,
- (3) $A = cl_{w_i}(cl_{w_i}(A))$, where i, j = 1 or 2 and $i \neq j$.

Proposition 1 [9] Let (X, w_1, w_2) be a biwss and $A \subseteq X$. Then, A is a ij-wclosed set, if A is both w_i closed and w_i closed, where i, j = 1 or 2 and $i \neq j$.

Proposition 2 [9] Let (X, w_1, w_2) be a biwss. If A_{α} is ij-wclosed for all $\alpha \in \Lambda \neq \emptyset$, then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is ij-wclosed and the union of two ij-wclosed sets is not a ij-wclosed set, where i, j = 1 or 2 and $i \neq j$.

In the rest of this article *i*, *j* will stand for fixed integers in the set $\{1, 2\}$ and $i \neq j$.

On ij-gwclosed sets

In this part, a new family of sets called *ij*-generalized *w*closed (briefly, *ij*-gwclosed) is presented and its properties are investigated.

Definition 3 A subset A of a biwss (X, w_1, w_2) is called *ij*-generalized wclosed (*ij*-gwclosed, for short) if $cl_{w_j}(A) \subseteq U$, whenever $A \subseteq U$ and U is w_i open. The complement of *ij*-gwclosed set is called *ij*-gwopen.

The family of all ij-gwclosed (resp. ij-gwopen) sets in a biwss (X, w_1, w_2) will be denoted by ij-GWC(X) (resp. ij-GWO(X)).

Remark 1 If $A \in ij$ - $GWC(X) \cap ji$ -GWC(X), then a subset A of a biwss (X, w_1, w_2) is called pairwise gwclosed and its complement is pairwise gwopen.

Example 1 Let $X = \{1, 2, 3\}$, $w_1 = \{\emptyset, \{1\}, \{1, 2\}\}$, and $w_2 = \{\emptyset, \{3\}\}$. A set $\{3\}$ is pairwise gwclosed.

Certainly, the next theorems are obtained:

Theorem 3 A subset A of a biwss (X, w_1, w_2) is ij-gwopen iff $int_{w_j}(A) \supseteq F$, whenever $A \supseteq F$ and F is w_i closed.

Theorem 4 If A is an ij-gwclosed and w_i open set in (X, w_1, w_2) , then $A = cl_{w_i}(A)$.

Theorem 5 *Every* w_i *closed set in a biwss* (X, w_1, w_2) *is ij-gwclosed.*

Proof Let *A* be a w_j closed set and *U* be a w_i open set in *X* s.t. $A \subseteq U$. Then, $cl_{w_j}(A) = A$. It implies that $A \in ij$ -GWC(X).

Corollary 1 If A is a w_i open set in a biwss (X, w_1, w_2) , then $A \in ij$ -GWO(X).

Remark 2 *By the following example, we have a tendency to show that the converse of Theorem 5 is not always true.*

Example 2 In Example 1, a set $\{2\}$ is 12-gwclosed and not w_2 closed.

Proposition 3 Let (X, w_1, w_2) be a biwss. Then,

- (1) If $X \in w_i$ and each w_i open set is w_i closed, then, $A \in ij$ -GWC(X), for each $A \subset X$.
- (2) $A \in ij$ -GWC(X), for each $A \subset X$ iff $cl_{w_i}U = U$ for each w_i open set U.

Proof We prove only (2) and the rest of the proof is simple. Suppose that $A \in ij$ -GWC(X), for each $A \subset X$. Then, every w_i open set U, $A \in ij$ -GWC(X). If $U \subseteq U$, hence $cl_{w_j}(U) \subseteq U$. Thus, $cl_{w_j}(U) = U$, for each w_i open set U. Conversely, suppose that $A \subseteq U$ and U be a w_i open set. Then, $cl_{w_j}(A) \subseteq cl_{w_j}(U)$. From assumption, $cl_{w_j}(A) \subseteq U$ and so $A \in ij$ -GWC(X).

Remark 3 In the biwss (X, w_1, w_2) , the converse of the Proposition 3(1) need not be true in general as shown by the next example.

Example 3 Let $X = \{1, 2, 3\}$, $w_1 = \{\emptyset, \{2\}, \{1, 3\}\}$, and $w_2 = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\}$. One may notice that every subset of X is 12-gwclosed, but $A = \{2\}$ is a w_1 open set in X and it is not w_2 closed.

Remark 4 In general, 21-GWC(X) \neq 12-GWC(X) as in Example 3.

Proposition 4 Let (X, w_1, w_2) be a biwss. If $w_1 \subseteq w_2$, then 21-GWC $(X) \subseteq 12$ -GWC(X).

Proof Straightforward.

The converse of the Proposition 4 is not true as seen from the next example.

Example 4 In Example 3, then 21-GWC(X) $\subseteq 12$ -GWC(X), but $w_1 \not\subseteq w_2$.

Now, one can conclude attitudes relative to the union as well as the intersection of two ij-gwclosed sets in a biwss (X, w_1, w_2).

Example 5 Let $X=\{1, 2, 3, 4\}$, $w_1=\{\emptyset, \{3\}, \{1, 3\}, \{1, 3, 4\}, \{1, 2, 4\}\}$ and $w_2 = \{\emptyset, \{2\}, \{3\}, \{2, 3, 4\}\}$. Let us consider $A=\{2\}$ and $B=\{3\}$. Note that A and B are 21-gwclosed sets but its union is not 21-gwclosed.

Example 6 Let $X=\{1, 2, 3\}$, $w_1=\{\emptyset, \{1\}, \{3\}\}$ and $w_2=\{\emptyset, \{1\}\}$. Consider two 21-gwclosed sets $A=\{1, 2\}$ and $B=\{1, 3\}$, then $A \cap B=\{1\}$ is not 21-gwclosed.

Theorem 6 Let (X, w_1, w_2) be a biwss and $cl_{w_j}(\emptyset) = \emptyset$. Then, the family of all ij-gwclosed sets is a biminimal structure in X.

Proof Obvious.

Theorem 7 Suppose $X \in w_i$. Then, $\{x\}$ is w_i closed or $X \setminus \{x\} \in ij$ -GWC(X), for each $x \in X$.

Proof Suppose that the singleton $\{x\}$ is not w_i closed for some $x \in X$. Then, $X \setminus \{x\}$ is not w_i open. Since X is w_i open set and $X \setminus \{x\} \subseteq X$. Hence, $X \setminus \{x\} \in ij$ -GWC(X).

Theorem 8 If $A \in ij$ -GWC(X), then $cl_{w_i}(A) \setminus A$ contains no nonempty w_i closed.

Proof For an *ij-gw*closed set *A*, let *S* be a nonempty w_i closed set s.t. $S \subseteq cl_{w_j}(A) \setminus A$. Then, $S \subseteq cl_{w_j}(A)$ and $S \subseteq X \setminus A$. Since $X \setminus S$ is w_i open and *A* is *ij-gw*closed, then $cl_{w_j}(A) \subseteq X \setminus S$ or $S \subseteq X \setminus cl_{w_i}(A)$. Thus, $S = \emptyset$. Therefore, $cl_{w_i}(A) \setminus A$ does not contain nonempty w_i closed. \Box

Remark 5 In general, the converse of Theorem 8 is not true as shown in the next example.

Example 7 In Example 6, if $A = \{1\}$, then $c_{w_1}(A) \setminus A = \{2\}$. So we know that there is no any nonempty w_2 closed contained in $c_{w_1}(A) \setminus A$. But $A \notin 21$ -GWC(X).

It thus follows from Theorem 8 that

Corollary 2 If $A \in ij$ -GWC(X) and $cl_{w_i}(A) \setminus A$ is a w_iclosed set, then $cl_{w_i}(A) = A$.

Remark 6 If A is an ij-gwclosed set in a biwss (X, w_1, w_2) and $cl_{w_j}(A)=A$, then $cl_{w_j}(A)\setminus A$ need not to be w_iclosed as shown by the following example.

Example 8 Let $X=\{1, 2, 3\}$, $w_1=\{\emptyset, \{2\}\}$, and $w_2=\{\emptyset, \{1\}, \{3\}, \{1, 2\}\}$. If $A=\{2\}$, one may notice that $c_{w_2}(A)=A$ and hence $c_{w_2}(A)\setminus A=\emptyset$, which is not w_1 closed.

Theorem 9 If $A \in ij$ -GWC(X), then $cl_{w_i}(A) \setminus A \in ij$ -GWO(X).

Proof Let $A \in ij$ -GWC(X) and F be a w_i closed set s.t. $F \subseteq cl_{w_j}(A) \setminus A$. Then, by Theorem 8, we have $F = \emptyset$ and hence $F \subseteq int_{w_j}(cl_{w_j}(A) \setminus A)$. So by Theorem 3, we have $cl_{w_j}(A) \setminus A \in ij$ -GWO(X).

Remark 7 *The converse of the Theorem* 9 *need not to be true in general as shown by the following example.*

Example 9 In Example 6. If $A = \{1\}$, one may notice that $cl_{w_1}(A) \setminus A \in 21$ -GWO(X), but $A \notin 21$ -GWC(X).

Theorem 10 If $A \in ij$ -GWC(X) and $A \subseteq B \subseteq cl_{w_i}(A)$, then $B \in ij$ -GWC(X).

Proof Let *U* be any w_i open set s.t. $B \subseteq U$. Since $A \subseteq B$ and $A \in ij$ -GWC(X), then $cl_{w_j}(A) \subseteq U$. Since $B \subseteq cl_{w_j}(A)$, then we have $cl_{w_j}(B) \subseteq cl_{w_j}cl_{w_j}(A) = cl_{w_j}(A) \subseteq U$. Consequently $B \in ij$ -GWC(X).

Corollary 3 Let (X, w_1, w_2) be a biwss. Then,

- (1) If $A \in ij$ -GWO(X) and $int_{w_i}(A) \subseteq B \subseteq A$, then, $B \in ij$ -GWO(X).
- (2) $cl_{w_i}(A) \in ij$ -GWC(X) if $A \in ij$ -GWC(X).
- (3) $int_{w_i}(A) \in ij$ -GWO(X) if $A \in ij$ -GWO(X).

In view of Theorems 8 and 10, the next theorem is valid.

Theorem 11 Let A be an ij-gwclosed set with $A \subseteq B \subseteq cl_{w_j}(A)$, then, $cl_{w_j}(B) \setminus B$ does not contain nonempty w_i closed.

Theorem 12 If A is an ij-gwopen set in X, then U=X whenever U is w_iopen and $int_{w_i}(A) \cup (X \setminus A) \subseteq U$.

Proof Let *U* be a w_i open set in *X* and $int_{w_j}(A) \cup (X \setminus A) \subseteq U$ for any ij-gwopen set *A*. Then, $X \setminus U \subseteq (X - int_{w_j}(A)) \cap A$ and so $X \setminus U \subseteq cl_{w_j}(X \setminus A) \setminus (X \setminus A)$. Since $X \setminus A$ is ij-gwclosed, then by Theorem 8, we have $X \setminus U = \emptyset$ and hence U = X.

Definition 4 *If* $cl_{w_j}(\cup_{\alpha}A_{\alpha}) = \bigcup_{\alpha}cl_{w_j}(A_{\alpha})$, for (j = 1, 2), then a family $\{A_{\alpha} \mid \alpha \in \Delta\}$ is called *w_j*-locally finite.

Theorem 13 Let (X, w_1, w_2) be a biwss. If the family $\{A_{\alpha} \mid \alpha \in \Delta\}$ is w_j -locally finite, then the arbitrary union of ij-gwclosed sets $A_{\alpha}, \alpha \in \Delta$ is an ij-gwclosed set.

Proof Direct to prove.

In the next definition, as an application of *ji-gw*open sets, we offer a new type of sets namely *ij-\sigma gw*closed sets.

Definition 5 A subset A of a biwss (X, w_1, w_2) is called *ij*-strongly generalized wclosed (briefly, *ij*- σ gwclosed), *if* $cl_{w_j}(A) \subseteq U$, whenever $A \subseteq U$ and U is *ji*-gwopen. The complement of *ij*- σ gwclosed set is called *ij*- σ gwopen.

The family of all ij- σ gwclosed (resp. ij- σ gwopen) sets in a biwss (X, w_1, w_2) will be denoted by ij- σ GWC(X) (resp. ij- σ GWO(X)).

Remark 8 If $A \in ij - \sigma GWC(X) \cap ji - \sigma GWC(X)$, then a subset A of a biwss (X, w_1, w_2) is called pairwise σ gwclosed and its complement is called pairwise σ gwopen.

For brevity the proof of the next proposition is omitted.

Proposition 5 In a biwss (X, w_1, w_2) , we have the following relation: $w_i closed set \Rightarrow ij - \sigma gwclosed set \Rightarrow ij - gwclosed set$.

Remark 9 The converse of Proposition 5 is not true as can be seen from the next example.

Example 10 In Example 6, one may notice that $\{4\}$ is 21-gwclosed set, but it is not 21- σ gwclosed.

Example 11 In Example 8. One may notice that, $\{2\}$ is 12- σ gwclosed set, but it is not w_2 closed.

Theorem 14 If $A \in ji$ -GWO(X) $\cap ij$ - σ GWC(X), then $cl_{w_i}(A) = A$

Proof Straightforward.

Theorem 15 Let $cl_{w_i}\emptyset=\emptyset$. Then, $\{x\}\in ji$ -GWC(X) or $X\setminus\{x\}\in ij$ - σ GWC(X), for each $x\in X$.

Proof Similar to Theorem 7.

Theorem 16 If $A \in ij - \sigma GWC(X)$, then $cl_{w_i}(A) \setminus A$ contains no nonempty ji-gwclosed.

Proof Similar to Theorem 8.

Separation axioms in biweak spaces

By using *ij-gw*closed, *ij-gw*open and *ij-\sigmagw*closed sets, we introduce and study the notions of *ij-wT*^{$\frac{1}{2}$}, *ij-wT*^{$\frac{\sigma}{\frac{1}{2}}$, *ij-w*ormal, and *ij-gw*normal spaces.}

Definition 6 Let $cl_{w_i}(\emptyset) = \emptyset$. A biwss (X, w_1, w_2) is called

- (1) ij-wT₁ if for each distinct points x, y∈X, there exist a w_i-open set U and w_j-open set V
 s.t. x∈U, y∉U and y∈V, x∉V.
- (2) $ij wT_{\frac{1}{2}}$ if each ij-gwclosed set A of X, $cl_{w_i}(A) = A$.
- (3) $ij wT_{\frac{1}{2}}^{\tilde{\sigma}}$ if each $ij \sigma gwclosed$ set A of X, $cl_{w_j}(A) = A$.

Theorem 17 A biwss (X, w_1, w_2) is ij-w T_1 if every singleton in X is ij-wclosed.

Proof Let $x, y \in X$ and $x \neq y$. Then, $\{x\}$, $\{y\}$ are *ij*-wclosed sets. From Theorem 1, we have $x \notin cl_{w_i}(\{y\})$ and $y \notin cl_{w_j}(\{x\})$. Hence, there exist w_i -open set U containing x and w_j -open set V s.t. $x \in U, y \notin U$, and $y \in V, x \notin V$. Consequently, (X, w_1, w_2) is a *ij*-w T_1 space.

In view of Proposition 5, the class of ij- $wT_{\frac{1}{2}}^{\sigma}$ spaces properly contains the class of ij- $wT_{\frac{1}{2}}$ spaces.

Proposition 6 *Every ij-wT*^{$\frac{1}{2}$} *space is ij-wT*^{$\frac{\sigma}{2}$}.

The following example supports that the converse of the Proposition 6 is not true in general.

Example 12 In Example 5, (X, w_1, w_2) is a 21-wT^{σ} $\frac{1}{2}$ space but not 21-wT $\frac{1}{2}$.

Theorem 18 Let X be a w_i open set and $int_{w_j}\{x\}$ is w_j open. A biwss (X, w_1, w_2) is ij- $wT_{\frac{1}{2}}$ iff $\{x\}$ is w_i closed or $\{x\}$ = $int_{w_i}\{x\}$ for each $x \in X$.

Proof Suppose that {*x*} is not *w*_iclosed for some $x \in X$. Then, by using Theorem 7, $X \setminus \{x\}$ is *ij-gw*closed. Since (X, w_1, w_2) is *ij-w* $T_{\frac{1}{2}}$, then {*x*}=*int*_{*w*_i}{*x*}. On the other hand, let *B* be an *ij-gw*closed set. By assumption, {*x*} is *w*_iclosed or {*x*}=*int*_{*w*_i}{*x*} for any *x*∈*cl*_{*w*_i}*B*.

Case (I): Suppose {*x*} is w_i closed. If $x \notin B$, then $\{x\} \subseteq cl_{w_j}B \setminus B$, which is a contradiction to Theorem 8. Hence $x \in B$.

Case (II): Suppose $\{x\}=int_{w_j}\{x\}$ and $x \in cl_{w_j}B$. Since $\{x\} \cap B \neq \emptyset$, we have $x \in B$. Thus, in both cases, we conclude that $cl_{w_j}B=B$. Therefore, (X, w_1, w_2) is $ij - wT_{\frac{1}{2}}$ space.

Theorem 19 Suppose $cl_{w_i}\emptyset=\emptyset$. If (X, w_1, w_2) is an $ij-wT_{\frac{1}{2}}^{\sigma}$ space, then $\{x\}$ is ji-gwclosed or $\{x\}=int_{w_i}\{x\}$, for each $x \in X$.

Lemma 1 If {x} is ji-gwclosed, then (X, w_1, w_2) is an ij-w- $T^{\sigma}_{\frac{1}{2}}$ space, for each $x \in X$.

Proof Straightforward.

Definition 7 *A biwss* (X, w_1, w_2) *is called*

Pairwise wT¹/₂ if it is both ij-wT¹/₂ and ji-wT¹/₂.
 Pairwise wT^σ ¹/₂ if it is both ij-wT^σ ₁ and ji-wT^σ ₁.

Proposition 7 If (X, w_1, w_2) is a pairwise $wT_{\frac{1}{2}}$ space, then it is pairwise $wT_{\frac{1}{2}}^{\sigma}$.

Proof Uncomplicated.

Remark 10 The converse of Proposition 7 is not true as can be seen from the next example.

Example 13 Let X, w_1 , w_2 be as in Example 12. Then, (X, w_1, w_2) is also a 21- $wT^{\sigma}_{\frac{1}{2}}$ space, and therefore, it is a pairwise $wT^{\sigma}_{\frac{1}{2}}$ space. But (X, w_1, w_2) is not a pairwise $wT_{\frac{1}{2}}$ space.

Definition 8 A biwss (X, w_1, w_2) is called an $ij \cdot w^{\sigma} T_{\frac{1}{2}}$ if $ij \cdot GWC(X) = ij \cdot \sigma GWC(X)$.

Proposition 8 Every *ij*- $wT_{\frac{1}{2}}$ space is *ij*- $w^{\sigma}T_{\frac{1}{2}}$.

Proof Obvious.

Remark 11 The converse of Proposition 8 may not be applicable as we see in the next example.

Example 14 Let $X=\{1,2,3,4\}$. Define weak structures w_1 , w_2 on X as follows: $w_1=\{\emptyset, \{1,3\}, \{1,4\}, \{2,3,4\}\}$ and $w_2=\{\emptyset, \{2\}, \{1,2\}, \{3,4\}, \{1,3,4\}\}$. Then, (X, w_1, w_2) is an 12- $w^{\sigma}T_{\frac{1}{2}}$ space but not 12- $wT_{\frac{1}{2}}$.

Remark 12 *ij*- $w^{\sigma}T_{\frac{1}{2}}$ and *ij*- $wT_{\frac{1}{2}}^{\sigma}$ spaces are independent as may be seen from *Example 15 and Example 16.*

Example 15 Let $w_1 = \{\emptyset, \{1\}, \{1, 2\}\}$, $w_2 = \{\emptyset, \{3\}, X\}$ be weak structures on $X = \{1, 2, 3\}$, then (X, w_1, w_2) is a 12-w $T^{\sigma} \frac{1}{2}$ space but not 12-w $^{\sigma} T_{\frac{1}{2}}$.

Example 16 In Example 14, (X, w_1, w_2) is an $12 - w^{\sigma} T_{\frac{1}{2}}$, but it is not $12 - w - T_{\frac{1}{2}}^{\sigma}$.

Theorem 20 Let $cl_{w_j}(\emptyset) = \emptyset$. A biwss (X, w_1, w_2) is $ij \cdot wT_{\frac{1}{2}}$ if and only if it is both $ij \cdot wT_{\frac{1}{2}}^{\sigma}$ and $ij \cdot w^{\sigma}T_{\frac{1}{2}}$ space.

Proof Suppose that (X, w_1, w_2) is an $ij \cdot wT_{\frac{1}{2}}$ space. Then, by Propositions 6 and 8, (X, w_1, w_2) is both $ij \cdot wT_{\frac{1}{2}}^{\sigma}$ and $ij \cdot w^{\sigma}T_{\frac{1}{2}}$ space. Conversely, suppose that (X, w_1, w_2) is both

Definition 9 A biwss (X, w_1, w_2) is called *ij*-wnormal *if* for each w_i closed set A and w_j closed set B s.t. $A \cap B = \emptyset$, there are w_j open set U and w_i open set V s.t. $A \subseteq U$, $B \subseteq V$, and $U \cap V = \emptyset$.

Theorem 21 Let (X, w_1, w_2) be a biwss. Consider the following statements:

- (1) (X, w_1, w_2) is ij-wnormal,
- (2) For each w_iclosed set A and w_jopen set N with A⊆N, there exists w_jopen set U s.t. A⊆U⊆cl_{w_i}(U)⊆N,
- (3) For each w_iclosed set A and each ij-gwclosed set H with A∩H=Ø, there exist w_jopen set U and w_iopen set V s.t. A⊆U, H⊆V and U∩V=Ø,
- (4) For each w_iclosed set A and ij-gwopen N with A⊆N, there exists w_jopen set U s.t. A⊆U⊆cl_{w_i}(U)⊆N.

Then, the implications $(1) \Rightarrow (2)$ *and* $(3) \Rightarrow (4) \Rightarrow (2)$ *are hold.*

Proof Obvious.

Theorem 22 Let (X, w_1, w_2) be a biwss. If $cl_{w_i}(A)$ is wiclosed for each wijopen or *ij-gwclosed*, then the statements in Theorem 21 are equivalent.

Proof According to Theorem 21, we need to prove $(2) \Rightarrow (1)$ and $(1) \Rightarrow (3)$ only. $(2) \Rightarrow (1)$: Let *A* be a w_i closed set and *B* be a w_j closed set with $A \cap B = \emptyset$. Then, $X \setminus B$ is a w_j open set with $A \subseteq X \setminus B$. Thus, by (2) there exists w_j open set *U* s.t. $A \subseteq U \subseteq cl_{w_i}(U) \subseteq X \setminus B$. Hence $A \subseteq U$ and $B \subseteq X \setminus cl_{w_i}(U)$. Since $cl_{w_i}(U)$ is w_i closed for each w_j open *U*, then $X \setminus cl_{w_i}(U) = V$ is w_i open and $U \cap V = \emptyset$. Hence (X, w_1, w_2) is ij-wnormal.

(1) \Rightarrow (3): Let *A* be a w_i closed set and *H* be an *ij-gw* closed set with $A \cap H = \emptyset$. Then, $H \subseteq X \setminus A$. From Definition 3, we have $cl_{w_j}(H) \subseteq X \setminus A$. Since *H* is *ij-gw* closed, then $cl_{w_j}(H)$ is w_j closed. Since $A \cap cl_{w_j}(H) = \emptyset$, then from (1) there exist w_j open set *U* and w_i open set *V* s.t. $A \subseteq U, H \subseteq cl_{w_j}(H) \subseteq V$ and $U \cap V = \emptyset$.

Theorem 23 Let (X, w_1, w_2) be a biwss. Consider the following statements:

- (1) (X, w_1, w_2) is ij-wnormal,
- (2) For each w_iclosed set A and w_jclosed set B s.t. A∩B=Ø, there exist ij-gwopen U and ji-gwopen V s.t. A⊆U, B⊆V and U∩V=Ø,
- (3) For each w_i closed set A and w_j open N with $A \subseteq N$, there exists ij-gwopen U s.t. $A \subseteq U \subseteq cl_{w_i}(U) \subseteq N$.

Then, the implication $(1) \Rightarrow (2) \Rightarrow (3)$ is hold.

Proof (1) \Rightarrow (2): Let *A* be a w_i closed set and *B* be a w_j closed set with $A \cap B = \emptyset$. Since (X, w_1, w_2) is *ij*-wnormal, then there exist w_j open set *U* and w_i open set *V* s.t. $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$. From Corollary 1, there exist *ij*-gwopen *U* and *ji*-gwopen *V* s.t. $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$.

(2) \Rightarrow (3): Let *A* be a *w_i*closed set and *N* be a *w_j*open set with $A \subseteq N$. Then, $A \cap X \setminus N = \emptyset$. From (2), there exist *ij-gwopen U* and *ji-gwopen V* s.t. $A \subseteq U, X \setminus N \subseteq V$, and $U \cap V = \emptyset$. Since $X \setminus V$ is *ji-gw*closed, *N* is *w_j*open, and $X \setminus V \subseteq N$, then from Definition 3, we have $cl_{w_i}(X \setminus V) \subseteq N$. Since $U \subseteq X \setminus V$, hence $U \subseteq cl_{w_i}(U) \subseteq cl_{w_i}(X \setminus V)$. Consequently, $A \subseteq U \subseteq cl_{w_i}(U) \subseteq N$.

Theorem 24 Let (X, w_1, w_2) be an $ij \cdot wT_{\frac{1}{2}}$. If $cl_{w_i}(U)$ is w_iclosed for each ij-gwclosed and $int_{w_j}(U)$ is w_jopen for each ij-gwclosed U, then the statements in Theorem 23 are equivalent.

Proof According to Theorem 23, we need to prove $(3) \Rightarrow (1)$.

(3) \Rightarrow (1): Let *A* be a w_i closed set and *B* be a w_j closed set with $A \cap B = \emptyset$. Take $N = X \setminus B$, then by using (3) there exists ij-gwopen *U* s.t. $A \subseteq U \subseteq cl_{w_i}(U) \subseteq N$. Since (X, w_1, w_2) is an ij- $wT_{\frac{1}{2}}$ space, then, $int_{w_j}(U) = U$. By assumption *U* is w_j open. Also, $X \setminus cl_{w_i}(U)$ is w_i open and $B \subseteq X \setminus cl_{w_i}(U)$.

Definition 10 *A biwss* (X, w_1, w_2) *is called ij-gwnormal if for each ji-gwclosed set A and ij-gwclosed set B s.t.* $A \cap B = \emptyset$, there are w_j open set U and w_i open set V s.t. $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Remark 13 It is clear that every ij-gwnormal space is ij-wnormal. It can be checked that the converse is not true by the following example.

Theorem 25 Let (X, w_1, w_2) be a biwss. Consider the following statements:

- (1) (X, w_1, w_2) is ij-gwnormal,
- (2) For each ji-gwclosed set A and ij-gwopen set N with A⊆N, there exists w_jopen set U s.t. A⊆U⊆cl_{wi}(U)⊆N,
- (3) For each ji-gwclosed set A and ij-gwclosed set B s.t. A∩B=Ø, there exist w_jopen set U s.t. A⊆U and cl_{w_i}(U)∩B=Ø.

Then, the implication $(1) \Rightarrow (2) \Rightarrow (3)$ is hold.

Proof Obvious.

Remark 14 If $cl_{w_i}(U)$ is w_iclosed for each w_iopen set U, then the statements in Theorem 25 are equivalent.

Theorem 26 Let (X, w_1, w_2) be a biwss. Consider the following statements:

- (1) (X, w_1, w_2) is ij-gwnormal,
- (2) For each *ji-gwclosed* set A and *ij-gwclosed* set B s.t. $A \cap B = \emptyset$, there exist *ij-\sigma* gwopen set U, *ji-\sigma* gwopen set V s.t. $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$,
- (3) For each ji-gwclosed set A and ij-gwopen set N with A⊆N, there exists ij-σgwopen set U s.t. A⊆U⊆cl_{wi}(U)⊆N.

Then, the implication $(1) \Rightarrow (2) \Rightarrow (3)$ is hold.

Proof (1) \Rightarrow (2) Follows directly from Proposition 5.

(2) \Rightarrow (3) Let *A* be a *ji-gw*closed set and *N* be an *ij-gw*open set with $A \subseteq N$. Take $B=X \setminus N$. Then, by assumption, there exist *ij-\sigmagw*open set *U*, *ji-\sigmagw*open set *V* s.t. $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$. Hence, $U \subseteq X \setminus V$, $X \setminus V \subseteq N$. Since $X \setminus V$ is *ji-\sigmagw*closed, then $cl_{w_i}(X \setminus V) \subseteq N$ and so $A \subseteq U \subseteq cl_{w_i}(U) \subseteq N$.

The question that comes to our mind, under what conditions can be achieved parity in Theorem 26.

Theorem 27 Let (X, w_1, w_2) be an ij-w- $T_{\frac{1}{2}}^{\sigma}$ space. If $int_{w_j}(U)$ is w_j open and $int_{w_i}(U)$ is w_i open for each ij- σ gwopen set U, then the statements in Theorem 26 are equivalent.

Proof Straightforward.

Corollary 4 If a biwss (X, w_1, w_2) is ij-gwnormal, then for each ji-gwclosed set A and ij- σ gwopen set N with $A \subseteq N$, there exists ij- σ gwopen set U s.t. $A \subseteq U \subseteq cl_{w_i}(U) \subseteq N$.

Proof Obvious from Proposition 5.

Theorem 28 If a biwss (X, w_1, w_2) is ij-gwnormal, then for each ji-gwclosed set A and ij-gwclosed set B s.t. $A \cap B = \emptyset$, there exist ij-gwopen set U and ji-gwopen set V s.t. $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Proof Clear.

Theorem 29 If a biwss (X, w_1, w_2) is ji-w- $T_{\frac{1}{2}}^{\sigma}$ and $cl_{w_i}(\emptyset) = \emptyset$. Consider the following statements:

- (1) (X, w_1, w_2) is ij-gwnormal,
- (2) For each ji-gwclosed set A and ij-gwopen set N with A⊆N, there exists ij-gwopen set U s.t. A⊆U⊆cl_{wi}(U)⊆N.

Then, the implication $(1) \Rightarrow (2)$ is hold.

Proof Obvious.

Some types of *ij*-(*w*, *w*^{*}) continuous functions

In this section, types of continuous functions between biweak spaces are defined and some of their features are established.

Definition 11 A function $f : (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$ is called:

- *j*-(*w*, *w*^{*})-continuous if for *x*∈*X* and *w*^{*}_j open set *V* containing *f*(*x*), there is a *w*_j open set *U* containing *x* s.t. *f*(*U*)⊆*V*.
- (2) ij-g(w, w*)-continuous if for x∈X and w^{*}_j open set V containing f(x), there is an ij-gwopen set U containing x s.t. f(U)⊆V.
- (3) $ij-g(w, w^*)$ closed if for each w_i closed set B, f(B) is $ji-gw^*$ closed set.

We describe ij- $g(w, w^*)$ -continuous function in the following part.

Proof (⇒): Let *V* be a w_j^* open set and $x \in f^{-1}(V)$. Since *f* is $ij \cdot g(w, w^*)$ -continuous, then there is an $ij \cdot gw$ open set *U* containing *x* s.t. $f(U) \subseteq V$. Hence, $U \subseteq f^{-1}(V)$. Since (X, w_1, w_2) is an $ij \cdot wT_{\frac{1}{2}}$ space, then $int_{w_j}(U) = U$. From assumptions, *U* is a w_j open set s.t. $x \in U \subseteq f^{-1}(V)$ and so $x \in int_{w_i}f^{-1}(V)$. Therefore, $f^{-1}(V) = int_{w_i}f^{-1}(V)$.

(\Leftarrow): Let $x \in X$ and V be a w_j^* open set in Y with $f(x) \in V$, then $x \in f^{-1}(V)$. Since $f^{-1}(V) = int_{w_j}f^{-1}(V)$, then there exists w_j open set U s.t. $x \in U \subseteq f^{-1}(V)$. From Corollary 1, U is an *ij-gwopen* set containing x s.t. $f(U) \subseteq V$. Consequently, f is *ij-g(w, w*)*-continuous.

Theorem 31 For a function $f : (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$, the following are equivalent:

- (1) $f^{-1}(V) = int_{w_i}(f^{-1}(V))$, for every w_i^* open set V in Y,
- (2) $f(cl_{w_i}(A)) \subseteq cl_{w_i^*}(f(A))$, for every set A in X,
- (3) $cl_{w_i}(f^{-1}(V)) \subseteq (f^{-1}(cl_{w_i^*}(V)))$, for every set V in Y,
- (4) $f^{-1}(int_{w_i^*}(V)) \subseteq int_{w_i}(f^{-1}(V))$, for every set V in Y,
- (5) $cl_{w_i}(f^{-1}(F)) = f^{-1}(F)$, for every w_i^* closed set F in Y.

Proof Obvious.

Theorem 32 For any function $f : (X, w_1, w_2) \longrightarrow (Y, w_1^*, w_2^*)$, every j- (w, w^*) -continuous function is ij- $g(w, w^*)$ -continuous.

Proof Obvious from Theorem 30.

Remark 15 The following example justifies the converse of the Theorem 32 need not to be true in general.

Example 17 Let $X=\{a, b, c, d\}$, $Y=\{1, 2, 3\}$, $w_1=\{\emptyset, \{a\}, \{a, d\}\}$, $w_2=\{\emptyset, \{a, b\}, \{c, d\}\}$, $w_1^*=\{\emptyset, \{1\}, \{2, 3\}\}$, and $w_2^*=\{\emptyset, \{2\}, \{1, 2\}\}$. If f is defined by f(a)=f(b)=2, f(c)=1, f(d)=3, we have f is 12-g(w, w^{*})-continuous, but it is not 2-(w, w^{*})-continuous.

Proposition 9 For any surjection function $f : (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$, the following are equivalent.

- (1) f is an ij- $g(w, w^*)$ closed function.
- (2) For any set B in Y and each w_iopen U s.t. f⁻¹(B)⊆U, there exists ij-gw*open set V of Y s.t. B⊆V and f⁻¹(V)⊆U.

Proof (1) \Rightarrow (2): Let $B \subseteq Y$ and U be a w_i open set s.t. $f^{-1}(B) \subseteq U$. Since f is an ij- $g(w, w^*)$ closed function, then f(U) is an ij- gw^* open set in Y. Take $f^{-1}(V)=U$. Since f is a surjection function and $f^{-1}(B)\subseteq U$, then $B=f(f^{-1}(B))\subseteq f(U)=V$.

(2) \Rightarrow (1): Let *U* be a *w_i*open set, $F \subseteq f(U)$ s.t. *F* is a *w^{*}_i*closed set, then $f^{-1}(F) \subseteq U$. This implies that there exists *ij-gw^{*}*open set *V* in *Y* s.t. $F \subseteq V$ and $f^{-1}(V) \subseteq U$. Consequently,

 $F \subseteq int_{w_j^*}(V)$ and so $F \subseteq int_{w_j^*}(f(U))$. This implies that f(U) is ij- gw^* open in Y. Therefore, f is an ij- $g(w, w^*)$ closed function.

Theorem 33 Let $(Y, w_1^{\star}, w_2^{\star})$ be an $ij \cdot w^{\star}T_{\frac{1}{2}}$ space. If $int_{w_j^{\star}}(A)$ is w_i^{\star} open for each ijgw^{\star}open set A. If $f : (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$ is a surjection $ij \cdot g(w, w^{\star})$ closed and $ij \cdot g(w, w^{\star})$ -continuous function, then $f^{-1}(B)$ is ij-gwclosed set of X for every ij-gw^{\star} closed set B of Y.

Proof Let *B*⊆*Y* be an *ij-gw**closed set. Let *U* be a *w_i*open set of *X* s.t. $f^{-1}(B) \subseteq U$. Since *f* is a surjection *ij-g(w, w**)closed function, then by Proposition 9, there exists *ij-gw**open set *V* of *Y* s.t. *B*⊆*V* and $f^{-1}(V) \subseteq U$. Since (Y, w_1^*, w_2^*) is an *ij-w** $T_{\frac{1}{2}}$ space, then $int_{w_j^*}(V) = V$. From assumptions, *V* is a *w*^{*}_iopen set. Since *B* is *ij-gw**closed, then $cl_{w_j^*}(B) \subseteq V$. Hence, $f^{-1}(cl_{w_j^*}(B)) \subseteq f^{-1}(V) \subseteq U$. By Theorems 30 and 31, $cl_{w_j}f^{-1}(B) \subseteq U$, and hence, $f^{-1}(B)$ is *ij-gw*closed set in *X*.

Lemma 2 Let (Y, w_1^*, w_2^*) be an $ji \cdot w^* T_{\frac{1}{2}}$ space. If $f : (X, w_1, w_2) \longrightarrow (Y, w_1^*, w_2^*)$ is an $ij \cdot g(w, w^*)$ closed function, then $cl_{w_i^*}f(A) = f(cl_{w_i}(A))$, for every w_j closed set A in X.

Proof Let *A* be a w_j closed set in *X*, then $A = cl_{w_j}(A)$. Since *f* is an $ij - g(w, w^*)$ closed function, then f(A) is $ji - gw^*$ closed set since (Y, w_1^*, w_2^*) is a $ji - w^*T_{\frac{1}{2}}$ space, then $cl_{w_i^*}f(A) = f(A)$. Hence, $cl_{w_i^*}f(A) = f(cl_{w_j}(A))$.

Lemma 3 Let (Y, w_1^*, w_2^*) be an ij- $w^*T_{\frac{1}{2}}$ space. and $f : (X, w_1, w_2) \longrightarrow (Y, w_1^*, w_2^*)$ be a ji- $g(w, w^*)$ closed function. If $cl_{w_j}(A)$ is a w_i closed set for each set A in X, then $cl_{w_j^*}f(A) \subseteq f(cl_{w_j}(A))$.

Proof Suppose $cl_{w_j}(A)$ is a w_i closed set in X. Since f is an ji- $g(w, w^*)$ closed function, then $f(cl_{w_j}(A))$ is ij- gw^* closed set containing f(A). Since (Y, w_1^*, w_2^*) is an ij- $w^*T_{\frac{1}{2}}$ space, then $cl_{w_i^*}f(cl_{w_j}(A))=f(cl_{w_j}(A))$. Hence, $cl_{w_i^*}f(A)\subseteq f(cl_{w_j}(A))$.

Theorem 34 Let $(Y, w_1^{\star}, w_2^{\star})$ be an $ij \cdot w^{\star}T_{\frac{1}{2}}$ space. If $int_{w_i}f^{-1}(U)$ is w_i open for each w_i^{\star} open set U in Y and $cl_{w_i}(A)$ is a w_i closed set for each set A in X. If $f: (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$ is a $ji \cdot g(w, w^{\star})$ closed and $ji \cdot g(w, w^{\star})$ -continuous function, then f(A) is $ij \cdot gw^{\star}$ closed set of Y for every ij-gw closed set A of X.

Proof Follows directly from Theorem 30, Theorem 31, and Lemma 3.

Theorem 35 Let (Y, w_1^*, w_2^*) be an $ij \cdot w^* T_{\frac{1}{2}}$ space. If $i_{w_j^*}(A)$ is w_j^* open for each $ij \cdot gw^*$ open set A of Y. If $f : (X, w_1, w_2) \longrightarrow (Y, w_1^*, w_2^*)$ and $h : (Y, w_1^*, w_2^*) \longrightarrow (Z, \upsilon_1, \upsilon_2)$ are $ij \cdot g(w, w^*)$ -continuous and $ij \cdot g(w^*, \upsilon)$ -continuous functions, respectively, then $h \circ f : (X, w_1, w_2) \longrightarrow (Z, \upsilon_1, \upsilon_2)$ is $ij \cdot g(w, \upsilon)$ -continuous.

Proof Let $x \in X$ and V be a v_j open set of Z containing $h \circ f(x)$. Since h is ij- $g(w^*, v)$ continuous, then there is an ij- gw^* open set U containing h(x) s.t. $h(U) \subseteq V$. Since (Y, w_1^*, w_2^*) is an ij- $w^*T_{\frac{1}{2}}$ space, hence, $i_{w_j^*}(U)=U$. From assumptions, U is a w_j^* open for
each ij- gw^* open set U of Y containing h(x). Since f is an ij- $g(w, w^*)$ -continuous function,

so there is an *ij-gw*open set *G* containing *x* s.t. $f(G) \subseteq U$. It follows that there exists an *ij-gw*open set *G* containing *x* s.t. $h \circ f(G) \subseteq V$. Consequently, $h \circ f$ is *ij-g(w, v)*-continuous.

Theorem 36 If $f : (X, w_1, w_2) \longrightarrow (Y, w_1^{\star}, w_2^{\star})$ and $h : (Y, w_1^{\star}, w_2^{\star}) \longrightarrow (Z, \upsilon_1, \upsilon_2)$ are ij-g (w, w^{\star}) -continuous and j- (w^{\star}, υ) -continuous respectively, then hof $: (X, w_1, w_2) \longrightarrow (Z, \upsilon_1, \upsilon_2)$ is ij-g (w, υ) -continuous.

Proof Straightforward.

Future work

In the future, we intend to introduce the bisoft weak structure spaces and study the notions *ij*-soft *gw* closed, *ij*-soft *gw* open, and *ij*-soft σ *gw* closed sets in it. Also, using these sets, diverse classes of mappings on soft biweak structures can be examined. Further, we suggest studying the properties of some kinds of *ij*-*gw* closed subsets with respect to a biweak structure modified by elements of an ideal or a hereditary class. Accordingly, we construct a kind of continuity depending on the new class of *ij*-*gw* closed subsets. Moreover, one may take research to find the suitable way of defining the biweak structure spaces associated to the digraphs by using *ij*-*gw* closed such that there is a one-to-one correspondence between them. It may also lead to the new properties of separation axioms on these spaces. It will be necessary to perform more research to strengthen a comprehensive framework for the practical applications.

Acknowledgements

The authors thank the reviewers for their useful comments that led to the improvement of the original manuscript.

Authors' contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Received: 26 December 2019 Accepted: 16 April 2020 Published online: 19 May 2020

References

- 1. Kelly, J.: Bitopological spaces. Proc. London. Math. Soc. 13, 71–89 (1963)
- 2. Fukutake, T.: On generalized closed sets in bitopological spaces. Bull. Fukuoka Univ. Ed. III. 35, 19–28 (1985)
- 3. Csaszar, A., Makai Jr., E.: Further remarks on δ and θ -modifications. Acta Math. Hungar. **123**, 223–228 (2009)
- 4. Boonpok, C.: Weakly open functions on bigeneralized topological spaces. Int. J. Math. Anal. 4, 891–897 (2010)
- 5. Boonpok, C.: Biminimal structure spaces. Int. Math. Forum. 5, 703–707 (2010)
- 6. Csaszar, A.: Weak structures. Acta Math. Hungar. **131**(1-2), 193–195 (2011)
- 7. Ekici, E: On weak structures due to Csaszar. Acta Math. Hungar. 134(4), 565–570 (2012)
- Zahran, A, Mousa, A, Ghareeb, A: generalized closed sets and some separation axioms on weak structure. Hacettepe J. Math. Stat. 44(3), 669–677 (2015)
- Puiwong, J, Viriyapong, C, Khampakdee, J: Weak separation axioms in biweak structure spaces. Burapha Sci. J. 22(2), 110–117 (2017)
- Al-Omari, A, Noiri, T: a unified theory of generalized closed sets in weak structure. Acta Math. Hungar. 135(1–2), 174–183 (2012)
- 11. Al-Omari, A, Noiri, T: weak continuity between WSS and GTS due to Csaszar. Malays. J. Math. Sci. 7(2), 297–313 (2013)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.