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Abstract

In this paper, we study a multiple scales perturbation and numerical solution for
vibrations analysis and control of a system which simulates the vibrations of a
nonlinear composite beam model. System of second order differential equations
with nonlinearity due to quadratic and cubic terms, excited by parametric and
external excitations, are presented. The controller is implemented to control one
frequency at primary and parametric resonance where damage in the mechanical
system is probable. Active control is applied to the system. The multiple scales
perturbation (MSP) method is implemented to obtain an approximate analytical
solution. The stability analysis of the system is obtained by frequency response (FR).
Bifurcation analysis is conducted using various control parameters such as natural
frequency (ω1), detuning parameter (σ1), feedback signal gain (β), control signal
gain (γ), and other parameters. The dynamic behavior of the system is predicted
within various ranges of bifurcation parameters. All of the stable steady state (point
attractor), stable periodic attractors, unstable steady state, and unstable periodic
attractors are determined efficiently using bifurcation analysis. The controller’s
influence on system behavior is examined numerically. To validate our results, the
approximate analytical solution using the MSP method is compared with the
numerical solution using the Runge-Kutta (RK) method of order four.

Keywords: Active control, Stability, Internal resonance, Bifurcation analysis, Point and
periodic attractor
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Introduction
An active control system is defined necessarily in terms of that a mass of external power

or energy is required. Fanson and Caughey [1] were the first to introduce the Positive

Position Feedback (PPF) technique. Vibrations can be abolished via a movement of feed-

back signals conducted by the mentioned technique. Active constrained layer damping

has been effectively implemented as an efficient method to control the vibration of vari-

ous flexible mechanical structures [2–9]. Eissa and Sayed [10–12] examined the active

controller’s effect on both spring and simple pendulum at the primary resonance using

negative velocity feedback. El-Bassiouny [13], Eissa et al. [14–17], and Jaensch [18] con-

firmed how active control is functional in vibration attenuation at resonance for different
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vibration modes. They approved that the active control method has several advantages

with respect to the passive one. Sadek et al. [19] employed piezoelectric-patch-actuators

as active control to control the vibration of simply supported flexible plates. An optimal

control law was deduced utilizing the maximum principle theory to calculate the voltage

of the actuators. Wang et al. [20] used an inverse feed-forward controller method for

directing polymer actuator displacement control. Dong et al. [21] investigated the active

vibration control method to control piezoelectric smart structures using a system identifi-

cation technique. Kapuria and Yasin [22] studied the active vibration repression of metal

laminated plates through piezoelectric fiber-reinforced composite materials. Warminski

et al. [23] studied the experimental and theoretical investigations of vibrations of an

autoparametric system composed of two beams with rectangular cross-sections. The ex-

perimental response of the system, tuned at 1:4 internal resonance case, is performed for

random and harmonic excitations. Warminski et al. [24] investigated the numerical and

experimental solutions for various active controllers which applied to a nonlinear mech-

anical system. El-Ganaini et al. [25] considered the PPF controller to put down the vibra-

tion amplitude of a nonlinear dynamic model at primary resonance with 1 : 1 internal

resonance. Hamed and Amer [26] studied an active controller for damping out the non-

linear vibration composite beam with parametric excitation force in the case of 1 : 2 in-

ternal resonances. Sayed and Kamel [27] examined the effect of a linear controller to

control the vibration of each of the saturation control of a linear absorber and the vibrat-

ing system. Sayed and Kamel [28] applied an active control method with on 1 : 2 and 1 : 3

internal resonance to control the vibrations of a nonlinear vibrating system. Large deform-

ation analysis for a cantilever beam with a variable bending stiffness under both static and

dynamic loads is investigated by the direct integration scheme [29]. A simple boundary

feedback control moment is proposed to stabilize a nonhomogeneous flexible beam with

a tip mass [30]. They obtained the exponential stability, spectrum-determined growth

condition, and optimal decay rate. Chentouf [31] considered the stabilization problem of a

variant of the SCOLE model. He shows that the system uniformly stabilized by the pro-

posed feedback law as soon as the boundary control force and control moment were pre-

sented in the feedback. Chentouf [32] studied a model that consists of a non-

homogeneous flexible beam clamped at its left end to a rigid disk and free at the right

end, where another rigid body is attached. They treated different physical situations and

provided accordingly appropriate feedback control laws. Bağdatlı et al. [33] investigated

nonlinear transverse vibrations of a tensioned Euler-Bernoulli beam resting on multiple

supports. A perturbation technique was applied to the equations of motion to obtain ap-

proximate analytical solutions. He considered 3 : 1 internal resonance. Hegazy [34] studied

the dynamic behavior and chaotic motion of a string-beam coupled system subjected to

parametric excitation. He considered and examined the case of 3 : 1 internal resonance be-

tween the modes of the beam and the string, in the presence of subharmonic resonance

for the beam. Cemil Tunç [35, 36] investigated the asymptotic stability and boundedness

of all solutions of certain differential equations of fourth order.

In this paper, the solutions of nonlinear differential equations that represent compos-

ite beam vibrations are obtained. We control the vibration of the system via 1 : 3 active

control techniques. We applied the MSP technique to solve those nonlinear equations.

We extract the corresponding FR equations and present graphically at different system

parameters. We apply the RK algorithm to confirm the obtained curves numerically.



Sayed et al. Journal of the Egyptian Mathematical Society           (2020) 28:45 Page 3 of 21
We applied Lyapunov’s first method to investigate the stability of the controlled system.

To validate our results, we compare approximate solutions using the MSP method and

numerical solutions using the RK method of order four. We predict the dynamic be-

havior of the system at various ranges of bifurcation parameters. We use bifurcation

analysis to determine the efficiently stable steady state (point attractor), stable periodic

attractor, unstable steady state, and unstable periodic attractors.

Equations of motion
The modified nonlinear differential equations describe the oscillations of the nonlinear

composite beam model [23, 24, 26] are given by:

€uþ 2μ1ω1u̇þ ω2
1uþ α1u3 − δ uu̇2 þ u2€uÞ ¼ f 1 cosΩ1t þ uf 2 cosΩ2t þ γν3;

� ð1Þ

€νþ 2μ2ω2ν̇þ ω2
2νþ α2ν3 ¼ βuν2; ð2Þ

with initial conditions uð0Þ ¼ 0:02; u̇ð0Þ ¼ 0; νð0Þ ¼ 0:2; ν̇ð0Þ ¼ 0; where u denotes the
composite beam system displacement and ν denotes the controller displacement, and

the derivatives with respect to the time t are denoted by dots. μ1 and μ2 are the param-

eters of the viscous damping coefficients, ω1 is the natural frequency accompanied by

the composite beam, and ω2 is the natural frequencies associated with controller

modes, Ω1 and Ω2 are the excitation frequencies, f1 and f2 are the excitation forces am-

plitudes, and γ and β are the control and feedback signal gains. δ, α1 are the main sys-

tem nonlinear stiffness coefficient which may be due to material of the beam non-

homogeneity,α2 nonlinear stiffness coefficient of the controller. The nonlinear parame-

ters, linear viscous damping, and excitation forces are as follows:

μn ¼ εμ̂n;αn ¼ εα̂n; δ ¼ εδ̂; β ¼ εβ̂; γ ¼ εγ̂; f n ¼ ε f̂ n; n ¼ 1; 2; ð3Þ

where the parameter ε has a low value denoted as perturbation parameter and 0 < ε≪

1. Substituting Eq. (3) into Eqs. (1) and (2), we can obtain:

€uþ 2εμ̂1ω1u̇þ ω2
1uþ εα̂1u3 − εδ̂ uu̇2 þ u2€uÞ ¼ ε f̂ 1 cosΩ1t þ uf̂ 2 cosΩ2t

� �
þ εγ̂ν3;

�
ð4Þ

€νþ 2εμ̂2ω2ν̇þ ω2
2νþ εα̂2ν3 ¼ εβ̂uν2: ð5Þ

The parameters α̂ ; α̂ ; μ̂ ; μ̂ ; δ̂; β̂; γ̂; f̂ , and f̂ are of the order 1. This means that all
1 2 1 2 1 2

these parameters appear when comparing the coefficients of the parameter ε.

Existence and uniqueness theorem

The system of ODEs (1) and (2) with initial conditions uð0Þ ¼ 0:02; ˙

uð0Þ ¼ 0; νð0Þ ¼ 0:2; ν̇ð0Þ ¼ 0, can be transformed to a system of first order differential

equations IVP in the following:

put u(t) = x1(t) = x1, then ẋ1ðtÞ ¼ x2ðtÞ ¼ x2

ẋ2 tð Þ ¼ €u tð Þ ¼ f 1 cos Ω1t þ x1 f 2 cos Ω2t þ γx33 − 2μ1ω1x2 − ω2
1x1 − α1x31 þ δx1x22

� �
= 1 − δx21
� �

;

put v(t) = x3(t) = x3, then ẋ3ðtÞ ¼ x4ðtÞ ¼ x4
ẋ4 tð Þ ¼ €v tð Þ ¼ βx1x23 − 2μ2ω2x4 − ω2
2x3 − α2x33

and the initial conditions become x1(0) = 0.02, x2(0) = 0, x3(0) = 0.2, x4(0) = 0.
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Here, we concentrate on the solution of the first order IVP

ẋn ¼ f ðt; xnÞ xn(0) = x0n n = 1, 2, 3, 4 (*)

ẋ1 tð Þ ¼ x2 tð Þ
ẋ2 tð Þ ¼ f 1 cos Ω1t þ x1 f 2 cos Ω2t þ γx33 − 2μ1ω1x2 − ω2

1x1 − α1x31 þ δx1x22
� �

= 1 − δx21
� �

ẋ3 tð Þ ¼ x4 tð Þ
ẋ4 tð Þ ¼ βx1x23 − 2μ2ω2x4 − ω2

2x3 − α2x33

Theorem 1 [37]. (Existence theorem) Suppose that f(t, xn) is continuous function in

some region R = {(t, xn) : |t − 0| ≤ a, |xn − x0n| ≤ b}, (a, b > 0). Since f is continuous in a

closed and bounded domain, it is necessarily bounded in R, i.e., there exists K > 0 such

that |f(t, xn)| ≤K ∀ (t, xn) ∈ R . Then, the IVP (*) has at least one solution xn = xn(t)

defined in the interval |t − 0| ≤ α where α ¼ minða; bKÞ (note that the solution exists

possibly in a smaller interval).

Theorem 2 [37]. (Uniqueness theorem) Suppose that f and ∂ f
∂xn

are continuous func-

tion in R (defined in the existence theorem). Hence, both the f and ∂ f
∂xn

are bounded in

R, i.e., (a) |f(t, xn)| ≤ K and (b) ∂ f
∂xn

≤L ∀ðt; xnÞ∈R.
Then, the IVP (*) has at most one solution xn = xn(t) defined in the interval |t − 0| ≤ α

where α ¼ minða; bKÞ. Combining with existence theorem, the IVP (*) has a unique so-

lution xn = xn(t) defined in the interval |t − 0| ≤ α. By using Theorems (1) and (2), both

the functions f(t, xn) and its partial derivative are defined and continuous at all pointsfð

x1;x2; x3; x4Þ:x1≠�
ffiffi
1
δ

q
g . The theorem guarantees that a solution to the IVP exists in

some open interval and that this solution is unique.

Mathematical analysis
A first-order approximate solution of Eqs. (4) and (5) is conducted using the method of

MSP [38, 39].

u t; εð Þ ¼ u0 T 0;T1ð Þ þ εu1 T 0;T1ð Þ; ð6Þ
ν t; εð Þ ¼ ν0 T0;T1ð Þ þ εν1 T0;T1ð Þ; ð7Þ

where Tn = εnt is the fast time scales for n = 0 and slow time scales for n = 1. In terms

of T0, T1, the time derivatives are converted to the D operator according to:

d
dt

¼ D0 þ εD1;
d2

dt2
¼ D2

0 þ 2εD0D1; ð8Þ

where Dn ¼ ∂ : After substituting Eqs. (6) and (7) and (8) into Eqs. (4) and (5) and
∂Tn

comparing the coefficients of similar powers of the parameter ε in both sides, we obtain

the following:

Order (ε0):

D2
0 þ ω2

1

� �
u0 ¼ 0; ð9Þ

D2
0 þ ω2

2

� �
ν0 ¼ 0: ð10Þ

Order (ε):
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D2
0 þ ω2

1

� �
u1 ¼ − 2D0D1u0 − 2μ̂1ω1D0u0 − α̂1u30 þ δ̂u0 D0u0ð Þ2 þ δ̂u20D

2
0u0

þ f̂ 1 cosΩ1T 0 þ u0 f̂ 2 cosΩ2T 0 þ γ̂ν30;

ð11Þ

D2
0 þ ω2

2

� �
ν1 ¼ − 2D0D1ν0 − 2μ̂2ω2D0ν0 − α̂2ν30 þ β̂u0ν20: ð12Þ

The solutions of Eqs. (9) and (10) are represented in the complex form:
u0 ¼ A1e
iω1T0 þ A1e

− iω1T 0 ; ð13Þ

ν0 ¼ A2e
iω2T 0 þ A2e

− iω2T 0 ; ð14Þ

where A1 and A2 are complex function with T1 as a complex argument, which assigned
by removing of secular terms and small-divisor terms from the 1st order of approxima-

tion. Therefore, we investigate the case where Ω1 ≅ ω1, Ω2 ≅ 2ω1 and ω1 ≅ 3ω2. To

examine quantitatively the closeness of the resonances, the detuning parameters σ1, σ2,

and σ3 are represented by Ω1 = ω1 + εσ1, Ω2 = 2ω1 + εσ2 and ω1 = 3ω2 + εσ3. Substituting

Eqs. (13) and (14) into Eqs. (11) and (12), we get:

D2
0 þ ω2

1

� �
u1 ¼ − 2iω1D1A1e

iω1T 0 þ 2iω1D1A1e
− iω1T0 − 2iμ̂1ω

2
1A1e

iω1T 0

þ2iμ̂1ω
2
1A1e

− iω1T0 − α̂1A3
1e

3iω1T 0 − 3α̂1A2
1A1e

iω1T0 − 3α̂1A1A
2
1e

− iω1T0

− α̂1A
3
1e

− 3iω1T0 − 2ω2
1δ̂A

3
1e

3iω1T 0 − 2ω2
1δ̂A

2
1A1e

iω1T 0 − 2ω2
1δ̂A

2
1A1e

− iω1T 0

− 2ω2
1δ̂A

3
1e

− 3iω1T 0 þ f̂ 1=2
� �

ei ω1þεσ1ð ÞT0 þ f̂ 1=2
� �

e − i ω1þεσ1ð ÞT0

þ f̂ 2=2
� �

A1e
i 3ω1þεσ2ð ÞT0 þ f̂ 2=2

� �
A1e

i ω1þεσ2ð ÞT 0

þ f̂ 2=2
� �

A1e
− i 3ω1þεσ2ð ÞT 0 þ f̂ 2=2

� �
A1e

− i ω1þεσ2ð ÞT 0 þ γ̂A3
2e

i ω1 − εσ3ð ÞT0

þ3γ̂A2
2A2e

iω2T0 þ γ̂A
3
2e

− i ω1 − εσ3ð ÞT0 þ 3γ̂A
2
2A2e

− iω2T0 ;

ð15Þ

D2
0 þ ω2

2

� �
ν1 ¼ − 2iω2D1A2e

iω2T 0 þ 2iω2D1A2e
− iω2T0 − 2iμ̂2ω

2
2A2e

iω2T 0

þ2iμ̂2ω
2
2A2e

− iω2T0 − α̂2A3
2e

3iω2T 0 − 3α̂2A2
2A2e

iω2T0 − 3α̂2A2A
2
2e

− iω2T0

− α̂2A
3
2e

− 3iω2T0 þ β̂A1A
2
2e

i ω1þ2ω2ð ÞT0 þ 2β̂A1A2A2e
iω1T0

þβ̂A1A
2
2e

i ω2þεσ3ð ÞT0 þ β̂A1A
2
2e

− i ω2þεσ3ð ÞT 0 þ 2β̂A2A1A2e
− iω1T 0

þβ̂A1A
2
2e

− i ω1þ2ω2ð ÞT 0 :

ð16Þ

We get the solvability conditions of the first-order expansion by eliminating the secu-

lar terms means the term that has some singularity (an unbounded term arising in

time-dependent perturbation theory):

2iω1D1A1 ¼ − 2iμ̂1ω
2
1A1 − 3α̂1A2

1A1 − 2ω2
1δ̂A

2
1A1 þ f̂ 1

2
eiσ1T1 þ f̂ 2

2
A1e

iσ2T1 þ γ̂A3
2e

− iσ3T1 ;

ð17Þ

2iω2D1A2 ¼ − 2iμ̂2ω
2
2A2 − 3α̂2A2

2A2 þ β̂A1A
2
2e

iσ3T1 : ð18Þ

By multiplying both sides of Eq. (8) be 2iω1, 2iω2, we obtain
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2iω1
dA1

dt
¼ ε2iω1D1A1; ð19Þ

2iω2
dA2

dt
¼ ε2iω2D1A2: ð20Þ

Substituting Eqs. (17) and (18) into Eqs. (19) and (20), we obtain

2iω1
dA1

dt
¼ ε − 2iμ̂1ω

2
1A1 − 3α̂1A2

1A1 − 2ω2
1δ̂A

2
1A1 þf̂ 1

2
eiσ1T 1 þf̂ 2

2
A1e

iσ2T 1 þ γ̂A3
2e

− iσ3T 1

 !
;

ð21Þ

2iω2
dA2

dt
¼ ε − 2iμ̂2ω

2
2A2 − 3α̂2A2

2A2 þ β̂A1A
2
2e

iσ3T1

� �
: ð22Þ

To analyze Eqs. (21) and (22), we can express A1 and A2in polar form as
A1 ¼ 1
2
a1e

iγ1 ;A2 ¼ 1
2
a2e

iγ2 ð23Þ

where a1 and a2 are the steady state amplitudes, and γs (s = 1, 2) are phases of the mo-
tion. Substituting Eq. (23) into Eqs. (21) and (22) and separating the real and imaginary

parts, we get the following:

ȧ1 ¼ − μ1ω1a1 þ f 1
2ω1

sinθ1 þ f 2
4ω1

a1 sinθ2 þ γ
8ω1

a32 sinθ3; ð24Þ

a1γ̇1 ¼
3α1
8ω1

a31 þ
δ
4
ω1a

3
1 −

f 1
2ω1

cosθ1 −
f 2
4ω1

a1 cosθ2 −
γ

8ω1
a32 cosθ3; ð25Þ

ȧ2 ¼ − μ2ω2a2 −
β

8ω2
a1a

2
2 sinθ3; ð26Þ

a2γ̇2 ¼
3α2
8ω2

a32 −
β

8ω2
a1a

2
2 cosθ3; ð27Þ

where
θ1 ¼ σ1T1 − γ1; θ2 ¼ σ2T 1 − 2γ1; θ3 ¼ 3γ2 − γ1 − σ3T 1: ð28Þ

Then, it follows from Eq. (28) that
θ̇1 ¼ σ1 − γ̇1⇒γ̇1 ¼ σ1 − θ̇1; γ̇2 ¼
1
3

θ̇3 þ σ3 þ σ1 − θ̇1Þ:ð ð29Þ

Substituting Eq. (29) into Eqs. (25) and (27), we obtain
θ̇1 ¼ σ1 −
3α1
8ω1

a21 −
δ
4
ω1a

2
1 þ

f 1
2ω1a1

cosθ1 þ f 2
4ω1

cosθ2 þ γ
8ω1a1

a32 cosθ3; ð30Þ

θ̇3 ¼ − σ3 −
3α1
8ω1

a21 −
δ
4
ω1a

2
1 þ

f 1
2ω1a1

cosθ1 þ f 2
4ω1

cosθ2 þ γ
8ω1a1

a32 cosθ3

þ 9α2
8ω2

a22 −
3β
8ω2

a1a2 cosθ3: ð31Þ

From Eqs. (24), (26), (30), and (31), the autonomous system of equations is:
ȧ1 ¼ − μ1ω1a1 þ f 1
2ω1

sinθ1 þ f 2
4ω1

a1 sinθ2 þ γ
8ω1

a32 sinθ3; ð32Þ
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θ̇1 ¼ σ1 −
3α1
8ω1

a21 −
δ
4
ω1a

2
1 þ

f 1
2ω1a1

cosθ1 þ f 2
4ω1

cosθ2 þ γ
8ω1a1

a32 cosθ3; ð33Þ

ȧ2 ¼ − μ2ω2a2 −
β

8ω2
a1a

2
2 sinθ3; ð34Þ

θ̇3 ¼ − σ3 −
3α1
8ω1

a21 −
δ
4
ω1a

2
1 þ

f 1
2ω1a1

cosθ1 þ f 2
4ω1

cosθ2 þ γ
8ω1a1

a32 cosθ3 þ 9α2
8ω2

a22 −
3β
8ω2

a1a2 cosθ3

ð35Þ

Steady state solution
In this work, the steady state motions are examined as follows:

ȧ1 ¼ ȧ2 ¼ θ̇1 ¼ θ̇2 ¼ θ̇3 ¼ 0: ð36Þ

Then, it follows from Eq. (29) that
γ̇1 ¼ σ1; γ̇2 ¼
1
3

σ1 þ σ3ð Þ: ð37Þ

Then, the steady state solutions of Eqs. (32)–(35) are as follows:

μ1ω1a1 −
f 1
2ω1

sinθ1 −
f 2
4ω1

a1 sinθ2 −
γ

8ω1
a32 sinθ3 ¼ 0; ð38Þ

σ1 −
3α1
8ω1

a21 −
δ
4
ω1a

2
1 þ

f 1
2ω1a1

cosθ1 þ f 2
4ω1

cosθ2 þ γ
8ω1a1

a32 cosθ3 ¼ 0 ð39Þ

μ2ω2a2 þ β
8ω2

a1a
2
2 sinθ3 ¼ 0; ð40Þ

σ3 þ 3α1
8ω1

a21 þ
δ
4
ω1a

2
1 −

f 1
2ω1a1

cosθ1 −
f 2
4ω1

cosθ2 −
γ

8ω1a1
a32 cosθ3 −

9α2
8ω2

a22 þ
3β
8ω2

a1a2 cosθ3 ¼ 0:

ð41Þ

In addition to a trivial one, two possible cases which will be described as follows
exist.

(1) a1 ≠ 0, a2 = 0 (system without control)

(2) a1 ≠ 0, a2 ≠ 0 (system with control).

Case (1): We consider a1 ≠ 0 and a2 = 0 (system without control); the FR equation is

described as follows:

a1σ1 −
3α1
8ω1

a31 −
δ
4
ω1a

3
1

� �2

þ μ21ω
2
1a

2
1 −

f 21
4ω2

1
−

f 22
16ω2

1
a21 −

f 1 f 2
8ω2

1
a1 ¼ 0: ð42Þ

Case (2): It is considered a1 ≠ 0 and a2 ≠ 0 (system with control); the FR equations
are described as follows:

a1σ1 −
3α1
8ω1

a31 −
δ
4
ω1a

3
1

� �2

þ μ21ω
2
1a

2
1 −

f 21
4ω2

1
−

f 22
16ω2

1
a21 −

f 1 f 2
8ω2

1
a1 −

γ2

64ω2
1
a62 −

f 1γ
8ω2

1
a32 −

f 2γ
16ω2

1
a1a

3
2 ¼ 0

ð43Þ

and
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σ3 þ 3α1
8ω1

a21 þ
δ
4
ω1a

2
1 −

9α2
8ω2

a22

� �2

þ 9μ22ω
2
2 −

9β2

64ω2
2
a21a

2
2 −

f 21
4ω2

1a
2
1
−

f 22
16ω2

1

−
γ2

64ω2
1a

2
1
a62 −

f 1 f 2
4ω2

1a1
−

f 1γ
8ω2

2a
2
1
a32 −

f 2γ
16ω2

2a1
a32 ¼ 0:

ð44Þ

Stability of the system
To derive the stability criteria, we assume that

a1 ¼ a10 þ a11; a2 ¼ a20 þ a21 and θn ¼ θn0 þ θn1 n ¼ 1; 2; 3ð Þ; ð45Þ

where a10, a20, and θn0 satisfy Eqs. (38)–(41) and a11, a21, and θn1 are assumed to be

small compared with a10, a20, and θn0. Substituting Eq. (45) into Eqs. (32)–(35), using

Eqs. (38)–(41) and keeping only the linear terms in a11, a21, and θn1, we obtain:

ȧ11 ¼ f 2
4ω1

sin 2θ10ð Þ − ω1μ1

� �
a11 þ f 1

2ω1
cosθ10 þ f 2

2ω1
a10 cos 2θ10ð Þ

� �
θ11

þ 3γ
8ω1

a220 sinθ30

� �
a21 þ γ

8ω1
a320 cosθ30

� �
θ31;

ð46Þ

θ̇11 ¼ σ1
a10

−
9α1
8ω1

a10 −
3δ
4
ω1a10 þ f 2

4ω1a10
cos 2θ10ð Þ

� �
a11 −

f 1
2ω1a10

sinθ10

�
þ f 2
2ω1

sin 2θ10ð Þ
�
θ11

þ 3γ
8ω1a10

a220 cosθ30

� �
a21 −

γ
8ω1a10

a320 sinθ30

� �
θ31;

ð47Þ

ȧ21 ¼ β
8ω2

a220 sinθ30

� �
a11 þ − μ2ω2 þ β

4ω2
a10a20 sinθ30

� �
a21 þ β

8ω2
a10a

2
20 cosθ30

� �
θ31;

ð48Þ

θ̇31 ¼ −
σ3
a10

−
9α1
8ω1

a10 −
3δ
4
ω1a10 þ 9α2

8ω2a10
a220 −

3β
4ω2

a20 cosθ30 þ f 2
4ω1a10

cos 2θ10ð Þ
� �

a11

−
f 1

2ω1a10
sinθ10 þ f 2

2ω1
sin 2θ10ð Þ

� �
θ11 þ 3γ

8ω1a10
a220 cosθ30 þ 9α2

4ω2
a20

�

−
3β
8ω2

a10 cosθ30Þa21 þ 3β
8ω2

a10a20 sinθ30 −
γ

8ω1a10
a320 sinθ30

� �
θ31:

ð49Þ

The system stability is analyzed by assessing the eigenvalues of the Jacobian matrix of
the right-hand sides of the system of Eqs. (46)–(49). The equilibrium solution is consid-

ered stable when the real parts of the Jacobian matrix eigenvalues are negative. While

the relevant solution is unstable if the corresponding real part of any of the eigenvalues

is positive, the fixed points stability is investigated according to the following cases:

Case (1): Uncontrolled system, let a21 = θ31 = 0 in Eqs. (46)–(49); then, the above sys-

tem is written in the matrix form as follows

a11
:

θ11
:

� �
¼ L1 L2

L3 L4

� �
a11
θ11

� �
: ð50Þ

where
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L1 ¼ − μ1ω1 þ f 2
4ω1

sin 2θ1ð Þ; L2 ¼ f 1
2ω1

cosθ1 þ f 2
2ω1

a1 cos 2θ1ð Þ;

L3 ¼ σ1
a1

−
9

8ω1
α1a1 −

3δ
4
ω1a1 þ f 2

4ω1a1
cos 2θ1ð Þ; L4

¼ −
f 1

2ω1a1
sinθ1 þ f 2

2ω1
sin 2θ1ð Þ

� �
:

L1 − λ L2
		 		
Then, the characteristic equation is
L3 L4 − λ

		 		 ¼ 0;

i.e., λ2 + Bλ +C = 0, where B = − (L1 + L4), C = (L1L4 − L2L3), and the obtained eigen-

values are as follows:

λ ¼
L1 þ L4ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 þ L4ð Þ2 − 4 L1L4 − L2L3ð Þ

q
2

: ð51Þ

According to the Routh-Hurwitz criterion, the necessary and sufficient conditions of
the roots of Eq. (51) have negative real parts, such that

L1 þ L4ð Þ < 0; L1L4 − L2L3 > 0

Then, the fixed points are stable; otherwise, they are unstable.

Case (2): Controlled system when a11 ≠ 0, θ11 ≠ 0, a21 ≠ 0, θ31 ≠ 0 in Eqs. (46)–(49);

then, we can write the above system in the matrix form as shown below:

a11
:

θ11
:

a21
:

θ31
:

0
B@

1
CA ¼

L1 L2 L9 L10
L3 L4 L11 L12
L5 L6 L13 L14
L7 L8 L15 L16

0
B@

1
CA

a11
θ11
a21
θ31

0
B@

1
CA: ð52Þ

The eigenvalue of the above system is as follows:

L1 − λ L2
L3 L4 − λ
L5 L6
L7 L8

L9 L10
L11 L12

L13 − λ L14
L15 L16 − λ

							
							 ¼ 0; ð53Þ

i.e. λ4 + R1λ
3 + R2λ

2 + R3λ + R4 = 0, (54)
where

L5 ¼ β
8ω2

a22 sinθ3; L6 ¼ 0;

L7 ¼ −
σ3
a1

−
9α1
8ω1

a1 −
3δ
4
ω1a1 þ 9α2

8ω2a1
a22 −

3β
4ω2

a2 cosθ3 þ f 2
4ω1a1

cos 2θ1ð Þ
� �

;

L8 ¼ −
f 1

2ω1a1
sinθ1 þ f 2

2ω1
sin 2θ1ð Þ

� �
; L9 ¼ 3γ

8ω1
a22 sinθ3; L10 ¼ γ

8ω1
a32 cosθ3;

L11 ¼ 3γ
8ω1a1

a22 cosθ3; L12 ¼ −
γ

8ω1a1
a32 sinθ3; L13 ¼ − μ2ω2 þ β

4ω2
a1a2 sinθ3;

L14 ¼ β
8ω2

a1a
2
2 cosθ3; L15 ¼ 3γ

8ω1a1
a22 cosθ3 þ 9α2

4ω2
a2 −

3β
8ω2

a1 cosθ3

� �
;
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L16 ¼ 3β
8ω2

a1a2 sinθ3 −
γ

8ω1a1
a32 sinθ3

� �
;

R1, R2, R3 , and R4 are functions of Ls (s = 1, 2,…, 16) which are given above. Based

on the Routh-Hurwitz criterion, the necessary and sufficient conditions of the roots of

Eq. (54) have negative real parts, such that

R1 > 0;R1R2 − R3 > 0;R3 R1R2 − R3ð Þ − R2
1R4 > 0;R4 > 0: ð55Þ

In the following figures, the dashed lines refer to unstable solutions, while the solid

lines refer to stable solutions.

Numerical results
Simulation results are illustrated in graphical forms such as the steady state amplitude

of the composite beam system versus time history and detuning parameter σ1 or the re-

sponse of the composite beam system and controller at 1 : 3 internal resonance. The

different parameters of the composite beam system shown in Fig. 1 are μ1 = 0.001, f1 =

0.01, f2 = 0.05, α1 = 0.002, ω1 = 4, δ = 0.0001. Figure 1 declares that the steady state amp-

litude of the composite beam system is about 90 times that of the external excitation

amplitude f1.This is conducted when the controller is idle at the simultaneous primary

and principal parametric resonance.

Figure 2 shows that the time history for both composite beam system and controller

amplitudes at Ω1 ≅ ω1, Ω2 ≅ 2ω1 at internal resonance ω1 ≅ 3ω2. From Fig. 2, it is ob-

served that the energy is transmitted from the composite beam to the controller. To

measure the effectiveness of the controller, we define Ea as flows (Ea= uncontrolled sys-

tem amplitude/controlled system amplitude). Then, the effectiveness of the controller

Ea is about 35. Figures 3, 4, 5, 6, and 7 indicate numerical results of the frequency re-

sponse curves of the controlled system. Figure 3 illustrates that the response of the

controlled system against σ1. We note that the minimum response of the beam occurs

when σ1 = 0, which approves that the controller is able to eliminate the simultaneous
Fig. 1 System behavior without a controller at resonance Ω1≅ ω1, Ω2 ≅ 2ω1 for initial
conditions uð0Þ ¼ :02; u̇ð0Þ ¼ 0



Fig. 2 System behavior with a controller at resonance Ω1 ≅ω1, Ω2≅ 2ω1, ω1≅ 3ω2 for initial
conditions uð0Þ ¼ 0:02; u̇ð0Þ ¼ 0; νð0Þ ¼ 0:2; ν̇ð0Þ ¼ 0:μ1 ¼ 0:001; μ2 ¼ 0:00098; f 1 ¼ 0:01; f 2 ¼ 0:05; α1
¼ 0:002; α2 ¼ 0:002;ω1 ¼ 4; δ ¼ 0:0001; β ¼ 1; γ ¼ 0:2
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primary and parametric resonance vibration effectively at the existence of the 1:3 in-

ternal resonance. Figure 4 shows that the influence of f1 on the system amplitude re-

sponse against the detuning parameter σ1. From these figures, it is noticed that the

increase in excitations force f1 leads to an increase in the region of instability system.

Figure 5 shows the effects of changing the control signal γ on the FR curves of both the

controller and the beam system. Also, for decreasing γ, the effective frequency band-

width of the saturation controller induces lowering the vibration impact of the compos-

ite beam. On the other hand, the controller’s excessive risk is decreased when the

control signal is raised.

Figure 6 demonstrates the effect of feedback signal β variation on the FR curves.

Form this figure, we can see that decreasing the feedback signal obtained a better vibra-

tion lowering influence on the composite beam. Figure 7 indicates that the impacts of

the natural frequency on the amplitude response curves against σ1. Also, it is observed

that for increasing the natural frequency, the effective frequency bandwidth of the con-

troller and the better vibration damping influence of the composite beam.
Bifurcation analysis

Dynamic bifurcation analysis is performed using the XPPAUT 5 software package and

AUTO-07p. Furthermore, MATLAB is used for investigating the dynamic behavior

where the dynamic results are obtained at specific parameter values defined from

AUTO 2007 [40–43]. The bifurcation analysis is performed for most of the controlling

parameters such as parametric excitations parameters (f2), nonlinear control parameter
Fig. 3 Effects of the detuning parameter σ1 for μ1 = 0.001, μ2 = 0.00098, f1 = 0.01, f2 = 0.05, α1 = 0.002, α2 =
0.002, ω1 = 4, δ = 0.0001, β = 1, γ = 0.2



Fig. 4 Effects of external excitation f1. a f1 = 0.3. b f1 = 0.5
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(α2), detuning parameter (σ1), feedback signal gain (β), control signal gain (γ), and the

natural frequency (ω1) as shown below.
Effect of the parametric excitation parameter (f2)

Figure 8 a and b show the effect of the parametric excitation bifurcation parameter (f2)

on a1 and a2, respectively. The parameter values are indicated in Table 1. There is only

Hopf bifurcation (HB) point at f2 = 0.06839, where a1 = 0.02473 and a2 = 0.5691. In the re-

gion of (f2 ≤ 0.06839), the system is dominated by a stable steady state, where a1 is around

0.025 and a2 is around 0.57. In the region of (0.06839 ≤ f2 ≤ 0.09), the system is character-

ized by stable periodic attractor, where a1 oscillated in the range of [0.02, 0.28] while a2
oscillated in the range of [0.4, 1.32]; there is the unstable steady state in the same region

(0.06839 ≤ f2 ≤ 0.09) and unstable periodic attractor in (0.085 ≤ f2 ≤ 0.09).
Fig. 5 Effects of control signal gain γ



Fig. 6 Effects of feedback signal gain β
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Effect of the nonlinear control parameter (α2)

Figure 9 a and b indicate the effects of the nonlinear control parameter (α2) as a bifur-

cation parameter on a1 and a2 at γ = 30 based on the two-parameter continuation tech-

nique [44], and the rest of the parameter’s values are shown in Table 1. There are two

Hopf bifurcation points: the first Hopf HB1 appears at the two points (α2, a1) = (0.478,

0.2006) and (α2, a2) = (0.478, 0.09285), while second Hopf HB2 appears at the two points

(α2, a1) = (0.1008, 0.1447) and (α2, a2) = (0.1008, 0.09622). The system behavior can be

characterized as follow:

Region (α2 ≤ 0.1008): The bifurcation diagrams obtained in Fig. 9 a, and b show that

there exists a point attractor only, if a1 changes in the range of [0.148, 0.18] while a2
changes in the range of [0.096, 0.1].

Region (0.1008 ≤ α2 ≤ 0.478): The system is characterized by the unstable steady state

through this region in the range (0.1008 ≤ α2 ≤ 0.18); the system is dominated by the

stable periodic attractor. Figure 10 a–c indicate the dynamics of the system at α2 = 0.12

at the corresponding initial conditions. Figure 10 a shows the time course of a1, where

a1 fluctuates in the range of [0.113, 0.185] while time traces of a2 shows that a2 fluctu-

ates in the range [0.0885, 0.1035] as shown in Fig. 10b. The phase plane is shown in

Fig. 10c confirms the oscillatory attractor which is the only attractor at α2 = 0.12 as

shown through the regular limit cycles of a1 and a2.

Region (0.478 ≤ α2): The system is dominated by a stable steady state. There is also

an unstable periodic attractor. Figure 11 a and b show time traces of a1 and a2 at α2 =

0.8 at the corresponding initial conditions where a1 settles down at a1 = 0.27 while a2 =
Fig. 7 Effects of the natural frequency ω1



Fig. 8 Bifurcation diagram of f2 as the bifurcation parameter. Stable steady state branch, thick black line;
unstable steady state branch, thick broken black lines; stable periodic branch, black circles; unstable periodic
branch, hollowed/white circles
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0.0923. Phase plane (Fig. 11c) confirms the time traces in Fig. 11a, b where the system

approached a point attractor.
Effect of the detuning parameter (σ1)

Figure 12 a and b show the bifurcation analysis using the detuning parameter (σ1) as the

bifurcation parameter at γ = 50 based on the two-parameter continuation technique [44],

and the rest of the parameter’s values are indicated in Table 1. Two Hopf bifurcation

points are available: HB1 appears at σ1 = 5.95 × 10−5, a1 = 0.1722, and a2 = 0.08094, while

HB2 is at σ1 = − 0.001926, a1 = 0.1875,and a2 = 0.08292 as shown in Fig. 12 a, b.

Region (5.95 × 10−5 ≤ σ1): The system is dominated by the point attractor where there

is only a stable steady state.

Region (−0.001926 ≤ σ1 ≤ 5.95 × 10−5): In this region, the system is dominated by the

only periodic attractor. There is also an unstable steady state. The maximum frequency

for a1 and a2 appears close to HB1 at σ1 = 0, where a1 oscillates in the range of [0.02,

0.45] as shown in Fig. 12a, and a2 oscillates in the range of [0.045, 0.135] as shown in

Fig. 12b. However, this frequency decreases continuously as σ1 decreases until reaching

HB2 as shown in Fig. 12a, b.

Region (σ1 ≤ − 0.001926): In this region, the system is dominated by the point at-

tractor where a stable steady state is available, where a1 changes in the range [0.172,

0.19] while a2 changes in the range [0.082, 0.09] as shown in Fig. 12a, b.
Effect of the feedback signal gain (β)

Figure 13 shows the effect of feedback signal β as the main bifurcation parameter where

other parameter values are shown in Table 1. There is only one HB at β = 0.1776

and a1 = 0.1544, and a2 = 0.5116 as shown in Fig. 13a, b, respectively.
Table 1 Parameter values

Parameter Value Parameter Value Parameter Value

γ 0.2 α1 0.002 σ1 0

α2 0.002 β 1 δ 0.0001

μ1 0.001 f1 0.01 σ3 0

μ2 0.00098 f2 0.05 ω1 4



Fig. 9 Bifurcation diagram of nonlinear control parameter α2 as the bifurcation parameter
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Region (0.1776 ≤ β): The system is controlled by only a stable steady state, where a1
changes in the range of [0.1 0.1544] (Fig. 13a) while a2 changes in the range of [0.1,

0.51].

Region (0.133 ≤ β ≤ 0.1776): In this region, the system is controlled by stable periodic

attractor where a1 changes in the range of [0.01, 1] as shown in Fig. 13a while a2 oscil-

lates in the range of [0.1, 1.4] as shown in Fig. 13b.

Region (β ≤ 0.133): The system has no stable behavior where there are unstable

steady state and unstable periodic behavior as shown in Fig. 13a, b.
Effect of the control signal gain (γ)

Figure 14 shows the effect of control signal γ as the main bifurcation parameter where

the rest of the parameter’s values are indicated in Table 1. There is only one HB at γ =

47.56 and a1 = 0.1691, and a2 = 0.08244 as shown in Fig. 14a, b, respectively. The be-

havior of the system can be described as follows:
Fig. 10 α2 point



Fig. 11 α2 periodic
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Region (γ ≤ 47.56): The system is controlled by only a stable steady state where a1 ex-

ists in the range of [0.01, 0.1691] (Fig. 14a) while a2 changes in the range of [0.575,

0.08244] as shown in Fig. 14b.

Region (47.56 ≤ γ): In this region, the system is dominated by stable periodic at-

tractor, where the frequency of a1 increases as γ increases in the right side until it

reaches the maximum at γ = 47.56, where a1 oscillates in the range of [0.01, 0.95] as

shown in Fig. 14a while a2 oscillates in the range of [0.025, 0.18] as shown in Fig. 14b.
Effect of the natural frequency (ω1)

The effect of ω1 as the main bifurcation parameter is indicated in Fig. 15 where the

other parameter values are taken from Table 1. There is only HB point at ω1 = 3.283,

a1 = 0.01664, and a2 = 0.5767 as shown in Fig. 15a, b. The system behavior due to chan-

ging ω1 can be described as follows:

Region (3.283 ≤ ω1): In this region, the system is controlled by point attractor,

where a1 changes in the range of [0.017, 0.02], and a2 changes in the range of [0.57, 0.6]

as shown in Fig. 15a, b, respectively.
Fig. 12 Bifurcation diagram of detuning parameter σ1 as the bifurcation parameter



Fig. 13 Bifurcation diagram of feedback signal gain β as the bifurcation parameter
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Region (2.85 ≤ ω1 ≤ 3.283): The system is dominated by periodic attractors where

there are stable periodic attractors and unstable point attractors. Figure 15 a shows that

the frequency of a1 increases as ω1 decreases in this region until it reaches the max-

imum at ω1 = 2.85 where a1 oscillates in the range [0.01, 0.24]. Figure 15b shows that

the a2 has the maximum frequency range of [0.5, 1.2] at ω1 = 2.85.

Region (ω1 ≤ 2.85): In this region, the system has unstable oscillations and unstable

steady state. There is neither point nor periodic attractors as shown in Fig. 15a, b.
Numerical validation

Figure 16 shows time trace of the controlled system Eqs. (1) and (2) and the approxi-

mate modulated amplitudes of Eqs. (34)–(37) which obtained from perturbation ana-

lysis of the controlled system. From the comparison, we concluded that the predictions

obtained from approximated analytical solutions using the MSP method agree well with

the numerical solutions found by the RK.

Figures 17 and 18 show a good agreement between the numerical solution of the ori-

ginal system (1) and (2) using the RK method and approximate solution using the MSP

method. Also, the results obtained in Fig. 17 agreement with the results obtained in

Fig. 5. The saturation phenomenon occurs for increasing feedback signal gain β as

shown in Fig. 18.
Comparison with previous work

In [26], the active vibration controller 1:2 for suppressing the vibration of the nonlinear

composite beam subjected to parametric excitation force only has been studied. In this

paper, an active vibration controller 1:3 for suppressing the vibration of the nonlinear
Fig. 14 Bifurcation diagram of the control signal gains γ as the bifurcation parameter



Fig. 15 Bifurcation diagram of natural frequency ω1 as the bifurcation parameter
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composite beam subjected to parametric and external excitation forces has been stud-

ied. Bifurcation analysis is conducted using various control parameters such as natural

frequency (ω1), detuning parameter (σ1), feedback signal gain (β), control signal gain (γ),

and other parameters. The dynamic behavior of the system is predicted within various

ranges of bifurcation parameters. All of the stable steady state (point attractor), stable

periodic attractor, unstable steady state, and unstable periodic attractors were deter-

mined efficiently using bifurcation analysis. The controller’s influence on system behav-

ior is examined numerically.
Conclusions
The main objective of the work is to control the vibration of a nonlinear composite

cantilever beam with external and parametric excitation forces. We applied the MSP

technique to solve those nonlinear equations. We applied Lyapunov’s first method to

investigate the stability of the controlled system. The corresponding FR equations have

been extracted and presented graphically at different system parameters. The obtained

curves were confirmed numerically applying the RK algorithm. Bifurcation analysis was

conducted using many bifurcation parameters such as f2, α2, σ1, β, γ, and ω1. The non-

linear controller has been studied at Ω1 ≅ ω1, Ω2 ≅ 2ω1, ω1 ≅ 3ω2. To validate our re-

sults, the approximated analytical solution using the MSP perturbation method is

compared with the numerical solution using the RK method of order four. From a pre-

vious comprehensive study, the following points are concluded:

1. The composite beam amplitude in the case of no controller at the simultaneous

principal and primary parametric resonance Ω1≅ ω1, Ω2≅ 2ω1 is multiplied to

about 30 times of the parametric excitation amplitude f2.
Fig. 16 Comparison between RK and MSP methods at Ω1 ≅ω1, Ω2 ≅ 2ω1, ω1 ≅ 3ω2



Fig. 17 Comparison between RK and MSP methods at Ω1 ≅ω1, Ω2 ≅ 2ω1, ω1 ≅ 3ω2
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2. The controller 1 : 3 is efficient for lowering the high steady state amplitude

vibration of the composite beam.

3. Increasing the feedback signal β obtained the better of the vibration damping effect

of the composite beam.

4. For increasing the linear damping μ1 and natural frequency ω1, the efficient

frequency bandwidth of the controller and the better of vibration damping the

composite beam influence.

5. For decreasing the control signal γ and excitation forces f1 and f2, the effective

frequency bandwidth of the saturation controller can be improved and increase the

vibration reduction action of the composite beam.

6. The overload controller risk decreases as the control signal γ increases.

7. The saturation phenomenon occurs for increasing feedback signal gain β.

8. The excitation force amplitude is increased as the steady state amplitude increased

and lost its stability.

9. The composite beam amplitude is inversely proportional to the damping

coefficient μ1 and natural frequency ω1.

10. The validation of our results has been done, where the approximate analytical

solutions are compatible with the numerical solutions.

11. The dynamic system behavior was determined at different regions of the

bifurcation parameters where all stable steady state, stable periodic, unstable steady

state, and periodic attractors were evaluated.

In future work, we present some suggestions for further developments. Involving

higher order nonlinearities to make the mathematical model closer to the real-life of a

composite cantilever beam. Also, we intend to implement another control.
Fig. 18 Comparison between RK and MSP methods at Ω1 ≅ω1, Ω2 ≅ 2ω1, ω1 ≅ 3ω2
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